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Harmonizing single-question instruments for latent constructs with
equating using political interest as an example

Ranjit K. Singh
GESIS—Leibniz-Institute for the Social Sciences

Survey Design and Methodology
Mannheim, Germany

Many latent constructs in the social sciences, such as political interest, are measured with
single-question instruments. Furthermore, survey programs often differ in the wording and
response format of those instruments. This is problematic if we want to compare or combine
data across different surveys or across changing instruments within a survey program. Con-
sequently, we need robust methods to establish comparability in existing data (i.e., ex-post
harmonization). In this paper I demonstrate the usefulness of an approach from psychometry:
Observed score equating with a random groups design. Using two existing instruments for po-
litical interest, I show that harmonizing instruments with equating works well in transforming
the numerical scores of instruments so that they can be compared across instruments. Since
random groups equating needs data for both instruments from the same population, I also
demonstrate the feasibility of equating using an online nonprobability sample as well as using
two probability samples of the adult German population.

Keywords: survey measurement instruments; data harmonization; comparability; equating;
integrative data analysis

1 Introduction

Quantitative research in the social sciences often relies
on large scale survey programs. Such national and interna-
tional programs provide a valuable service to the research
community and accumulate a veritable treasure trove of data.
At the same time, survey programs are very complex multi-
stakeholder endeavors. One consequence of this complexity
is that survey programs often have their own methodologi-
cal idiosyncrasies. One area where this is most apparent are
the measurement instruments for different concepts (in the
following just instruments). Different survey programs often
use instruments for the same concept that differ in their ques-
tion wording, the number of response options, or the labeling
of response options and many other design aspects as well
(Tomescu-Dubrow & Slomczynski, 2016). And even within
a survey program, instruments may change over time.

A drawback of this diversity is that these instrument dif-
ferences reduce the comparability of data across time, pop-
ulations, and different survey programs. Instrument diver-
sity might also make it harder to satisfy the growing de-
mand for FAIR (findable, accessible, interoperable, reusable)
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data (Link, Lumbard, Germonprez, Conboy, & Feller, 2017),
since it makes survey data less interoperable and thus also
less reusable. In practical terms, this means that researchers
cannot easily compare findings based on one instrument with
that based on another instrument for the same concept. Fur-
thermore, researchers increasingly combine data from differ-
ent sources to answer their research questions. For example
to combine existing research data into an integrative dataset
for meta-analytical purposes, to achieve adequate sample
sizes for smaller subpopulations (e.g., LGBTQI, migrants,
first generation academics etc.), or to combine data for a spe-
cific substantive topic (e.g., democratic values and protest
behavior; Tomescu-Dubrow and Slomczynski, 2016). Dif-
ferent measurement instruments are challenging for such use
cases as well.

Consequently, there is a need for efficient and method-
ologically sound approaches to ex-post harmonize data on
the same concept measured with different measurement in-
struments. Ex-post harmonization encompasses all activities
that aim to increase comparability of existing data after it
was collected and in ways that the survey was not designed
for. The specific focus of this paper lies on the ex-post har-
monization of different single-question survey measurement
instruments for the same latent construct. Latent constructs
in this context are mental concepts that cannot be directly
observed but only indirectly inferred (Bollen, 2002; Price,
2017), such as attitudes, values, emotions, or in our paper:
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political interest. Single-question instruments for latent con-
structs, meanwhile, are especially interesting (and challeng-
ing) in ex-post harmonization because many approaches to
wrangle latent constructs in psychometry, such as confirma-
tory factor analysis, require multiple questions (i.e., items, or
indicators) for the same construct (Price, 2017).

The common situation researchers (and often also data
producers and archivists) find themselves in is that they are
faced with two or more single-question instruments for the
same latent constructs. This may mean different question
wording, a different number of response options, different re-
sponse labels, or many other differences in the instruments’
design. In this paper, I use as a practical example two mea-
sures for political interest, with different question wording,
response labels, and a different number of response options
(i.e., four-point scale versus five-point scale). And now the
question arises: How can we make responses to the two
instruments comparable? This question is crucial, if re-
searchers want to choose which instrument to use in their
own research, if they want to compare results based on dif-
ferent instruments, or if they want to combine data gathered
with different instruments.

In sum the present paper is intended as a proof of con-
cept for using equating to ex-post harmonize single-question
instruments for the same latent construct in the social sci-
ences. I aim to demonstrate that a specific psychometric
approach can help us increase the comparability of single-
question instruments for latent constructs ex-post: Observed
score equating with a random groups design. The approach
is usually applied in the context of psychometric individual
diagnostics, such as harmonizing scores of different versions
of a psychometric test (Kolen & Brennan, 2014). However,
while some equating techniques require multi-item scales,
observed score equating formulas can be applied to increase
the comparability of single-question instruments as well. As
an example, I use political interest as a frequently used con-
struct with comparatively straightforward question wordings.

The paper will first address the theoretical background
of instrument harmonization in general and observed score
equating in particular. Then the concrete research questions
and study design are described. Afterwards, the methods and
results section follow. Lastly, in the discussion, I will sum-
marize core messages and point out some issues to consider
when applying equating.

2 Theoretical Background

In the following, we will first consider the broader chal-
lenges that occur when we want to combine data on a latent
construct measured with two different single-question instru-
ments. We will then focus on a specific challenge: How can
we transform scores measured with different instruments so
that they have comparable units of measurement. We will
consider why this is a pressing issue and why traditional ap-

proaches such as linear stretching fall short of what we need.
Then, I explain how Observed Score Equating in a Random
Groups Design works and why this is a suitable solution for
the problem of incomparable units of measurement.

2.1 Harmonization of single-question instruments for
latent constructs

Let us assume that we want to combine data on the same
construct measured with two different instruments. The re-
sult we aim for is a variable combining values from both (or
more) instruments but representing the same concept. How-
ever, we have to consider four issues before we can safely run
analyses using this combined variable: (1) Do both instru-
ments measure the same construct? (2) Are both instruments
similarly reliable measures of the same construct? (3) Do
both instruments have similar units of measurement. In the
following, we will briefly address issues one and two because
the method we propose—observed score equating—does not
solve them. Instead, it solves the fourth, which will be the
focus going forward.

First and foremost, we have to ensure that both instru-
ments measure the same latent construct. In the language
of psychometric test theory, we would like both instruments
X and Y to be at least congeneric tests of the same latent con-
struct (adapted from Raykov and Marcoulides, 2011, section
5.3.3).

X = dX + bXT + EX and Y = dY + bYT + EY (1)

This means we assume that the scores of both instruments
(X and Y) represent respondents’ true score of the same la-
tent variable (T ), albeit with different units of measurement
(constants d ∧ b) and different errors (E) and different error
variances. However, for our context—the harmonization of
single-question instruments in the social sciences—we can-
not formally test for these assumptions as we would with
psychometric multi-item instruments (Price, 2017; Raykov
& Marcoulides, 2011). Instead, we will often have to assess
both instruments separately, by applying techniques of in-
strument validation, such as correlational measures of con-
struct validity (Price, 2017). In this paper, I will briefly
sketch out one such approach, by correlating both instru-
ments of political interest with related constructs and com-
paring the correlation patterns of both instruments.

Second, there is the issue of reliability. Different instru-
ments may be more or less susceptible to random measure-
ment error. Lower reliability (and thus a higher level of
random measurement error) leads to increased attenuation
(i.e., an underestimation of correlations between constructs
due to random measurement error). In harmonization, the
issue is less attenuation itself, but rather different levels of
attenuation depending on the source instruments. However,
this again is a hard challenge since the reliability of single-
question instruments is harder to assess then that of multi-
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item instruments. However, if the instruments’ reliability can
be assessed, the problem can be mitigated by correcting anal-
yses for attenuation.

2.2 Comparable units of measurement

Third, we have to consider the units of measurement of the
different instruments. The issue is already implied in the con-
generic model, where even in the absence of measurement er-
ror, different instruments would still generate different scores
in our data. Formally, even if we removed the error terms EX

and EY , we would still have to consider the constants dX , bX ,
dY , and bY which project the true scores onto the numerical
scale of X and Y:

T =
X − dX

bX
=

Y − dY

bY
(2)

In fact, even the assumption of equidistant response op-
tions is often unrealistic. Instead, scores to single-question
instruments often behave more like ordinal projections of the
underlying continuous true score continuum. Individual re-
sponse options thus differ which range of true scores they
represent. An idea which is formalized in item response the-
ory (IRT), for example. We will get back to this idea when
we discuss equipercentile equating.

In practical terms, this differently designed instruments
project the underlying latent construct expressions onto dif-
ferent responses and thus result in a different numerical scale
(Price, 2017). For example, people with the same level of
political interest might choose different responses in differ-
ent instruments. Meanwhile people who were assigned the
same numerical score by different instruments may have very
different true levels of political interest.

On the aggregate level in the data, this implies that differ-
ent instruments represent the same population with different
response distributions (Kolen & Brennan, 2014). If we ap-
plied two instruments to the same group of respondents, we
might get response distributions with different means, stan-
dard deviations, skewness, or even completely different dis-
tribution shapes (e.g., uni- vs. bimodal). And if instruments
were applied to different populations, then these instrument
differences mingle with and thus bias the true population dif-
ferences. In any case, comparability and the potential for
integrated analyses suffers. To solve this problem, we must
find some way to convert the “measurement units” of one
instrument into the numerical format of the other.

2.3 Linear stretching

Data harmonization practitioners in the social sciences
are, of course, aware of the issue of different measurement
units. However, often the focus lies on the most obvious
source of scale differences: The number of scale points.
After all, if we measured the same construct with a four-
point scale and a seven-point scale in the same population,

we would not expect comparable response distributions. In-
stead, we would expect the mean and standard deviation of
the seven-point scale to be higher than that of the four-point
scale.

With that in mind, a popular approach to harmonizing
measurement units is linear stretching (e.g Durand, Peña
Ibarra, Rezgui, & Wutchiett, 2021; Tomescu-Dubrow &
Slomczynski, 2016). The approach sets the minimum scores
and the maximum scores of both instruments as equal and
then stretches all other scores with equal distances in be-
tween (Cohen, Cohen, Aiken, & West, 1999; de Jonge, Veen-
hoven, & Kalmijn, 2017). Formally, linear stretching is a
linear transformation solely based on the maximum possible
scores of both instruments. For simplicities sake, let us score
the minimum responses as zero with maximum scores of KX

and KY For instruments X and Y . Then the formula for linear
stretching is:

stretch(x) =
xKY

KX
(3)

In our example, we would thus stretch the four-point in-
strument (X) towards the seven-point instrument (Y) by mul-
tiplying each score of X by six ( KY ) and then dividing by
three ( KX). Thus, the scores 0, 1, 2, and 3 of the four-point
instrument become 0, 2, 4, and 6. This approach certainly
mitigates the problem of different measurement units in cases
where the number of response options differ. However, the
units of measurement also depend on other factors, such as
the question wording, the response labels, and the visual lay-
out of the question. This is again already implied in the con-
generic model above. After all, the congeneric model is usu-
ally used in psychometry to describe multi-item scales which
all share the same response options. And yet, the units of
measurement differ. As a practical illustration of the short-
comings of linear stretching, imagine two instruments with
the same number of response options. However, one instru-
ment is worded more strongly than the other (e.g., “I am pas-
sionate about” vs. “I am interested in”). We would expect
the stronger wording to result in lower average scores, be-
cause the stronger statement is harder to agree to. The units
of measurement have shifted due to differences in item dif-
ficulty (Moosbrugger & Kelava, 2012). In the paper, I will
use linear stretching as a baseline to contrast with the novel
harmonization approach of observed score equating.

2.4 Observed Score Equating with a Random Groups
Design

How then does observed score equating with a random
groups design mitigate differences in measurement units?
Equating in general emerged in psychometric diagnostics to
solve a very similar problem: How can we transform scores
of different (performance) tests, so that the results can be
fairly compared? The general idea is to establish some way



356 RANJIT K. SINGH

of transforming scores measured with one (source) instru-
ment so that they become comparable to scores measured
with another (target) instrument (Kolen & Brennan, 2014).
Equating is hereby different from other ex-post harmoniza-
tion approaches in that it does not only transform the current
dataset. Its goal is instead to derive a transformation rule for
two instruments that can be used in other data as well. In
practice, we would derive a recoding table in one dataset and
then use it in many other instances where the same instru-
ments were used.

The core idea of all equating approaches is the so-called
equity property of equating. After an ideal equating process,
respondents with the same true score for a construct should,
on average, get the same score in the transformed source in-
strument than they would get in the target instrument (Kolen
& Brennan, 2014). Formally, we want participants with a
particular true score to have the same expected transformed
score in X than the expected score they would have in Y .
With E(·) being the expectation operator (i.e., the mean) and
eqY being an equating function that transforms scores of X
into their instrument Y equivalents (Kolen & Brennan, 2014,
p. 10):

E
(
eqY (X|τ)

)
= E(Y |τ) for all τ (4)

However, for single-question instruments, we cannot ex-
tract true score estimates and thus many equating approaches
cannot be applied. However, observed score equating does
not require true score estimates. Instead, the observed score
equity property focuses on the cumulative distribution of the
observed scores in our datasets. If we applied instrument X
and instrument Y in the same population and then equated
instrument towards instrument Y , we would expect the trans-
formed scores of X to have the same cumulative response
distribution (G∗) than the cumulative response distribution
of instrument Y (G) (adapted from Kolen & Brennan, 2014,
p. 11)):

G∗
(
eqY (x)

)
= G(y) (5)

That may sound abstract, but it is a very desirable property
in ex-post harmonization. If we measured the same popula-
tion, we would get the same (harmonized) response distribu-
tion shape regardless of the instrument we used. This means,
for example, that different instruments no longer bias the
mean, the standard deviation, and in more advanced equat-
ing methods, we also mitigate bias in skewness, kurtosis, or
even multi-modal distributions.

Additionally, observed score equating is symmetrical, in
the sense that we can transform instruments in both direc-
tions with no loss of information (Kolen & Brennan, 2014).
The result of the equating process is, in essence, recoding in-
formation with which one instrument can be transformed into
the format of another. This means that equating harmonizes
instruments and not just the present data. It also means that
we can perform equating with data well suited to equating

and then use the resulting recoding information in other data
we want to harmonize and where the instruments were used.

However, before delving into the concrete process of ob-
served score equating with random groups design, I want
stress that harmonizing with equating does not harmonize
differences in content, meaning differences in the constructs
that the two instruments measured are not corrected for
(Kolen & Brennan, 2014). It also does not mitigate differ-
ences in instrument reliability (Kolen & Brennan, 2014).

Random groups design. After all that preamble: How
does observed score equating in random groups design work,
exactly? The key here is the random groups design; a re-
search design for collecting data suitable for observed score
equating. In a random groups design, we collect samples
for both instruments drawn randomly from the same popula-
tion. In psychometry, this usually means performing a split-
ballot experiment where one half of participants randomly
answers instrument X and the other random half instrument
Y . However, in this paper, we will explore other equating
data sources as well.

Through the random groups design, we can expect ap-
proximately the same cumulative true score distribution in
both samples. In other words: The experimental design has
set the true score distribution equal. The cumulative ob-
served score distributions, meanwhile, will differ between
the samples of instrument X and Y . This is because the
two instruments transform the true scores differently into
observed scores. However, since those differences repre-
sent differences in measurement units and not in true scores,
removing those differences aligns measurement units. Ob-
served score equating, in other words, transforms scores of
instrument X so that the cumulative response distribution
now matches that of instrument Y in the same population.
Please note, however, that this approach does not account for
the error term in measurement. Random measurement error,
for example, is simply passed on, as mentioned earlier.

Aligning response distributions with linear or equiper-
centile transformations. Now only a practical issue re-
mains: How to align response distributions? In this paper, I
demonstrate two widely used distribution transformation ap-
proaches: Linear and equipercentile. In the following, I de-
scribe the logic and the mathematical formulas behind both
approaches. However, in practice, equating can be effort-
lessly performed using specialized software. For example,
the equate package for R (Albano, 2016) which I also used
for this paper.

Linear equating. The linear equating logic is very
straightforward. Response distributions of instruments A and
B are assumed to be approximately normally distributed and
response options to be equidistant. Linear equating thus sets
the z-scores of the two instruments equal, meaning that con-
verted scores of X will have the same mean and standard
deviation then scores of Y in the same population (Kolen &
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Brennan, 2014, p. 31).

x − µ(X)
σ(X)

=
y − µ(Y)
σ(Y)

(6)

This means we only have to align the mean and the stan-
dard deviation with a linear equating function lY (x) (Kolen
& Brennan, 2014, p. 31):

lY (x) = σ(Y)
(

x − µ(X)
σ(X)

)
+ µ(Y). (7)

As a result, the responses to B now have the mean and
the standard deviation of A. This is, of course, very similar
to a z-standardization. The difference is that linear equat-
ing then makes scores of instrument X interpretable in the
numerical format of instrument Y (or vice versa) whereas z-
standardization makes instruments interpretable in terms of
a specific population at a specific point in time. This means
that the result of linear equating can be applied to other pop-
ulations and still be interpretable in terms of the target instru-
ment.

As a result, the transformed responses to X now have the
mean and the standard deviation of Y . This is, of course,
very similar to a z-standardization. The difference is that
linear equating then makes instrument X interpretable in the
numerical format of instrument Y (or vice versa) whereas z-
standardization makes instruments interpretable in terms of
a specific population at a specific point in time. This means
that the result of linear equating can be applied to other pop-
ulations and still be interpretable in terms of the target instru-
ment.

Equipercentile equating. Equipercentile equating,
meanwhile, does not assume normal response distribution
shapes. Instead, it aligns the cumulative response distribu-
tions by matching the percentile ranks of responses. The
basic idea is that we transform each score of instrument X
into its corresponding percentile rank in the random group’s
population. Then we transform each of that percentile ranks
into a corresponding score of instrument Y with the same
percentile rank. This seems intuitive: If the median response
is a “3” in instrument X and a “2” in instrument Y , we would
match those two scores.

However, the actual mathematical process is a bit more
complicated, for two reasons. First, each response option
represents a whole segment of construct intensities and thus a
whole segment of percentiles. If 14% of respondents choose
the first response option, then respondents from the 0th to the
14th percentile most likely choose this option. Second, the re-
sponse options of different instruments never match perfectly
in the percentiles they represent. Equipercentile equating
solves both these issues with linear interpolation. Figure 1
illustrates this interpolation process which transforms the rel-
ative frequency distribution into a function that assigns each
response scores a percentile rank. Importantly, the function

is continuous, which allows us to find the percentile ranks of
non-integer response scores. This means we can find a con-
tinuous, interpolated response score value for any arbitrary
percentile rank. Please note, that all figures and formulas
for equipercentile equating formulas assume scores to start at
zero for the first response option. This simplifies all formulas
and is if no practical consequence since equating software,
such as the equate R-package (Albano, 2016), perform this
internal transformation automatically. For now, just note that
a 0 in figure 1 would most likely be a “1” in the dataset.

Mathematically, equipercentile equating thus needs two
functions: (1) A percentile function, which transforms scores
of an instrument into linearly interpolated percentiles and
(2) an inverted percentile function, which transforms per-
centiles into linearly interpolated, “continuized” response
scores (Kolen & Brennan, 2014). Please note that for sim-
plicities sake the formulas below assume that there is at least
one response per possible response score. In single-question
instruments, this is a reasonable assumption. However, if
zero frequency scores occur, the formulas must be slightly
modified (Kolen & Brennan, 2014, 42ff). The equate pack-
age (Albano, 2016) does this automatically.

Let x be a decimal score of instrument X from zero to the
maximum possible response score KX . Let x∗ be the inte-
ger score closest to a decimal score x, so that x∗ − 0.5≤x <
x∗ + 0.5. Finally, let f (x) be the relative frequency function
for scores of x and F(x) be the cumulative relative frequency
function for scores of x.

Then the percentile function (adapted from Kolen & Bren-
nan, 2014, p. 42) can be described as:

P(x) = 100 ·
(
F(x∗ − 1) +

(
x − (x∗ − 0.5)

)
· f (x∗)

)
(8)

In essence, the formula interpolates the percentile rank as
the cumulative relative frequency of the integer response op-
tion one lower than the x∗ plus a portion of the relative fre-
quency of x∗.

What the formula implies is this: A response option, for
example “2”, represents an interpolated score range from
1.5 to 2.5. It thus encompasses percentiles from P(1.5) =

F(1) · 100 to P(2.5) = F(2) · 100. An integer score, mean-
while, is halfway between those cumulative frequencies:
P(2) =

(
F(1) + 1

2 f (2)
)
· 100. If 20% of respondents choose

responses lower than “2”, and 10% chose “2”, then the per-
centile rank of “2” would be 15.

To transform a percentile rank P∗ back into the corre-
sponding interpolated score, we need the inverted percentile
rank function P−1(P∗) so that:

P−1(P∗) = P−1
(
P(x)

)
= x (9)

For this we need to first find x∗U , which is the smallest inte-
ger score where P∗ < F(x∗U). This might seem confusing,
but x∗U is nothing else than the integer score closest to the
interpolated x that we will get as a result of P−1(P∗).
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Figure 1. Linear interpolation of continuous percentile ranks in equipercentile equating

The inverted percentile function (Kolen & Brennan, 2014,
p. 43) then is:

P−1(P∗) =

P∗
100 − F(x∗U − 1)

f (x∗U)
+ (x∗U − 0.5) (10)

The formula works like this: With x∗U we have determined
the closest integer score to the result. Thus, we know the
score segment (if x∗U = 2, we expect the result to be between
1.5 and 2.5). The fraction then simply determined how far we
are from the lower bound (e.g., 1.5) to the upper bound (e.g.,
2.5). If we supply exactly the percentile rank of an integer
score, for example, the fraction resolves to 0.5 and thus the
result x is identical with x∗U .

To finally perform equipercentile equating, we create the
percentile function and inverted percentile function both for
instrument X (P and P−1) and instrument Y (Q and Q−1).
The equipercentile equating function eY (x) (Kolen & Bren-
nan, 2014, p. 44) thus becomes:

eY (x) = Q−1
(
P(x)

)
(11)

Every score of instrument X is transformed into a per-
centile rank and then transformed into an interpolated score
in the format of instrument Y . This setup also demonstrates
the symmetry property of equating. After all, we can just
as easily transform scores of Y into the format of X with
P−1

(
Q(y)

)
. Figure 2 represents this process visually.

The result are usually not integer scores, but approxima-
tions with decimal places. A “2” in X might be best repre-
sented by a “2.8” in Y . This might seem unusual at first, but
those approximations have desirable properties. Once trans-
formed, the response distribution parameters (e.g., mean, sd,
skewness) align well, allowing for unbiased comparisons and
joint analyses (Kolen & Brennan, 2014).

Equating terminology. Lastly, a note on the equating
terminology which will be helpful in navigating the primary
psychometric literature. Equating is part of a larger litera-
ture on linking. Linking encompasses many different ap-
proaches which all seek to establish some form of compa-
rability. Equating, meanwhile, is a specific family of link-
ing approaches (Kolen & Brennan, 2014). However, in psy-
chometry the term “equated” also implies that a set of com-
parability criteria have been met. The ideal of equating is
that two psychometric tests become fully exchangeable. This
means for example that they are identically reliable, and that
test-takers have no preference over one test over the other
(Kolen & Brennan, 2014; Price, 2017). These quality re-
quirements are important for lawful and fair diagnostics of
individual test-takers, such as tests used for professional ap-
titude diagnostics.

However, this distinction is less relevant for the ex-post
harmonization of survey instruments. It is just important
to note that while we can apply equating formulas to sur-
vey instruments, psychometrists would call the result linked,
aligned, or calibrated, but not equated (Kolen & Brennan,
2014; Price, 2017). However, these terms each encompass
a wide and sometimes contradictory range of procedures
(Kolen & Brennan, 2014). In this paper we thus use equat-
ing to mean applying the mathematical procedures described
above, which makes it easy to find pertinent literature.

2.5 Study design and research questions

The paper will use the example of two instruments for po-
litical interest, to explore the usefulness of observed score
equating. Here, a remaining issue is how to get random
groups data with which to perform the equating. As you will
recall, equating with a random groups design requires data
for both instruments randomly drawn from the same popu-
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Figure 2. Transforming response scores from instrument X into the format of instrument Y . Note: Scores are set to start with
zero as the first response option to simplify the formulas. Thus, the score 1 here represents a score of “2” in the dataset, i.e.,
the second response option.

lation. This can be achieved with experimental studies, but
such data are usually not readily available for different in-
struments. Hence the paper also explores two approaches to
acquire the necessary data. Specifically, the paper has four
parts.

First, I provide some empirical evidence that both instru-
ments for political seem to measure the same construct. This
is not the focus of the paper, but it is an important issue be-
cause equating cannot mitigate differences in content. For-
tunately, we have several questions about related concepts in
the ALLBUS-ISSP 2014 dataset that we can use.

Second, we tackle the problem of different measure-
ment units, by applying both the traditional linear stretch-
ing approach as well as the two observed score equating ap-
proaches: linear and equipercentile equating. Then the dis-
tributions of the transformed instrument are compared to the
reference instrument. This allows us to fairly compare the
harmonization quality of linear stretching, linear equating
and equipercentile equating.

Third, I explore a pragmatic approach to gain data suitable
for equating: Collecting affordable data specifically to equate
the two instruments in a nonprobability online access panel.
Specifically, the study was set up as a split-half experiment in
which respondents randomly answered one instrument or the
other. This is the random groups design in its purest form.
However, the data quality and the undefined sample in non-
probability online access panels may cast doubt on this ap-
proach. To test the resulting equating relationship, it is then

applied to the ALLBUS–ISSP data used in the first two parts,
to validate the result.

Fourth, I explore another possible approach to gain data
suitable for equating, which makes the most of the highly
developed survey landscape in the social sciences: Using
data from two probability surveys of the same population
ideally in the same year. For example, if two probability sur-
veys sample the adult German population, an argument can
be made that those two samples are random samples of the
same population (i.e., a random groups design). To test this
approach, I use data from the ALLBUS and from the GLES
which uses the same instrument for political interest as the
ALLBUS. Performing an equating between two samples of
the same instrument seems counterintuitive. However, this
is an ideal test of how much differences in sampling, survey
mode, or other survey characteristics bias equating. After all,
if we equate an instrument with itself, we know the perfect
result: an identity relationship. This means that the resulting
recoding table would recode a “1” to a “1”, a “2” to a “2” and
so on. A substantial empirical deviation from this ideal thus
represents a bias in equating brought on by survey or sample
differences.

3 Methods

3.1 Samples

Probability Samples. This study uses data from three
survey programs: First, the ALLBUS, the German general
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social survey. Second, the German part of the ISSP, the In-
ternational Social Survey Programme. And third, one of the
surveys of the GLES German Longitudinal Election Study;
specifically, the pre- and postelection cross-sectional survey
(in the following just GLES).

The most central data set hereby is the combined dataset
of the ALLBUS and the German part of the ISSP in 2014
(GESIS-Leibniz-Institut Für Sozialwissenschaften, 2018).
The ISSP shares the same sample as the ALLBUS in Ger-
many. After completing the ALLBUS, conducted every two
years, participants are randomly given one of the yearly ISSP
waves to answer. Hence, the sample we use are respondents
who answered both the ALLBUS 2014 and the ISSP 2014
(N = 1704). This sample allows us to focus on comparabil-
ity in a setting where we can easily validate answers. After
all, respondents answered one instrument in the ALLBUS
and then the other in the ISSP. This allows for a comparison
without sampling differences. At the same time, the two in-
struments are spaced far apart and embedded in many other
questions. Learning effects are unlikely. In the following,
this specific dataset is called ALLBUS-ISSP 2014 data.

For the fourth part of this paper (“Equating across dif-
ferent probability surveys”) we use data from the GLES
survey from 2017 (GLES, 2019), which uses the same
instrument for political interest as the ALLBUS (N =

4290). We then equate the GLES 2017 data with ALL-
BUS data from 2016 (GESIS-Leibniz-Institut Für Sozialwis-
senschaften, 2017; N = 3490) and 2018 (GESIS-Leibniz-
Institut Für Sozialwissenschaften, 2019; N = 3475). I use
both ALLBUS waves to interpolate a response distribution
for an ALLBUS survey in 2017 (which does not exist due to
the biyearly ALLBUS schedule). Equating the same instru-
ment with itself allows us to clearly isolate possible biases
introduced by survey differences.

Web experiment sample and procedure. Lastly, to as-
sess the potential of affordable nonprobability samples for
equating, a web-experiment was conducted. The nonprob-
ability sample was recruited via the commercial online ac-
cess panel of the respondi AG (Respondi, 2021). The sample
size was N = 2171. The sample had a median age of 41.
The youngest participants were 18 years old. Half of partic-
ipants reported their sex as female (50%); two respondents
chose the offered option “divers”. In Germany, “divers” is
now the official category for people whose biological sex
does not fit into the female-male dichotomy (i.e., intersex
persons). The sample was more highly educated than the
national average. More than half of respondents (54%) had
at least passed a university entrance exam, in contrast to only
34% in the adult German population (Statistisches Bunde-
samt (Destatis), 2020).

Regarding the experimental procedure: The web-survey
was composed of modules from different empirical studies.
However, I omit describing the other components, because

the experiment used in the present paper was the first and
thus not influenced by the other modules. Respondents were
greeted and briefed about their privacy protection rights. The
survey was anonymous and did not save respondents IP-
addresses. Next, respondents answered a number of socio-
demographic questions. Then, respondents either saw one or
the other of the two instruments for political interest that are
to be harmonized (i.e., the a5 and i4 instruments described
in the next section). Then, the questionnaire continued with
elements not relevant for the present paper.

3.2 Measurement Instruments for political Interest

The paper focusses on two single-question measurement
instruments for political interest. Unlike psychometric
scales, the instruments have no formal names. Meanwhile,
naming them directly after the surveys they are from is mis-
leading, because some are used in several surveys, while
the same survey might use different instruments over time.
Hence, I use short codes for each of the two instruments: a5
and i4.

a5 instrument. The a5 (ALLBUS 5-point) instrument
is the political interest measure that is in use in the ALL-
BUS since the surveys first wave in 1980. It is still used
today and has an almost unbroken time series with the sole
exception of 1988, where an alternative instrument had been
used (Baumann & Schulz, 2018). The a5 instrument is a sin-
gle question with a five-point response scale. The question
wording was “How strongly are you interested in politics?”1.
The five response options were “very strongly”, “strongly”,
“middling”, “not very”, and “not at all”2. The response op-
tions are unipolar. The instrument was scored with integer
values from 1 (“very strongly”) to 5 (“not at all”). The instru-
ment, as is custom in the ALLBUS, did not offer an explicit
non-substantive response option.

i4 instrument. The i4 (ISSP 4-point) instrument was
used in three waves of the ISSP so far. Two times in the Cit-
izienship modules I and II in 2004 (ISSP Research Group,
n.d.) and 2014 (ISSP Research Group, 2016) respectively.
And one time in 2007 in the Leisure Time & Sports module
(ISSP Research Group, 2009). Please note that the i4 instru-
ment is not the only political interest instrument used by the
ISSP.

The i4 instrument is a single question with a four-point
response scale. The question wording was “How interested
would you say you are in politics?”3. The four response op-
tions were “very interested”, “fairly interested”, “not very

1German original: “Wie stark interessieren Sie sich für Politik?”
2German original: “sehr stark”, “stark”, “mittel”, “wenig”, and

“überhaupt nicht”
3German version: “Was würden Sie sagen, wie sehr sind Sie an

Politik interessiert?”
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interested”, and “not at all interested”4. The response op-
tions are unipolar. The instrument was scored with integer
values from 1 (“very interested”) to 4 (“überhaupt nicht in-
teressiert”). The ISSP, unlike the ALLBUS, offers an ex-
plicit non-substantive response option: “Cannot choose”5.
Although it should be noted that this option is very seldomly
chosen. In the ISSP of 2014, only seven respondents (0.4%)
chose the “Cannot choose” option. In our web-experiment,
only eight respondents (0.7%) of respondents chose this op-
tion.

3.3 Analysis and Software

R. All data transformations and analyses were con-
ducted in R (R Core Team, 2021) using RStudio (RStudio
Team, 2022). All original datasets were in SPSS format and
read into R using haven (Wickham & Miller, 2018). The
tidyverse package collection (Wickham, 2017) was used for
data transformation and data visualization. Skewness was
calculated using the moments package (Komsta & Novomet-
sky, 2021). Correlations were compared using the cocor
package (Diedenhofen & Musch, 2015). All equating op-
erations were performed using the equate package (Albano,
2016). For linear and equipercentile observed score equat-
ing in random groups design, the package uses the formulas
and algorithms from Kolen and Brennan (2014), which I had
summarized in the theory section.

Linear Stretching. Linear stretching was performed us-
ing a custom R function. Unlike the simplified function de-
scribed earlier, the i4 and a5 instruments are scored with a
minimum score of one. Thus, for instruments X and Y with
minimum scores J and maximum scores K the formula be-
comes:

stretch(x) =
(x − JX)(KY − JY )

KX − JX
+ JY (12)

This formula sets the minimum response options equal to
each other, the maximum response options equal to each
other, and then distributes all responses in between with the
same distance (Cohen et al., 1999; de Jonge et al., 2017).

Item difficulty. Descriptive item difficulty was calcu-
lated using the formula of (Dahl, 1971) reported in (Moos-
brugger & Kelava, 2012, p. 81), which is applicable to items
with Likert scales (as opposed to difficulty for dichotomous
response scales). For an instrument X with a minimum score
J and maximum score K, we can calculate the item difficulty
as:

PX =

∑n
i=1(xi − JX)

n(KX − JX)
1̇00 (13)

This form of item difficulty can be interpreted as a mea-
sure where the average response lies along the range of a
scale. A difficulty of zero means that all respondents chose
the first response option. A difficulty of 100 means that all

respondents chose the highest possible response option. Val-
ues in between can be interpreted as a percentual position
between those two extremes.

Modified Cohen’s d for mean bias (i.e., Glass’ ∆). To
report mean bias in an easily interpretable format, Cohen’s d
is used as a measure of mean difference. Cohen’s d expresses
mean differences relative to the standard distribution. How-
ever, which standard distribution? If two groups have the
same variance, the issue is moot. If they differ in variance,
then we can either pool the variances or choose the variance
of one group. In this paper, I want to compare mean bias
fairly. Thus, I standardize Cohen’s d using the standard de-
viation of the target scale (a5). This is important because
the harmonization approaches might also introduce biases
into the standard deviation of the transformed source instru-
ment (i4). By using only the target standard deviation, the
comparison isolates the mean bias issue. As a second issue,
please note that I present absolute mean difference values,
because the direction of the mean bias is irrelevant for this
paper. Technically, standardizing with the standard devia-
tion of only one group means I use Glass’ ∆, not Cohen’s
d. However, since the delta could easily be confused with
a mere unstandardized difference, I use d as the more well-
known concept (Hedges & Olkin, 1985).

4 Results

4.1 Construct validation of the a5 and i4 instruments

Equating should only be applied when two instruments
measure the same construct. Unfortunately, we cannot for-
mally demonstrate that two single-question instruments are
congeneric tests of the same construct. However, we can
at least explore how the two instruments correlate with re-
lated constructs. In our example, we can use the combined
ALLBUS-ISSP 2014 data in which both instruments (i4 and
a5) were used alongside some related constructs. In table 1
below, we see how the two instruments correlate with (1) in-
terest in TV news, (2) interest in political TV shows, (3) Re-
spondents self-assessed understanding of important political
issues facing Germany, and (4) how often respondents dis-
cuss politics with others. Note that all instruments are coded
in the same direction as political interest: Lower scores rep-
resent higher interest (or understanding or frequency). The
sample was N = 1704, including only respondents who an-
swered the ALLBUS questionnaire and the ISSP 2014 ques-
tionnaire.

Both instruments result in almost identical correlations
with the related constructs. None of the correlation dif-
ferences were significant, according to Fisher (1925) r-to-
z transformation. While this is not a formal proof of con-

4German version: “sehr interessiert”, “einigermaßen inter-
essiert”, “eher nicht interessiert”, and “überhaupt nicht interessiert”

5German version: “Kann ich nicht sagen”
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Table 1
Correlation of the a5 and i4 instrument with related con-
structs

ra5 ri4 ∆r p

Interest in TV news 0.37 0.38 −0.00 0.934
Interest in political TV shows 0.61 0.58 0.03 0.132
Understanding of the important
political issues facing Germany 0.54 0.57 −0.03 0.245
How often do you discuss politics 0.56 0.59 −0.02 0.346
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Figure 3. Equivalent values of the i4 responses in terms of
the target instrument a5

generic tests, it does support the assumption that both instru-
ments capture very similar concepts. The very comparable
correlations also imply that the reliability of both instruments
is similar, because otherwise, correlations of the instrument
with lower reliability would be consistently lower due to at-
tenuation.

4.2 Observed Score equating: Proof of principle

Here and in all following parts, the a5 instrument (five-
point scale first used in the ALLBUS) will serve as the target
instrument. The i4 instrument (four points, used in the ISSP)
is the source instrument which we want to align to the a5
instrument. To illustrate the challenge and to compare the
efficacy of linear stretching against that of observed score
equating, I first harmonized scores of the i4 instrument to-
wards the a5 instrument with three different approaches.

Figure 3 shows the resulting transformed scores. Below,
in figure 4, we see the resulting transformed scores. In each
row, the first point represents the first i4 response option, the
second point the second response option and so on up to the
maximum i4 score of 4.

If we consider figure 4 more closely, we see the logic
of the different approaches clearly illustrated. All three ap-
proaches preserve the ordinal structure of the instrument
scores. However, we see that linear stretching is a very
rigid approach. It completely ignores any response distri-
bution information and instead only takes the scale points of
both instruments into account. The transformed responses

are bounded between the minimum and maximum score
and responses in between are treated as equidistant. Linear
equating, in contrast, does take aspects of the response dis-
tributions of both instruments into account. Linear equat-
ing can shift transformed scores left or right to mitigate
mean bias. It can also accommodate different standard de-
viations by stretching or compressing the range of trans-
formed responses. However, the linear equating solution
is still equidistant. Finally, equipercentile equating is the
most flexible approach. Aside from shifting left or right and
stretching or compressing the range of values, equipercentile
equating is also no longer bound by equidistance. Note how
the distance between the first two response options (1.32) is
markedly greater than the distance between the last two re-
sponse options (1.09).

Mean bias mitigation. The question remains, however,
if these transformations have indeed helped solve the com-
parability issue. In the ALLBUS-ISSP 2014 data, we can
assess this by comparing the distribution of the transformed
i4 scores to the distribution of the a5 scores. Both i4 distri-
butions and the a5 distribution are based on the same pop-
ulation and thus should be very similar after harmonization.
First, with regard to mean bias mitigation, figure 4 shows the
mean of the i4 and a5 instrument on the left and the mean
bias compared to the a5 instrument on the right.

Not transforming the i4 instrument results in a mean bias
of |d| = 0.69. Linear stretching mitigates this somewhat, but
a substantial mean bias of |d| = 0.38 remains. This is un-
surprising, because the two instruments have different item
difficulties of Pa5 = 43 and Pi4 = 33. In other words, av-
erage respondents position themselves at different positions
along the scale ranges of a5 and i4. Observed score equating,
meanwhile, removes mean bias effectively. Linear equating,
results in a perfect mean match, reducing the mean bias to
|d| = 0. This is hardly surprising, given that linear equat-
ing directly aligns the mean responses of two instruments.
More interestingly, the rather less straightforward equiper-
centile equating algorithm also resulted in an almost perfect
mitigation of the mean bias with |d| = 0.04.

Higher distribution moments. Next, we consider the
higher distribution moments. While reducing mean bias is
important, harmonization should ideally also align other as-
pects of the response distribution shape, such as the standard
deviation and the skewness. Table 2 lists the standard devi-
ation and skewness values as well as their distance from the
a5 target instrument.

Unsurprisingly, the untransformed i4 instrument has a
markedly lower standard deviation than the a5 instrument. In
our example, meanwhile, all harmonization approaches miti-
gate the standard deviation differences effectively. However,
that linear stretching works well here is a coincidence that
only occurs if the standard deviations of two instruments are
similar in relation to the range of response options (i.e., max-
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Figure 4. Mean response and mean bias by harmonization procedure. Note: Mean
bias is calculated as absolute Cohen’s d using the standard deviation of the a5 tar-
getinstrument.

Table 2
Comparison of standard deviation and skewness across approaches

Approach SD |∆SD| Skewness |∆Skewness|

i4 Untransformed 0.81 0.24 0.60 0.45
i4 Stretching 1.09 0.03 0.60 0.45
i4 Linear Equating 1.06 0.00 0.60 0.45
i4 Equipercentile Equating 0.98 0.08 0.37 0.22
a5 (target) 1.06 0.16

imum score minus minimum score). The a5 instrument has a
range of 4, the i4 instrument a range of 3. The standard devi-
ation divided by the range then happens to be very similar for
both instruments: 0.26 for a5 and 0.27 for i4. Both observed
score equating procedures, in contrast, can also mitigate stan-
dard deviation differences that are not due to the scale range
(Kolen & Brennan, 2014).

Skewness, meanwhile, is left unchanged by linear stretch-
ing and linear equating. Only equipercentile equating miti-
gates the skewness difference because its transformed scores
need not be equidistant. The skewness bias is not fully elim-
inated but is half as strong after equipercentile equating as
compared with all other approaches.

4.3 Equating with nonprobability samples

Of course, a data structure as in ALLBUS-ISSP 2014 is
rare. Instead, ex-post harmonization with equating will often
require a separate source for data in a random group design.
Here, I explore a straightforward approach: Using data from
a split-half experiment conducted in an affordable nonproba-
bility online access panel. The approach is as follows: With
data from the split-half experiment featuring the i4 and the
a5 instruments, both linear and equipercentile equating are
performed. The resulting recoding tables are then applied

to the ALLBUS-ISSP 2014 data to transform the i4 scores
there. Then, the quality of this linking with external data is
assessed just like in part two.

First, we look at the mean bias mitigation. Figure 5 below
gives an overview that includes linear stretching as a worst
case, direct equating via ALLBUS-ISSP 2014 data, and now
the equating via nonprobability sample.

As we can see, the mean bias is reduced substantially.
Instead of the mean bias of |d| = 0.38 in linear stretching,
the bias is reduced to |d| = 0.10 in linear and |d| = 0.07
in equipercentile equating. Table X meanwhile gives an
overview of the higher distribution moments as well. Us-
ing the recoding table from the nonprobability sample un-
derestimates the standard deviation slightly by 0.07 scale
points in linear equating and 0.16 scale points in equiper-
centile equating. The skewness mitigation of equipercentile
equating is markedly lower in the nonprobability sample case
(difference from target = 0.40) than in the direct equating
case (difference from target = 0.20), but still better than lin-
ear stretching or equating (difference from target = 0.45). In
sum, a very good mean bias mitigation with a slight trade-off

towards less variance. Table 3 lists all standard deviation and
skewness comparisons.
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Figure 5. A comparison of mean bias in i4 responses by harmonization approach and
data source

Table 3
SD and Skewness comparison by harmonization approach and data source

Instr. Harmonization Approach Data Source SD |∆SD| Skewness |∆Skewness|

a5 target 1.06 0.16
i4 linear equating ALLBUS-ISSP Data 1.06 0.00 0.60 0.45
i4 linear equating Nonprob. Experiment 0.99 0.07 0.60 0.45
i4 equipercentile equating ALLBUS-ISSP Data 0.98 0.08 0.37 0.22
i4 equipercentile equating Nonprob. Experiment 0.90 0.16 0.56 0.40

4.4 Equating across different probability survey pro-
grams

Lastly, I demonstrate that observed score equating can
also be performed with data from different surveys with ran-
dom samples of the same population. Specifically, equating
is performed between data from the GLES and the ALLBUS
surveys, which both use the a5 instrument. It is also impor-
tant to match survey waves temporally. Otherwise, changes
in the construct over time might bias equating. Thus, GLES
data from 2017 is equated with ALLBUS data from 2016 and
2018 combined for form an interpolated ALLBUS 2017.

Equating the a5 instrument with itself seems counterintu-
itive. However, this offers an ideal test for equating across
different survey programs. After all, equating an instrument
with itself should result in an identity relationship, meaning
a 1 should be linked to a 1, a 2 to a 2, a 3 to a 3 and so
on. Any deviation from that identity relationship would then
indicate bias introduced into the equating process by survey
characteristics, such as sampling strategy or survey mode.
Figure 6 shows the result of both the linear and equipercentile
equating of the a5 scale in GLES 2017 towards the same a5
scale in ALLBUS 20016 and 2018 combined. The linear
and equipercentile equating results fall almost perfectly onto
the grey diagonal of an identity relationship. Numerically,
the equating solution differed from the ideal identity solution

1

2

3

4

5

1 2 3 4 5

a5 (GLES 2017)
untransformed

E
qu

iv
al

en
t i

n 
A

LL
B

U
S

(2
01

6 
an

d 
20

18
 c

om
bi

ne
d)

Equating Type
Equipercentile
Linear

Figure 6. a5 scores in GLES 2017 and their equivalent values
in the format of a5 in ALLBUS 2016 and 2018 combined

only by an average of 0.02 scale points in linear equating
and anaverage of 0.03 scale points in equipercentile equat-
ing. The highest difference overall was 0.07 scale points
from the deal identity solution. In practical terms, this im-
plies that survey differences, sampling issues, and pooling
the two ALLBUS waves did not bias the equating process.

Next, I applied the recoding tables from equating to the
ALLBUS 2014 data we used earlier. To be precise, I trans-
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formed the a5 responses in the ALLBUS from 2014 with
the equating recoding tables derived from the comparison
of GLES 2017 and ALLBUS 20016 and ALLBUS 2018.
Again, since we equate an instrument with itself, the ideal
outcome would be a perfect match between the distributions
of the linearly and equipercentile equated a5 scores and the
distribution of untransformed a5 scores. Any substantial dif-
ferences would imply bias introduced by survey characteris-
tics. Figure 7 shows that such bias was almost non-existent.

Numerically, both linear and equipercentile equating
missed the mean by a mere |d| = 0.03 standard deviations.
The standard deviation difference from the target instrument
was a mere 0.01 for both. There was no skewness differ-
ence for linear equating and a difference of merely 0.05 for
equipercentile equating.

In summary, equating with data from the two probability
survey programs GLES and ALLBUS resulted in an almost
perfect match with the theoretically ideal outcome. Nothing
indicates that the survey and sample characteristics of the two
surveys introduced a bias to the equating process.

5 Discussion

The paper explored the usefulness of observed score
equating for the ex-post harmonization of single-question
survey instruments for the same latent construct; here specifi-
cally, political interest. First, the problem of different instru-
ments was demonstrated and observed score equating was
applied to mitigate bias. Even two very similar instruments
resulted in a substantial mean bias even after attempting to
align them with linear stretching (|d| = 0.38). Applying ob-
served score equating with a random groups design to harmo-
nize the two instruments directly in the ALLBUS and ISSP
data from 2014 resulted in almost perfect numerical compa-
rability. However, this case where the data we want to har-
monize is already structured in a way that allows for equating
is seldom. Consequently, third, the possibility of collecting
data explicitly for the purpose of equating was explored. If
you will recall, equating in random groups design requires
samples of both instruments randomly drawn from the same
population. As one possible solution, I collected data on both
instruments in an experiment in a nonprobability online ac-
cess panel. The equating solution resulting from this experi-
mental data was then applied to the ALLBUS and ISSP 2014
case. This resulted in a slightly less perfect, but still very
acceptable ex-post harmonization of the two instruments: a
|d| of 0.10 and 0.07 for linear and equipercentile equating re-
spectively. Furthermore, a second approach to obtaining data
for equating was explored: Using data from two probability
surveys (i.e., ALLBUS and GLES) covering the same popu-
lation in the same year (here: the adult German population).
To clearly isolate potential biases introduced by sample dif-
ferences and other survey characteristics, I equated the same
instrument with itself. The result was an ideal identity re-

lationship, implying that the survey characteristics of ALL-
BUS and GLES did not bias the equating process. Further-
more, transforming the ALLBUS 2014 responses and com-
paring them to the untransformed responses again yielded
almost no bias at all.

The bottom line is that observed score equating with ran-
dom groups design can result in valid and largely unbiased
ex-post harmonization results. Both using equating data from
nonprobability split-half experiments as well as from proba-
bility national surveys to gain data for instrument equating
seems promising. As for the specific equating algorithm,
both linear and equipercentile equating worked well with no
compelling advantage of one over the other. However, the
two instruments had few response options (five and four re-
spectively) and more or less normal response distributions.
With stark distribution differences and more response op-
tions, equipercentile equating might turn out to be generally
more applicable to survey data.

5.1 Points to consider

Of course, harmonizing instruments using equating is no
panacea for all ex-post harmonization challenges. Hence, I
would like to stress a few boundaries and aspects that need
to be considered when applying the approach.

First, equating does not mitigate differences in content
(i.e., different constructs. Differences in content should be
assessed before performing equating; for example, by apply-
ing validation techniques to both instruments. Unfortunately,
a formal factor analytical assessment if two single-question
instruments are congeneric measures of the same construct
is not possible. However, we might apply techniques for cri-
terion, content, and construct validation (Price, 2017). In
this paper, for example, we correlated both instruments with
related constructs.

Second, equating does not mitigate differences in mea-
surement precision (i.e., different reliabilities, meaning dif-
ferent levels of random error in measurement). Ideally,
the reliability of the data measured with both instruments
should at least be known so that substantial reliability dif-
ferences can be corrected for (e.g., correction for attenua-
tion; Charles, 2005. However, estimating the measurement
reliability of single-question instruments in surveys is a chal-
lenge; especially with the ease of calculating internal consis-
tency measures for multi-item instruments. For an overview
of approaches, see Tourangeau, Rips, and Rasinski (2000).

Third, the random groups design implies that OSE-RG
primarily useful for harmonization within a language area
and not across different languages. For the random groups
design, we have to be able to sample from a common pop-
ulation, where respondents can understand both instruments
similarly well. In cross-language contexts, this is hard to
achieve since we would need costly samples of bilingual
respondents. Furthermore, bilingual respondents may dif-
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Figure 7. Distribution preservation after equating with data from two probability
survey

fer systematically in their understanding from monolingual
respondents, limiting the generalizability of harmonization
results obtained from such samples (Sireci & Berberoglu,
2000).

Fourth, explicit non-substantive response options (e.g., an
explicit “don’t know”-option) are a potential complication.
Specifically, a problem might occur if only one of the instru-
ments offers a non-substantive response option. The basic
problem is this: Equating in random groups design can only
interpret ordinal, substantive responses (Kolen & Brennan,
2014). Non-substantive response options in one instrument
thus can lead to what is in essence a drop-out from the equat-
ing data. This might break the assumptions of the random
groups design that samples for both instruments represent the
same population.

Fifth, there is the issue of group invariance. Equating can
be performed with one data and the derived equating rela-
tionship between the two instruments (i.e., a recoding table)
can be applied to different data that we want to harmonize.
The group invariance property of equating would then state
that population differences in the equating data and the har-
monized data do not matter. Unfortunately, observed score
equating is not formally group invariant, although empiri-
cal research often finds observed score equating to be ro-
bust across different populations ((Kolen & Brennan, 2014).
What does that mean in concrete terms for applying observed
score equating to survey instruments? If we apply data from
probability surveys to other probability surveys covering the
same population, the problem does not occur. If we want to
use equating for specific populations, or if we want to use
nonprobability data to perform the equating, then a prob-
lem might occur. However, the underlying problem here is
not equating itself. Instead, the problem is that for single-
question instruments we do not know if they are measure-
ment invariant across the populations (Putnick & Bornstein,
2016) meaning we do not know if both instruments measure

fairly across relevant dimensions such as age, sex, educa-
tion and so on. Equating, again, does not introduce a bias
here, but it reproduces the bias already in the data. If such
problems occur, a pragmatic solution is to equate important
subpopulations separately, and then apply the resulting sub-
population specific recoding tables to the target data (Dorans
& Holland, 2000).

Sixth, as a matter of context, I would like to address some
other research designs for equating. In this paper, the focus
was on the random groups design: Data for both instruments
randomly drawn from the same population. This design is
applicable to single-question instruments which characterize
many surveys in the social sciences. It can also make use
of the wealth of probability survey data we have available.
However, other designs exist, and I would like to address
them. Firstly, the single group design. It works much like
the random group design, but this time we ensure that re-
sponses represent the same population by asking the exact
same respondents twice; once with each instrument (Kolen
& Brennan, 2014). This is, in fact, the ALLBUS ISSP 2014
structure. I just used it as if it was a random groups setup
to clearly demonstrate that the equating result is, in fact,
valid. Unfortunately, we seldomly encounter single group
data in large survey programs. The ALLBUS ISSP single
group case is a rare coincidence. If we collect equating data
ourselves, then the single groups design might mean placing
the two instruments are closer to each other. This incurs the
risk of order and learning effects. In other words, it would
matter which instrument was shown first and which second.
To counteract this, the single group design is usually counter-
balanced, meaning the order of instruments is experimentally
randomized. Still, the advantage over the random groups de-
sign is minimal if the sample sizes are adequately large.

Another design is the non-equivalent groups with covari-
ates design (NEC). This design is in essence the attempt to
approximate a random groups design with data from different
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populations (Wiberg & Bränberg, 2015). Instead of drawing
from the same population, population differences are mea-
sured with additional variables (i.e., covariates) and then the
equating is adjusted for those measured differences. It is not
different from the idea of applying adjustment weights to a
nonprobability sample. However, the approach is at most a
second best to a true random groups design. The covariates
approach can only account for measured population differ-
ences (and thus observed heterogeneity). Respondent dif-
ferences that were not measured can still bias the equating.
Lastly, the non-equivalent groups with anchor tests design
(NEAT), is a very common research design for multi-item
instruments (González & Wiberg, 2017; Kolen & Brennan,
2014). It is thus not applicable for the use case discussed in
this paper. Still, it bears mentioning, because it is a very pow-
erful approach. It can be applied of two multi-item instru-
ments share at least some items. Those shared items are the
so-called anchor tests, which then help bridge the instrument
differences. This works even if the data for both instruments
is drawn from different populations.

5.2 In a nutshell

Harmonizing data for a latent construct measured with dif-
ferent single-question instruments is a hard challenge. How-
ever, I hope to have shown that observed score equating can
be a powerful tool in this context. It does require some effort
in finding or collecting adequate data. Fortunately, there is
a good chance to find adequate data in the well-developed
survey landscape of the social sciences. Furthermore, if no
adequate existing data can be found, even nonprobability on-
line samples might offer an acceptable second best. And once
adequate data has been found, the process of equating is very
straightforward and can be applied to many different instru-
ments and constructs.
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