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Abstract
The number of studies assessing measurement invariance of the European Social Sur-
vey’s (ESS) immigration scale increased in recent years. However, the comparability of 
findings is limited due to the lack of consistency in the analytic strategies and methods 
employed across these studies. The present study aims to address this issue by employ-
ing a consistent approach: a multigroup confirmatory factor analysis (MGCFA), to test 
for measurement invariance of attitudes towards immigration in each of the first nine 
rounds of the ESS. Moreover, we estimate the measurement quality by computing the 
reliability coefficient Omega in each country in each round of the ESS.

Our results reveal that metric invariance holds for all countries but one (Finland) 
in all rounds, indicating that covariances and regression coefficients can be compared 
meaningfully. While scalar invariance only holds for different subgroups of countries 
within each round, partial invariance is fulfilled in all countries, meaning that at least 
one indicator is equal for all countries allowing for latent mean comparisons. Further-
more, assessing the measurement quality, we find the attitudes towards immigration 
index similarly good across the different countries and rounds. 
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Undoubtedly, the topic of migration will largely shape the national and inter-
national political agenda of the 21st century. In election and public debates, the 
question of how to deal with migration is one of the most pressing concern, 
effectively capitalized on by the political right. The so-called ‘refugee crisis’ in 
2015 has deepened cleavages within the European Union, providing an oppor-
tunity for populist radical right parties to advocate for more restrictive policies 
and shift the overall political discourse to the right (Mudde, 2007, 2020). 

Given its ongoing social and political relevance, understanding and analyzing 
attitudes toward immigration has emerged as one of the most extensively stud-
ied aspects of the social sciences (Bohman, 2015; Borgonovi & Pokropek, 2019; 
Quillian, 1995; Scheepers et al., 2002; Weldon, 2006). This has resulted in exten-
sive literature from various disciplines, such as sociology, psychology, political 
science, and economics. So far, empirical studies have mainly focused on the 
individual level, but with the increasing availability of large cross-national data-
sets, the amount of international comparative research is rising (Meuleman & 
Billiet, 2012). 

Measuring psychological constructs such as values or attitudes across coun-
tries raises methodological questions on the comparability of measurements 
that are often insufficiently or not at all addressed by researchers (Davidov & 
Meuleman, 2012; Meitinger et al., 2020; Roots et al., 2016). As question wording 
and items can have different meanings in different countries depending on the 
linguistic and cultural background, it is essential to verify and ensure that the 
used measurements are comparable across the observed countries (Roots et al., 
2016). According to Meuleman et al. (2022, p.3), the basic idea behind so-called 
measurement invariance testing (also referred to as measurement equivalence) 
of multi-item instruments in cross-cultural research is that “when we compare 
any measurement across groups, that comparison should reflect true differ-
ences rather than measurement differences.”

The lack of testing measurement comparability is increasingly criticized in 
the literature as it may lead to misinterpretation of findings (Meuleman & Billiet, 
2012). However, due to improved and new statistical techniques, measurement 
invariance testing has become more accepted in applied social science research 
over the last decade (Davidov, Muthen, & Schmidt, 2018; Leitgöb et al., 2023). 

mailto:Amelie.nickel@uni-bielefeld.de
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When testing measurement invariance we can at first decide between two tra-
ditions in measurement theory: Item-response theory (IRT) or structural equa-
tion modeling (SEM) (Bauer et al., 2006; Putnick & Bornstein, 2016; Tsaousis et 
al., 2020)1. 

IRT examines the relationship between an individual’s latent trait (e.g., an 
attitude) and their response to a specific item. In the IRT tradition, measure-
ment invariance is assessed through the lens of differential item functioning 
(DIF; Holland & Wainer, 2015) across groups, which determines whether item 
behavior measures equivalent levels of the latent trait across members of differ-
ent groups (Tsaousis et al., 2020).

We focus on SEM approaches, namely confirmatory factor analysis (CFA) 
and multi-group confirmatory factor analysis (MGCFA), in which the relations 
between observed variables and latent construct(s) are tested for measurement 
invariance between groups (Vandenberg & Lance, 2000). CFA is a statistical 
technique used to test the invariance of measurement model parameters within 
subpopulations, while MGCFA is an extended version of CFA that allows invari-
ance testing across multiple groups. MGCFA (Jöreskog, 1971; Millsap, 2011) is 
most widely used for testing measurement invariance. However, the scientific 
community is inconsistent about the correct methods as well as the usefulness 
of measurement invariance testing in general, as a recent debate in Sociologi-
cal Methods & Research shows (Fischer et al., 2022; Meuleman et al., 2022; Welzel 
et al., 2021; Welzel et al., 2022). In the concluding section of our paper, we out-
line the advantages and main limitations of MGCFA and highlight some recently 
developed alternative methods. 

In our study, we aim to contribute to the field by employing multigroup con-
firmatory factor analysis with local fit testing to assess measurement invariance 
of attitudes towards immigration as measured in each round of the ESS (ESS R1 
(2002) to ESS R9 (2018))2.

In order to make meaningful cross-country comparisons, it is essential to 
check not only that the measures are comparable across countries, but also that 
the quality of the measures is comparable. Testing measurement quality is an 
imperative to correct for measurement errors (Pirralha & Weber, 2020; Poses 
et al., 2021; Saris & Revilla, 2016). For meaningful comparisons (e.g. correla-
tions), it is crucial that the size of the measurement errors is similar between 
the groups (e.g. countries) being compared. In general, “the lower the quality of 
measurement, the more careful researchers need to be in their conclusions […], 

1 For recent efforts to combine the two approaches, see Raju et al. (2002); Reise et al. (1993); 
Stark et al. (2006); Widaman and Grimm (2014) quoted from Putnick and Bornstein (2016). 

2 It was not possible to include the most recent round from the European Social Survey 
(round 10, conducted in 2020) due to the timeframe of the study. In addition, the data col-
lection for round 10 of the ESS took place during the COVID-19 pandemic, which implied 
unique circumstances such as online interviews and self-completion of questionnaires. 
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since higher levels of measurement errors are more likely to disturb the results” 
(Pirralha & Weber, 2020; Poses et al., 2021, p. 245). Therefore, we also estimate 
the measurement quality by calculating the reliability coefficient Omega (Hayes 
& Coutts, 2020) of the sum score of attitudes towards immigration for each coun-
try in each round of the ESS. 

We acknowledge the growing number of studies that have assessed the mea-
surement invariance of the ESS immigration scale in recent years. However, the 
comparability of findings across these studies is limited due to the lack of con-
sistency in the analytical strategies and methods used. In our study, we aim to 
enhance comparability and provide more reliable insights by adopting a con-
stituent approach. In addition, we aim to contribute to the field by providing an 
accessible and reader-friendly introduction to MGCFA as a method for testing 
measurement invariance, which may enhance its practical application in the 
context of migration research.

This paper sets out by introducing the European Social Survey (ESS) as a data 
source for studying attitudes towards immigration. We then provide a compre-
hensive introduction to MGCFA and present an overview of previous research 
testing the comparability of attitudes towards immigration in the ESS. The fol-
lowing section outlines the present study – sample, model testing, and analytic 
strategy. Finally, the results of measurement invariance testing, latent means 
comparison, and measurement quality assessment are presented and discussed.

Attitudes Towards Immigration in the European Social 
Survey 
The European Social Survey is a biannual cross-national survey aimed to track 
Europeans’ attitudes, beliefs, and behaviors on different topics. Implemented in 
most European countries, the ESS is a cross-sectional, probability-based sample 
in which all individuals, residents in private households over the age of 15, are 
eligible. 

Since its first round in 2002, the European Social Survey (ESS) has continu-
ously surveyed attitudes towards immigration in several European countries 
and is thus one of the most widely used surveys for cross-national research on 
attitudes towards immigration (Roots et al., 2016). Across each round, it includes 
several items to assess attitudes towards immigration in its main questionnaire. 
Besides, in rounds 1 and 7, the ESS conducted a more comprehensive immigra-
tion module that specifically focused on various dimensions of attitudes towards 
immigration (Heath et al., 2016). 

In this paper, we focus on three items measuring the concept attitudes towards 
immigration, included in the core module, and displayed in Table 1.
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Table 1 Items used for measuring attitudes towards immigration (ATI)

Question wording Item  
name

Item  
number Response scale

Would you say it is generally bad or good 
for [country]’s economy that people come 
to live here from other countries?

imbgeco B41 0 (Bad for the economy) –  
10 (Good for the economy)

And, using this card, would you say that 
[country]’s cultural life is generally under-
mined or enriched by people coming to 
live here from other countries?

imueclt B42 0 (Cultural life undermined) –  
10 (Cultural life enriched)

Is [country] made a worse or a better place 
to live by people coming to live here from 
other countries?

imwbcnt B43 0 (Worse place to live) –  
10 (Better place to live)

Invariance Testing with Multigroup Confirmatory 
Factor Analysis (MGCFA)
Measurement invariance tests rely on a latent variable approach. As a confir-
matory factor analysis model, multigroup confirmatory factor analysis (MGCFA) 
techniques assume that the responses people provide to different items 
(observed responses) are caused by their position on an unobserved construct 
or factor (latent variable). Figure 1 represents this model for the latent factor 
attitudes towards immigration (ATI) that determines the answers to the three 
items in Table 1.

ATI

Bad or good for
countryʻs economy

Countryʻs cultural
life undermined or

enriched

Country made a
worse or better 

place to live

Figure 1 Measurement model for the latent factor ATI
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Equation 1 provides an equation for the same model, where Χi is the observed 
item answer for the observed variable i, ξ is the latent factor ATI, and ε is the 
error term, i.e., the item variance unaccounted by the latent factor. τ represents 
the intercept (the expected value of each observed item when the value of the 
latent variable is zero), and λi is the loading (the expected increase in Χi for each 
one unit increase in ξ).

Χi = τi + λiξ + εi (1)

The multigroup extension of MGCFA implies that this same measurement model 
is separately estimated in different groups, indicated with the subscript j, as 
depicted in Equation 2.

Χij = τij + λijξ + εij (2)

Declaring measurement invariance implies asserting that the factor is measured 
in the same way across the different groups. Thus, in this framework, measure-
ment invariance means that the parameters of the measurement model τi and 
λi are equal across all groups j. There are different possible equalities between 
parameters that can be satisfied across groups, giving rise to different measure-
ment invariance levels.

First, configural invariance means that the general structure of the factor is 
equal across groups, i.e., that the same items load on the same factor(s). Since 
the model we estimate is unifactorial, this simply means that the loadings for 
none of the items are zero in any group and that there are no correlated error 
terms in only some groups. Whether the value of the parameters is equal across 
groups is not important at this level. The establishment of configural invariance 
is interpreted as evidence suggesting that, since the factor can be measured with 
the same items in all groups, the factor has a similar theoretical content across 
groups. 

Second, metric (also known as loading) invariance indicates that the factor 
loadings are equal across groups. This means that a one unit increase in the 
factor leads to the same change in the observed item responses in all groups. 
This level of equivalence implies that factor variances and covariances (i.e., the 
relationship of the factor with other measures) can be compared meaningfully 
across groups. 

Third, scalar (also known as intercept) invariance means that the item inter-
cepts are equal across groups. This indicates that when the value of the latent 
variable is zero, the expected mean value of the item responses will be the same 
across all groups. Importantly, when metric and scalar invariance for an item 
are established across groups, it means that any given level in the latent variable 
of interest will lead to the same expected value of the observed item. Therefore, 
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the simultaneous establishment of metric and scalar invariance allows for the 
comparison of sum scores or observed means.

To understand this last point, it is important to highlight the differences 
between sum scores, observed means, and latent means. Sum scores are the 
scores produced by simply summing, for each individual on the sample, the 
scores of all items that measure the latent factor. Observed means refer to the 
means of sum scores across all individuals in a given country. Latent means are 
the means of the latent factor ATI. While observed means are very simple to 
compute, latent means need to be estimated with specialized software and using 
structural equation modeling (or other latent variable) techniques. From Equa-
tion 1, we can infer the reason why observed means should not be compared 
in the absence of measurement invariance. If the loadings and intercepts are 
not equal across groups, the same level in the latent factor will lead to different 
expected values in the observed items. This implies, for instance, that the same 
mean level in an observed item across groups may correspond to different mean 
levels of the latent variable; or that different mean levels of an observed item 
across groups might correspond to the same mean value of the latent variable 
(see also Steinmetz, 2013). Said differently, if the loadings and intercepts are not 
equal across groups, the correspondence between latent means and observed 
means differ across groups. This means that differences in observed means are 
not trustworthy indicators of differences in latent means. Thus, observed means 
should not be compared because they do not necessarily reflect differences in 
latent means.

The situation of equality of all loadings and intercepts across groups is some-
times called full invariance. Full invariance has often been found to be too strict 
to achieve, especially for the intercepts (Davidov, Muthen, & Schmidt, 2018). This 
means that comparisons of observed means (or sum scores) across groups can-
not be guaranteed, as differences in observed means might or might not reflect 
true differences in the latent means. A way to overcome this issue is to compare 
latent means instead, which can be done by establishing partial invariance. Par-
tial invariance implies that only some of the parameters of the measurement 
model are equal across groups. Classic advice has been that latent means can be 
compared in situations with partial invariance when at least two of the loadings 
and intercepts are equal (Steenkamp & Baumgartner, 1998). More recent, simu-
lations by Pokropek et al. (2019) have shown that the estimation of latent means 
is satisfactory in partial measurement invariance models, if items with partial 
measurement invariance are identified and freed, and that at least one item is 
invariant across groups.

Therefore, our aim is twofold. First, testing for measurement invariance of 
the attitudes towards immigration scale across countries and establishing the 
level of invariance (configural, metric, or scalar) that holds across each group of 
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countries. Second, establishing partial invariance for cases where no full invari-
ance is found, so that latent means can be compared.

Previous Research Testing the Comparability of 
Attitudes Towards Immigration in the European Social 
Survey
The number of studies evaluating measurement invariance of the immigration 
attitudes scale across the ESS countries and over time has increased but remains 
limited (Table 2). These studies differ in their methodological approaches, ana-
lytical strategies, and terminology used: “perceived ethnic threat” (Pirralha & 
Weber, 2020), “attitudes towards migration” (Borgonovi & Pokropek, 2019), “anti-
immigrant attitudes” (Nickel, 2022). In the following, we will use the term “atti-
tudes towards immigration” (ATI). For a detailed overview of the constructs, 
questions, and response scales used in the studies, see Table A1, Appendix.
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Studies testing cross-time and cross-national measurement invariance
Meuleman et al. (2009) first started testing the comparability of the ESS immi-
gration attitudes scale across three time points (ESS R1 (2002); ESS R2 (2004); 
ESS R3 (2006)). The authors provide technical guidance on how to measure 
scale invariance by applying multigroup confirmatory factor analysis (MGCFA) 
and using a top-down strategy: testing the most constrained model (full scalar 
invariance across time and countries) at first and then incrementally reduc-
ing the number of constraints assessing whether the model fit is improving. To 
measure ATI they construct a latent factor that measures the rejection of further 
immigration in general (REJECT). In their final model, full scalar invariance 
holds over time within the 17 countries and partial scalar invariance between 
the countries, implying that the ESS immigration attitudes can be meaningfully 
compared across countries and over the three time points. 

Borgonovi and Pokropek (2019) published a study examining the measurement 
invariance, both across countries and across time, of two latent constructs mea-
suring immigration attitudes: generalized threat (THREAT) and opposition to 
migration (REJECT). They considered four time points ESS R5 (2010) – R8 (2016), 
including 18 countries that participated in each round of the ESS. To test for 
partial and approximate measurement invariance they apply sequential meth-
ods using the multigroup Bayesian structural equation modeling (MG-BSEM; B. 
Muthén & Asparouhov, 2012). First, they measure cross-time comparability sep-
arately for each country, and second, cross-national comparability for each time 
point. They establish full scalar invariance over time within each county but 
only metric invariance across the countries. Indicating that the country means 
can be compared meaningfully over time for each country but that the different 
country means cannot be compared to each other within one time point. 

Studies testing cross-national measurement invariance
Making use of the first more comprehensive module assessing immigration 
attitudes conducted in ESS round 1 (2002), Meuleman and Billiet (2012) test for 
measurement invariance for four latent factors: opposition against new immi-
gration (REJECT); support for imposing conditions to immigration (CONDI-
TION); perceived economic threat (ECOTHREAT); perceived cultural threat 
(CULTTHREAT). The REJECT scale holds partial scalar invariance (invariance 
applies at least for two items per construct) for all 21 countries, which allows 
for cross-national mean comparisons. The other three scales hold partial metric 
invariance in 18 to 19 countries, guaranteeing the cross-national comparability 
of regression coefficients and covariances. Partial scalar invariance holds only 
for 11 (CULTHREAT) to 14 countries (CONDITION, ECOTHREAT), implying that 
the country means of these three scales can only be meaningfully compared in 
some of the countries. 
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Davidov et al. (2015) extend these findings by testing for approximate mea-
surement invariance of the REJECT scale across 35 countries and the first 6 ESS 
rounds4. As the traditional (exact) approach failed to support scalar and even 
partial scalar measurement invariance, the authors test for approximate mea-
surement invariance using the Bayesian framework (B. Muthén & Asparouhov, 
2012; van de Schoot et al., 2013). This procedure “allows variance around the 
point estimates for the factor loadings and intercepts of the indicators” (Davidov 
et al., 2015, p. 261), whereas in the exact approach factor loadings and intercepts 
would be constrained to be exactly equal. Their findings reveal that approxi-
mate scalar measurement invariance is established across all countries in each 
ESS round, guaranteeing comparable country means. 

Based on data from the second comprehensive immigration module surveyed 
in ESS round 7 (2014), Davidov, Cieciuch, and Schmidt (2018) test for approximate 
measurement invariance of three latent constructs: opposition towards immi-
gration (ALLOWANCE); qualification for entry or exclusion (CONDITION); real-
istic threat (RT). Their results show that approximate (not exact) scalar invari-
ance for ALLOWANCE (12 countries) and RT (13 to 14 countries) can be found in 
most of the 15 countries considered. For CONDITION, neither exact nor approxi-
mate invariance holds, and metric invariance is established only in 7 countries. 

Pirralha and Weber (2020) disentangle the cognitive from the measurement 
part and correct for measurement errors. They refer to the concept of perceived 
ethnic threat (similar to THREAT) and find partial scalar invariance which 
allows comparing the latent means across all 19 countries that participated in 
the ESS R3 (2006). 

Further evidence for metric invariance of anti-immigrant attitudes (similar to 
THREAT) can be found in Nickel (2022). Using MGCFA for structural modeling, 
the results show that metric invariance holds for all 29 countries participating 
in ESS round 9 (2018), indicating that factor loadings are equivalent across these 
countries. 

While the above-mentioned studies use different methods and analyti-
cal strategies, making it difficult to compare their results, we follow the same 
approach here for all nine ESS rounds: multigroup confirmatory factor analysis 
(MGCFA). Moreover, we also estimate the measurement quality of the sum score 
attitudes towards immigration to quantify how strong the relationship between 
the latent variable of interest, attitudes towards immigration, and its observed 
measure is. 

4 Measurement invariance was tested separately for each ESS round, the authors did not 
test for over-time comparability. 
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The Current Study

Sample 

We focus on three items measuring the concept attitudes towards immigration, 
which are included in the core module and shown in Table 1. As these items are 
repeated in each round of the ESS, our analyses are based on data from round 
1 (2002) to round 9 (2018)5. In total, we analyze data from 38 countries: Austria, 
Belgium, Switzerland, Czechia, Denmark, Spain, Finland, France, Germany, 
Greece, Hungary, Ireland, Israel, Italy, Luxembourg, Netherlands, Norway, 
Poland, Portugal, Sweden, Slovenia, Estonia, Iceland, Slovakia, Turkey, Ukraine, 
Bulgaria, Cyprus, Russia, Croatia, Latvia, Romania, Lithuania, Albania, Kosovo, 
Montenegro, Serbia, and the United Kingdom. This led to a total sample of 
390,276 individuals6.

Model testing
In order to establish partial measurement invariance, we estimate models with 
equality constraints on the parameter among groups. We then use local fit test-
ing to determine whether the imposed constraints are supported by the data. 
Local fit testing focuses on whether, in each group, each specific parameter of 
the model is misspecified. Concretely, we follow the local fit testing procedure 
suggested by Saris et al. (2009). This local fit testing procedure is based on a com-
bination of the modification indices (approximating a significance test for the 
retrieval of one constraint), the expected parameter change when a constraint is 
relieved, and the power of the test to detect a misspecified parameter of a given 
effect size. The researcher must set the expected parameter change that they do 
consider to be a relevant misspecification: misspecifications lower than this size 
are not considered relevant and are thus ignored. Our criteria for the size of the 
misspecifications to be detected are 0.1 for the loadings, 0.15 for the intercepts7, 

5 European Social Survey Round 1 Data, (2002); Round 2 Data, (2004); Round 3 Data, (2006); 
Round 4 Data, (2008); Round 5 Data, (2010); Round 6 Data, (2012); Round 7 Data, (2014 // 
2015); Round 8 Data, (2016); Round 9 Data, (2018)

6 To test for invariance across countries, we included only those cases where respondents 
provided answers to all three items. We employed listwise deletion, meaning that any 
case with missing data for any of the specified variables was excluded from the analysis. 
The item non-response varies over time and across countries but without a clear pattern. 
For detailed information on the sample size for each country in each ESS round, see Table 
A2, Appendix. We acknowledge that there are alternative methods for dealing with miss-
ing data, but follow the usual approach adapted by ESS Core Scientific Team (Zavala-Rojas 
& Saris, 2018; Revilla, 2012; Weber, 2011). 

7 In practice, given the standard deviations of the items in each country, this corresponds 
to an unstandardized effect size of between 0.3 and 0.5 in all cases, meaning that we 
aim to detect misspecifications larger than 10% of the total length of the response scale 
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and 0.2 for correlated error terms (all in standardized metrics), based on sugges-
tions by Saris et al., 2009). 

This procedure contrasts with the typical approach of relying on global fit 
indices (statistics such as Chi-square or fit indices such as the comparative 
fit index (CFI) or the root mean square error of approximation (RMSEA)) and 
evaluating models as a whole. We avoid global fit indices for two reasons. First, 
because of some of their drawbacks reported in the literature (sensitivity to 
sample size and different model characteristics, unequal sensitivity to differ-
ent model misspecifications; Groskurth et al., 2021; Saris et al., 2009). Second, 
because relying on global fit indices does not allow for fine-grained assessments 
of invariance in the context of measurement invariance. Concretely, the use of 
global fit indices does not allow for recovering complex patterns of invariance 
across groups, i.e., among 24 groups, different levels of invariance are likely to 
be present in different subgroups of countries – but this level of detail cannot 
be achieved using global fit indices. Moreover, using global fit indices does not 
allow for identifying invariant items, which is a prerequisite to then free the 
invariant items and establish partial invariance. This is critical because estab-
lishing partial invariance is important when we want to compare latent means 
under conditions where full invariance is not present.

Analytical Strategy

The analyses were conducted in R (R Core Team, 2021), using the packages 
lavaan (Rosseel, 2012) and semTools (Jorgensen et al., 2021)8. We used ML esti-
mation because the items were 11-point scales and did not present important 
skewness or kurtosis. The Saris et al. (2009) approach to local fit testing was 
implemented using the function miPowerFit in semTools. Factor variances were 
identified using the fixed factor approach, with fixing variances at 1 and means 
at 0, unless equality constraints in the model allowed to free these specifications 
(Schroeders & Gnambs, 2020). Our analyses are cross-sectional and not longitu-

(11-points), and occasionally misspecifications larger than a percentage of the scale 
smaller than 10 %. 

8 As van de Schoot et al. (2012) point out, measurement invariance testing is feasible with 
various structural equation modeling software programs. Lisrel (Jöreskog & Sörbom, 
1996-2001) possesses the capability to handle categorical data, although it demands a pro-
ficiency in syntax and matrix algebra. AMOS (Arbuckle, 2007) is recognized for its user-
friendly interface, but its capacity to handle categorical data is limited. Currently, Mplus 
(L. K. Muthén & Muthén, 2012) stands out as the most versatile program for measure-
ment invariance testing, albeit requiring a proficiency in syntax. Additionally, Lavaan 
(Rosseel, 2012) and OpenMx (Boker et al., 2011), both open-source R packages in ongoing 
development, provide alternative options for measurement invariance testing, thereby 
enhancing the array of available tools in this domain.
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dinal, i.e., we test the measurement invariance across countries in each round, 
but not across time for a given country.

For each round, the invariance test proceeds as follows. First, we estimate 
the configural model and check that no estimates are 0. Second, we estimate 
the loading invariance model – all loadings constrained to be equal – and test 
it using miPowerFit. If miPowerFit detects misspecified loadings, we free them 
and re-estimate the model. Each time, we free only one loading because model 
misspecifications are often related. We repeat this process until no misspecifi-
cations are present according to miPowerFit. Once a model with no misspecifi-
cations is reached, we compare the value of the freed loadings. This step is done 
to evaluate further comparability across subgroups of countries: it might be that 
some countries are non-invariant with respect to the majority of the groups but 
invariant among them. When freed loadings deviate in the same direction com-
pared to most groups (e.g., the freed loadings of more than one group are higher 
than for the rest of the countries), we additionally constrain them to be equal to 
each other. We then re-estimate and test the model again; in the rare occasion 
that misspecifications reappear, we also free them one by one.

After establishing the highest possible level of metric invariance, we move on 
to scalar invariance. The process for scalar invariance is the same as for metric 
invariance. First, we constrain the intercepts to be equal – although in this step 
we do not constrain the intercepts for the groups and items for which metric 
invariance was not established. We then test the model using miPowerFit and 
free the intercepts one by one. In the end, we compare the value of the freed 
intercepts and set additional equality constraints among the freed intercepts 
with similar estimated values.

Measurement Quality 

Estimating the measurement quality is essential to correct for measurement 
errors (Saris & Gallhofer, 2014), but also to understand how much of the concept 
of interest – attitudes towards immigration – is measured by the created sum 
score9. A perfect relationship would be 1 with no measurement errors present. 
The measurement quality of the unweighted sum scores 𝑞𝑞��
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 is defined as: 

9 The survey quality predictor (SQP) database, developed by Saris et al (2011), serves as an 
open source tool for evaluating the quality of individual questions in the ESS (see https://
www.europeansocialsurvey.org/methodology/ess-methodology/data-quality-assess-
ment). Saris and Gallhofer (2014) suggest that SQP can also be used to assess the quality of 
composite scores by utilizing information on the quality of individual questions.

 For further insights into how measurement quality can be improved by correcting mea-
surement errors in the ESS, various reports, working papers, and articles are available 
at https://www.europeansocialsurvey.org/methodology/methodological-research/correc-
tion-measurement-error

https://www.europeansocialsurvey.org/methodology/ess-methodology/data-quality-assessment
https://www.europeansocialsurvey.org/methodology/ess-methodology/data-quality-assessment
https://www.europeansocialsurvey.org/methodology/ess-methodology/data-quality-assessment
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σ2(es) is the variance of the errors in the sum score and σ2(s) is the variance of the 
sum score (s). This can be estimated, using the loadings (λi) of the final scalar 
model, as follows: 
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The measurement quality of the sum score can range from 0 to 1, where we con-
sider a q2 < 0.6 as poor, 0.6 ≤ q2 < 0.7 as questionable, 0.7 ≤ q2 < 0.8 as acceptable, 
0.8 ≤ q2 < 0.9 as good, and q2 ≥ 0.9 as excellent quality, and 1 as perfect (DeCastel-
larnau & Revilla, 2017). 

Results

Measurement Invariance

Figure 2 shows the results for the invariance of loadings (metric invariance) 
across countries. Countries illustrated in gray are not comparable, and coun-
tries shown without color were not part of the analysis. For countries with the 
same color, either green or purple, factor variances and covariances can be com-
pared. We followed a specific analytical procedure: Initially, we released the 
equality constraints for all non-invariant countries, allowing for measurement 
variations across these countries. Subsequently, we conducted tests of invari-
ance within this group. This process led us to identify a second group of coun-
tries, represented in purple, that are comparable to each other.

As can be seen in the maps, metric invariance is generally satisfied for the 
items in almost all countries in all rounds, except one or two countries in each 
group. Only the items in one country show a clear pattern of non-invariance in 
most rounds: Finland. In other countries, occasionally non-invariant items are 
found: in Italy in R1, in Denmark and France in R2, in Denmark, France and 
Estonia in R3, in Romania and Slovakia in R4, in Portugal and Slovakia in R5, in 
Hungary and Portugal in R6, and in Poland in R8. These results imply that for 
most countries, a one unit increase in the latent factor of interest leads to the 
same change in the expected value of the responses to the item across countries. 
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Figure 2 Metric invariance across countries in the nine rounds of the ESS 



229 Nickel & Weber: Measurement Invariance and Quality of Attitudes

Figure 3 shows the results for scalar (intercept) invariance. In contrast to metric 
invariance, scalar invariance is much less widespread. First, there are different 
subgroups of countries for which scalar invariance holds. However, the larger 
groups includes a maximum of 52% of the countries (in round 4), and a minimum 
of 26% of the countries (in round 3). Moreover, between 30% (in round 3) to 3% 
(in round 9) of the countries in each round do not share intercepts with any other 
country of that round. This implies that for most of the countries, the same level 
of the latent factor corresponds to a different mean level in the responses to at 
least one of the items. In Figure 3, “comparability” refers to the comparability of 
the observed means across countries. As can be seen, comparisons of observed 
means across countries are not possible in many cases. In each round, observed 
means can only be compared across countries that have the same intercepts 
(shown with the same color), i.e., across a relatively small subset of countries.

Regarding the sources of scalar invariance, the most non-invariant item is the 
item ‘Immigration bad or good for the economy’ (imbgeco). Across all rounds and 
countries, 28% of the intercepts had to be freed for this item. This is followed by 
the item ‘Immigration undermines or enriches cultural life’ (imueclt), for which 
24% of the intercepts had to be freed. Lastly, 13% of the intercepts for the item 
‘Immigration makes countries a worse or better place to live’ (imwbcnt) had to be 
freed.

Regarding the countries, the country with the most non-invariant items was 
Finland (across all three items, 40% of its intercepts had to be freed; most of 
these corresponded to the item ‘imueclt’, which had to be freed in every round). 
Finland is followed by Sweden and Portugal (37% of the items had to be freed; 
most of these corresponded to ‘imbgeco’ for Sweden and to ‘imwbcnt’ for Portu-
gal). In contrast, for the countries with fewer non-invariant items, only one item 
in one round was found to be non-invariant across all items and rounds. These 
countries were Israel (representing 6% of all intercepts), Bulgaria (7%), Greece 
(8%), and Croatia (11%).
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Figure 3 Scalar invariance across countries in the nine rounds of the ESS
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Comparison of Latent Means

Given that scalar invariance does not hold for most countries, differences in 
observed means are not reliable indicators of differences in latent means. Thus, 
in most cases, the observed means should not be compared across all countries. 
However, since partial invariance is satisfied for all countries (at least one indi-
cator is equal for all countries), latent means can be compared directly. The 
exact latent means are shown in Table A3 in the Appendix. In all rounds, we 
chose Germany as a reference point for identification purposes (i.e., its mean is 
always 0, and the latent mean estimates are relative to those of Germany). 

Consistent with previous research, our results again confirm that the North-
ern European countries – Sweden, Norway, Denmark, Finland – tend to be 
more positive towards immigration, while Eastern Europe – Czechia, Hungary, 
Ukraine, Slovakia – and Southern Europe – Italy, Greece, Cyprus, Slovenia – hold 
the most negative attitudes. Some countries remain in the middle range, rep-
resenting moderate attitudes towards immigration – Netherlands, Ireland, and 
to some extent Germany. Over the years, Sweden and Iceland have consistently 
been the most immigration-friendly countries, while Finland, Norway and Den-
mark rank at least in the top half.

Measurement Quality 

As summarized in Table A4, Appendix, the measurement quality ranges from 
.68 in Luxembourg in round 1 to .94 in Bulgaria in round 9. This means that 
between 32% and 6% of the variance in the sum scores is due to measurement 
error, which should be accounted for in further analyses (Saris & Gallhofer, 2014; 
Saris & Revilla, 2016). Table 3 shows all measurement quality estimates for each 
round and country analyzed. The performance of the measure is better in coun-
tries such as the United Kingdom, Bulgaria, and Ukraine and worse in countries 
such as the Netherlands or Switzerland. Overall, the differences between coun-
tries are small. Besides, the performance of the measure is worse in round 1 
compared to the other rounds, while it is rather similar in the rest of the rounds.

Discussion and Conclusions
In cross-national research, it is not common practice to test for measurement 
invariance. However, it is becoming more popular due to simplified analytical 
strategies in widely used statistical software. Assuming measurement equiva-
lence without testing it can cause biased mean comparisons, covariances, and 
regression coefficients. Thus, it is essential to assess whether metric or scalar 
invariance holds for the countries and time points considered.
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The aim of this study was to test the comparability and quality of the ATI scale 
within each round of the ESS (ESS R1 (2002) to ESS R9 (2018)). While previous 
research used different methods and analytic strategies, we applied the same 
approach in all rounds: multigroup confirmatory factor analysis (MGCFA) with 
local fit testing. Our results reveal that metric (loading) invariance generally 
holds for the items in almost all countries in all rounds except Finland. As in 
Davidov, Cieciuch, and Schmidt (2018), our findings again show a clear pattern 
of non-invariance for Finland in most rounds. Moreover, the factor loadings 
(slopes) are the same in most countries, indicating that covariances and regres-
sion coefficients can be meaningfully compared across most countries in all ESS 
rounds from 2002 to 2018. 

In contrast, a less positive conclusion must be drawn in the case of scalar 
(intercept) invariance. It holds only for different subgroups of countries within 
each round, and the size of these subgroups varies considerably between ESS 
rounds. While scalar invariance holds for 52 % of the countries in round 4, it 
holds for only 26 % in round 3. Between 30 % (round 3) to 3 % (round 9) of the 
countries have different intercepts for at least one of the items. Thus, mean com-
parisons are only possible for a relatively small subset of countries. 

With respect to the sources of scalar invariance, the most non-invariant item 
is the item ‘Immigration bad or good for the economy’ (imbgeco) (see Borgonovi & 
Pokropek, 2019). Since the question is asked quite generally on the topic of immi-
gration, the answers may strongly depend on whether the respondents – and 
this is influenced by their cultural and political background – think of immi-
gration in terms of illegal migration or skilled labor migration or whether they 
think of immigrants as people of the same or different ethnic or religious origin. 

However, while scalar invariance does not hold for most countries, partial 
invariance is fulfilled in all countries, meaning that at least one item is equal 
for all countries. Therefore, latent means can be compared directly (Pokropek 
et al., 2019). 

Our results are more or less in line with previous research showing that 
Europe can be classified geographically in terms of attitudes towards immigra-
tion: Whereas Northern Europe is generally more supportive of immigration, 
Eastern and Southern Europe are more opposed to it. 

By providing an accessible and reader-friendly introduction to measurement 
invariance testing using multi-group confirmatory factor analysis, we aimed to 
support its practical application. Researchers can confidently rely on our find-
ings and compare regression coefficients and latent means of attitudes towards 
immigration across countries within all ESS rounds from 2002 to 2018. 

One major advantage of MGCFA is the assessment of the equivalence of mea-
surements and structural relations across multiple groups (Harrington, 2008). 
MGCFA is particularly useful for comparing groups when dealing with tests 
comprising a substantial number of continuous items or subscale scores that are 
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assumed to measure a limited set of underlying factors. It ensures that observed 
group differences are not attributable to measurement bias or variation in the 
underlying construct structures (Lubke, 2003). 

However, several limitations need to be acknowledged: First, when compar-
ing a large number of groups, or in longitudinal research when comparing many 
periods or periods far apart in time, the use of the MGCFA approach has an 
increased likelihood of incorrectly detecting non-invariance (Immekus, 2021; 
Kim et al., 2017; Leitgöb et al., 2023). To address these challenges, alternatives 
such as multilevel confirmatory factor analysis (ML CFA), multilevel factor mix-
ture modeling (ML FMM), Bayesian approximate measurement invariance test-
ing (Muthén & Asparouhov, 2013a), and alignment optimization (Asparouhov & 
Muthén, 2014) are suggested.

Second, the length of the scale affects the effectiveness of fit measures 
(D’Urso et al., 2022). When using MGCFA for measurement invariance testing of 
long scales, the commonly used cut-off values for RMSEA and CFI may be insuf-
ficient. 

Third, the multiple indicators and multiple causes (MIMIC) modeling proce-
dure is a recent addition to the SEM family (Tsaousis et al., 2020). In contrast to 
MGCFA, the MIMIC approach allows to test for measurement invariance of both 
categorical and continuous individual difference variables (Barendse et al., 2010) 
and has smaller sample size requirements than MGCFA (Leitgöb et al., 2023).

In addition, we estimated the measurement quality of the ATI score. However, 
our findings reveal that although the measurement quality differs across the 
countries, these differences are relatively small. Moreover, the performance of 
the measurement is quite similar across the ESS rounds, except for the first time 
the ESS was conducted. While this appears to give credit to the rigorous meth-
odological approach of the ESS, there are still some measurement errors as the 
quality is not perfect. This stresses the importance of measurement errors cor-
rection (Saris & Revilla, 2016). 

Our study is limited to cross-sectional invariance testing, which provides 
insights into the measurement invariance of attitudes towards immigration at a 
specific point in time. However, to ensure the comparability of ATI within coun-
tries across different rounds, future research is needed to incorporate cross-
time invariance testing. 

Ongoing and comparative research on attitudes towards immigration remains 
an essential task for the social sciences. Understanding the dynamics of pub-
lic opposition to immigration is crucial, as it has been shown to have negative 
effects on social cohesion, on the lives of immigrants and refugees, and to con-
tribute to the rise of populist radical right parties. To understand, explain, and 
effectively address this, accurate measurement is essential.
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Appendix

Table A1: Study constructs of attitudes towards immigration, questions, and response scales

Questions Response scale Studies

ESS Round 1 (2002) – 9 (2018)

To what extent do you think [country] should allow people 1 “allow none” to  
4 “allow many”

Meuleman, Davidov, and Billiet 
2009: „REJECT“; Davidov et 
al. 2015: “Attitudes towards 
migration”; Borgonovi and 
Pokropek 2019: “Opposition to 
migration”

… of the same race or ethnic group from most [country] people to come and live here?

… of a different race or ethnic group from most [country] people to come and live here?

… from the poorer countries outside Europe to come and live here?

Would you say that 0 “Bad / undermined/ 
worse” to
10 “good/ enriched/ 
better”

Borgonovi and Pokropek 2019: 
„Economic Threat“; Pirralha 
and Weber 2020: “Perceived 
ethnic threat”; Nickel 2022: 
“Anti-immigrant attitudes”

… it is generally bad or good for [country]’s economy that people come to live here from 
other countries?

… [country]’s cultural life is generally undermined or enriched by people coming to live here 
from other countries?

… [country] is made a worse or a better place to live by people coming to live here from other 
countries?
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Questions Response scale Studies

ESS Round 7 (2014) Immigration Module

To what extent do you think [country] should allow people 1 “many” to 4 “none” Meuleman and Billiet 2012: 
“REJECT”… of the same race or ethnic group from most [country] people to come and live here?

… of a different race or ethnic group from most [country] people to come and live here?

… from the poorer countries outside Europe to come and live here?

… from the richer countries in Europe?

... from the poorer countries in Europe to come and live here?

... from the richer countries outside Europe to come and live here?

Please tell me how important you think each of these things should be in deciding whether 
someone born, brought up, and living outside [country] should be able to  
come and live here.

0 “extremely unim-
portant” to 10 “ex-
tremely important”

Meuleman and Billiet 2012:  
“CONDITION”

… have good educational qualifications.

… have close family living here.

… be able to speak [country]’s official language(s).

… have work skills that [country] needs.
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Questions Response scale Studies

People who come to live and work here generally harm the economic prospects of the poor 
more than the rich.

1 “agree strongly”  
to 5 “disagree 
strongly”

Meuleman and Billiet 2012:  
“ECOTHREAT”

If people who have come to live and work here are unemployed for a long period, they should 
be made to leave.

Would you say that people who come to live here generally take jobs away from workers in 
[country], or generally help to create new jobs?

0 “take jobs away” to 
10 “create new jobs”

Most people who come to live here work and pay taxes. They also use health and welfare ser-
vices. On balance, do you think people who come here take out more than they put in or put  
in more than they take out?

0 “generally take out 
more” to 10 „gener-
ally put in more“

Would you say it is generally bad or good for [country]’s economy that people come to live  
here from other countries?

0 “bad for the 
economy” to 10 “good 
for the economy“

Would you say that [country]’s cultural life is generally undermined or enriched by people  
coming to live here from other countries?

0 “cultural life under-
mined” to 10 “cultural 
life enriched“

Meuleman and Billiet 2012: 
“CULTTHREAT”

Please say how much you agree or disagree with each of the following statements. 1 “agree strongly” to  
5 “disagree strongly”It is better for a country if almost everyone shares the same customs and traditions

It is better for a country if there are a variety of different religions
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Questions Response scale Studies

To what extent do you think [country] should allow . . . people from other countries to come 
and live in [country]?

1 “many” to 4 “none” Davidov, Cieciuch, and 
Schmidt 2018: “ALLOWANCE”

… different race

… Jewish

… Muslims

… Gypsies

Please tell me how important you think each of these things should be in deciding whether 
someone born, brought up and living outside [country] should be able to come and live here.

0 “extremely unim-
portant” to 10 “ex-
tremely important”

Davidov Cieciuch, and Schmidt 
2018: “CONDITIONS”;

… have good educational qualifications.

… be able to speak [country]’s official language(s).

. . . come from Christian background?

. . . be white?

… have work skills that [country] needs.

. . . be committed to the way of life in [country]?
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Questions Response scale Studies

Would you say that people who come to live here generally take jobs away from workers in 
[country], or generally help to create new jobs?

0 “take jobs away” to 
10 “create new jobs”

Davidov, Cieciuch, and 
Schmidt 2018: “RT”

Would you say it is generally bad or good for [country]’s economy that people come to live  
here from other countries?

0 “bad for the 
economy” to 10 “good 
for the economy“

Are [country]’s crime problems made worse or better by people coming to live here from  
other countries?

0 “crime problems 
made worse” to 10 
“crime problems 
made better”

Most people who come to live here work and pay taxes. They also use health and welfare  
services. On balance, do you think people who come here take out more than they put in  
or put in more than they take out?

0 “generally take out 
more” to 10 “gener-
ally put in more”
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Table A2: Sample size per country and per ESS round after listwise deletion (N (round 1 – round 9) = 390.276)

Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9
2002 2004 2006 2008 2010 2012 2014 2016 2018

Albania      1.086     
Austria 1.941  2.021  2.147     1.664  1.875  2.292  
Belgium 1.729  1.716  1.750  1.717  1.680  1.845  1.747  1.750  1.730  
Bulgaria   898  1.578  1.806  1.671    1.650  
Switzerland 1.893  2.021  1.726  1.698  1.451  1.420  1.480  1.457  1.422  
Cyprus   952  1.177  1.020  1.081    740  
Czechia 1.051  2.463   1.803  2.143  1.722  1.932  2.135  2.205  
Germany 2.697  2.653  2.695  2.614  2.824  2.865  2.965  2.788  2.302  
Denmark 1.344  1.383  1.405  1.539  1.507  1.577  1.455   1.511  
Estonia  1.615  1.272  1.489  1.615  2.133  1.903  1.946  1.826  
Spain 1.431  1.512  1.707  2.320  1.780  1.796  1.715  1.768  1.489  
Finland 1.927  1.957  1.850  2.156  1.834  2.152  2.028  1.890  1.717  
France 1.453  1.756  1.952  2.008  1.699  1.935  1.868  2.014  1.910  
United Kingdom 1.947  1.794  2.297  2.266  2.285  2.158  2.178  1.886  2.139  
Greece 2.313  2.280   2.020  2.628      
Croatia    1.304  1.443     1.668  
Hungary 1.327  1.261  1.239  1.273  1.325  1.719  1.441  1.381  1.470  
Ireland 1.853  2.133  1.682  1.732  2.458  2.534  2.239  2.632  2.141  
Israel 2.172    2.230  1.943  2.038  2.215  2.208   
Iceland  538     685   852  828  
Italy 1.064      915   2.427  2.566  
Lithuania 1.195  1.458         
Luxembourg     1.311  1.733  1.807  1.794  1.541  
Latvia    1.750      774  
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Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9
2002 2004 2006 2008 2010 2012 2014 2016 2018

Montenegro         1.142  
Netherlands 2.216  1.809  1.800  1.708  1.744  1.763  1.827  1.586  1.582  
Norway 1.981  1.721  1.711  1.523  1.516  1.594  1.405  1.505  1.356  
Poland 1.715  1.450  1.520  1.390  1.476  1.606  1.348  1.393  1.271  
Portugal 1.209  1.804  1.751  1.941  1.877  1.897  1.171  1.190  963  
Serbia    1.656       
Romania         1.724  
Russia   1.938  2.061  2.195  2.136     
Sweden 1.820  1.809  1.778  1.726  1.413  1.763   2.124   
Slovenia 1.369  1.290  1.325  1.191  1.297  1.149  1.721  1.473  1.485  
Slovakia  1.182  1.532  1.533  1.570  1.669  1.092  1.242  1.251  
Turkey  1.516   2.077      998  
Ukraine  1.439  1.515  1.345  1.435  1.600     
Kosovo      1.054     

Total 37.647  42.581  38.442  50.825  47.275  49.296  37.201  41.316  45.693  
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Table A3: Latent means, standard errors and rank
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Table A4: Measurement quality estimates of the measure of attitudes towards immigration, for each country and round

Country Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9

Austria 0.79 0.84 0.85 - - - 0.87 0.89 0.87
Belgium 0.74 0.77 0.78 0.79 0.79 0.78 0.8 0.8 0.79
Switzerland 0.76 0.81 0.8 0.78 0.76 0.75 0.76 0.81 0.78
Czechia 0.81 0.85 - 0.82 0.86 0.88 0.83 0.83 0.83
Germany 0.78 0.82 0.83 0.83 0.85 0.81 0.84 0.86 0.85
Denmark 0.84 0.86 0.85 0.86 0.87 0.87 0.87 - 0.85
Spain 0.78 0.84 0.83 0.86 0.83 0.85 0.82 0.86 0.86
Finland 0.78 0.82 0.8 0.81 0.84 0.83 0.85 0.85 0.86
France 0.86 0.87 0.89 0.86 0.87 0.87 0.86 0.87 0.87
United Kingdom 0.85 0.89 0.89 0.9 0.89 0.89 0.89 0.89 0.91
Greece 0.83 0.89 - 0.89 0.88 - - - -
Hungary 0.8 0.83 0.84 0.82 0.82 0.86 0.83 0.87 0.88
Ireland 0.85 0.89 0.87 0.87 0.9 0.9 0.87 0.89 0.9
Israel 0.83 - - 0.87 0.84 0.82 0.83 0.86 -
Italy 0.72 - - - - 0.87 - 0.89 0.9
Luxembourg 0.68 0.76 - - - - - - -
Netherlands 0.72 0.77 0.77 0.76 0.76 0.78 0.76 0.78 0.74
Norway 0.78 0.81 0.8 0.81 0.81 0.81 0.8 0.82 0.83
Poland 0.76 0.73 0.8 0.79 0.78 0.81 0.8 0.78 0.84
Portugal 0.8 0.84 0.81 0.81 0.81 0.85 0.79 0.79 0.79
Sweden 0.81 0.84 0.85 0.84 0.87 0.86 0.86 0.85 0.86
Slovenia 0.74 0.83 0.82 0.83 0.85 0.84 0.83 0.87 0.87
Estonia - 0.86 0.8 0.82 0.8 0.82 0.83 0.86 0.84
Iceland - 0.81 - - - 0.81 - 0.85 0.86
Slovakia - 0.75 0.76 0.78 0.8 0.84 - - 0.81
Turkey - 0.85 - 0.87 - - - - -
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Country Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9

Ukraine - 0.89 0.87 0.87 0.9 0.86 - - -
Bulgaria - - 0.88 0.87 0.87 0.88 - - 0.94
Cyprus - - 0.77 0.79 0.82 0.8 - - 0.82
Russia - - 0.89 0.87 0.88 0.87 - 0.85 -
Croatia - - - 0.87 0.89 - - - 0.86
Latvia - - - 0.84 - - - - 0.84
Romania - - - 0.85 - - - - -
Lithuania - - - - 0.82 0.85 0.83 0.86 0.85
Albania - - - - - 0.74 - - -
- - - - - - 0.87 - - -
Montenegro - - - - - - - - 0.89
Serbia - - - - - - - - 0.91
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