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The product-moment correlation is a central statistic in psychological research including 
meta-analysis. Unfortunately, it has a rather complex sampling distribution which leads 
to sample correlations that are biased indicators of the respective population 
correlations. Moreover, there seems to be some uncertainty on how to properly calculate 
the standard error of these correlations. Because no simple analytical solution exists, 
several approximations have been previously introduced. This note aims to briefly 
summarize 10 different ways to calculate the standard error of the Pearson correlation. 
Moreover, a simulation study on the accuracy of these estimators compared their relative 
percentage biases for different population correlations and sample sizes. The results 
showed that all estimators were largely unbiased for sample sizes of at least 40. For 
smaller samples, a simple approximation by Bonett (2008) led to the least biased results. 
Based on these results, it is recommended to use the expression  for the 
calculation of the standard error of the Pearson correlation. 

A Brief Note on the Standard Error of the Pearson           
Correlation  

The product-moment correlation (Pearson, 1896) is an 
essential statistic to quantify the linear association be-
tween two variables. It is not only an elementary com-
ponent of descriptive and exploratory research but is also 
used as a measure of effect size to facilitate interpretations 
and comparisons of results between studies. Therefore, it 
also plays a pivotal role in research syntheses including 
quantitative meta-analyses (e.g., Cheung, 2015; Hafdahl, 
2008). Although it is well known among statisticians that 
the sample correlation r represents a biased estimator of 
the population correlation ρ (e.g., de Winter et al., 2016; 
Hedges, 1989; Olkin & Pratt, 1958; Shieh, 2010; Zimmer-
man et al., 2003), applied researchers seldom adopt unbi-
ased estimators of ρ because the bias in r is often consid-
ered increasingly negligible with larger sample sizes (Shieh, 
2010). Moreover, there seems to be some uncertainty re-
garding the calculation of the standard error of r that is 
often used in meta-analytic investigations as precision 
weights and, thus, determines the contribution of each cor-
relation coefficient to the pooled estimate (e.g., Bonett, 
2008; Hafdahl, 2008). Because ρ follows a rather complex 
sampling distribution, the standard error is rarely calcu-
lated from the exact distribution. Rather, various large-
sample approximations have been suggested in the liter-
ature (e.g., Bonett, 2008; Hedges, 1989; Hotelling, 1953). 

However, if these approximations represent biased estima-
tors of standard errors, their use in meta-analyses might 
involuntarily distort effect size estimations and interpre-
tations. Therefore, this brief note reviews different ap-
proaches on how to calculate the standard error of r and 
demonstrates their biases for different values of r and sam-
ple sizes. 

The Sampling Distribution of the Pearson       
Correlation  

Let X = {x1, x2, …, xN} and Y = {y1, y2, …, yN} represent 
two bivariate normally distributed variables with popula-
tion means , variances , and correlation 
ρ that are measured in a sample of N elements. Then, the 
Pearson product-moment correlation is given by 

with  and  as the sample means of X and Y. The 
density probability distribution of r has been derived by 
Hotelling (1951, 1953) based on prior work in Fisher (1915, 
1921) and follows a rather curious shape, 
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Figure 1. Sampling Distributions for Small and Large       
Correlations at Different Sample Sizes      

involving the gamma function Γ(x) = (x - 1)! and Gauss’s hy-
pergeometric function  with 

. For demonstration, Figure 1 visualizes 
these distributions for two correlations, ρ = .20 and ρ = 
.80. Whereas the former represents a small to medium ef-
fect that is typically observed in different areas of psychol-
ogy (see Bosco et al., 2015; Gignac & Szodorai, 2016; Lo-
vakov & Agadullina, 2021), the latter reflects a rather large 
effect that is often limited to specific domains such as com-
petence research (e.g., Gnambs & Lockl, 2023). The distri-
butions in Figure 1 highlight that the sample correlations r 
follow a rather asymmetrical shape. In the present case, the 
modes of these distributions are larger than the respective 
ρ, thus, resulting in a negative skew. Generally, the skew 
is more pronounced for larger |ρ| because correlations are 
bounded at -1 and +1. In contrast, smaller correlations of-
ten exhibit approximately normal distributions. Moreover, 
the asymmetry of the sampling distribution is strongly af-
fected by the sample size. It is stronger for small sample 
sizes, while larger samples result in more symmetric distri-
butions. In the presented examples, already a sample size 
of N = 50 leads to an approximately normal sample distrib-
ution, even for ρ = .80. 

The estimator of the population correlation       

Because of its skewed sampling distribution, the sample 
correlation r is a biased estimator of the population correla-
tion ρ (e.g., Hedges, 1989; Olkin & Pratt, 1958). As pointed 
out by Zimmerman and colleagues (2013), this bias can 
reach up to .03 or .04 in many applied situations. Therefore, 
Olkin and Pratt (1958) derived an estimator of ρ from (2) 
that corrects for the bias in r as 

with ≈ indicating an approximation that is accurate within 
 for N ≥ 18. Monte Carlo simulations confirmed that 

the approximate estimator in (3) is largely unbiased for dif-
ferent sample sizes and population correlations, whereas 
r tends to underestimate ρ, particularly for medium- to 
large-sized correlations and small sample sizes (Shieh, 
2010). However, r tends to exhibit a higher precision for |ρ| 
< .60 as reflected by the mean squared error. Therefore, in 
these cases, the sample correlation r might, despite its bias, 
serve as a meaningful estimator of the strength of the asso-
ciation between two variables. 

Estimators of the sampling variance      

The sampling variance of r was derived by Hotelling 
(1951, 1953) using the moments of r about its mean as 

Consequently, the standard error of r is . Because 
(4) requires integrating over the hypergeometric function, 
no simple analytic solution exists. Therefore, various ap-
proximations have been suggested in the literature that of-
ten take the general form 

with df representing the degrees of freedom and O(n) a se-
ries of terms of the order n that approximates the integral 
over the hypergeometric function in (4). For n → ∞, the es-
timator in (5) approaches (4). An overview of 10 thus de-
rived approximations is given in Table 1. 
Originally, Pearson (1896) proposed df = N  (1 + ρ2) re-

sulting in (6). However, he soon noticed that this referred 
to a rather special case where the variances of X and Y are 
known (see Pearson & Filon, 1898) and therefore revised 
the expression to df = N as in (7). But, the expression in (8) 
with df = N – 1 provides an even more accurate estimator of 

 by assuming estimated means in (1) because (7) implies 
that the means of the two variables in (1) are known, that 
is,  and  (Olkin & Pratt, 1958). Moreover, 
simulation studies led to Bonett’s (2008) suggestion of df = 
N – 3 in (9). The formulas in (7) to (9) are frequently used 
in applied research because they are easy to calculate and 
give good approximations of (4). However, they are biased 
to some degree because they ignore O(n) for the approxi-
mation of the integrated hypergeometric function. 
Several authors tried to give analytic solutions for O(n) 

and different n. Soper (1913) derived O(1) for df = N and 
df = N – 1 resulting in (10) and (11). The latter was later 
extended by Hotelling (1953) to O(2) as in (12). Moreover, 
Ghosh (1966) independently presented an approximation of 
O(6) resulting in (13). The formulas in (10) to (13) are ex-
pected to provide better estimators of (4) because of their 
closer approximation of the sampling distribution of r. 
However, they are hardly used anymore today because re-
searchers trying to improve the accuracy of the estimated 
standard errors as compared to (7) to (9) can easily do so 
by directly evaluating the integral in (4) using modern opti-
mization routines implemented in standard statistical soft-
ware. 
Hedges (1989) presented an alternative approach in the 

context of meta-analytic studies based on the assumption 
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Table 1. Approximations for the Standard Error of the Pearson Correlation          

Source Standard error 

Pearson (1896, p. 266) (6) 

Pearson & Filon (1898, p. 174) (7) 

Soper (1913, p. 107) (8) 

Bonett (2008, p. 174) (9) 

Soper (1913, p. 107) (10) 

Soper (1913, p. 107) (11) 

Hotelling (1953, p. 212) (12) 

Ghosh (1966, p. 260) a (13) 

Hedges (1989, p. 474) b 

 with 

(14) 

Hedges (1989, p. 477) 

 with 

(15) 

aGhosh (1966) presented an approximation to the order of 6. Because this resulted in rather complex terms, for ease of presentation (13) reports only the first ones. 
bHedges’ (1989) approximation of q (Equation 14) seems to mistakenly use a value of 3 in the denominator instead of 4, thus, adopting N as the degrees of freedom, whereas the de-
grees of freedom was N - 1 in the remainder of the paper. 
Note. ρ = population correlation, r = sample correlation, N = sample size,  = Gauss hypergeometric function. 

 derived from classical test theory. 
Here, the variance  in study i is decomposed into the 
variance  of the distribution from which the study-
specific population correlations  are sampled and sam-
pling error . Consequently, an estimator of the stan-
dard error  can be 
obtained by using unbiased estimates of ρ as given in (4) 
and the multiple correlation ρ2 as derived by Olkin and 
Pratt (1958). This results in the approximate and exact ex-
pressions of the unbiased standard error given in (14) and 
(15), respectively. 
Finally, it might be helpful to illuminate a potential mis-

conception arising from the fact that the bivariate corre-
lation can also be expressed in terms of the standardized 
linear regression coefficient. The studentized regression 
coefficient  with b and β as the estimated and 
true regression weights, respectively, and  as the stan-
dard error of b follows a t distribution with df = N - 2. 
Under the null hypothesis of β = 0, this reduces to 

 with R2 as the coefficient of 

determination (see Pugh & Winslow, 1966, for the detailed 

derivation). Because for a single predictor R2 = r2, it might 
be tempting to mistake the term  for the standard er-
ror of r. However, this is only true for the special case when 
ρ = 0, whereas this expression leads to increasingly biased 
estimators of  for larger |ρ|. 

Comparison of Estimators of the Standard Error        

As highlighted in Table 1 different approximations have 
been suggested for the estimation of the standard error 
of r. However, little is known about which of these esti-
mators might yield noteworthy benefits in substantive re-
search. Therefore, the accuracy and efficiency of these esti-
mators were compared for different population correlations 
and sample sizes. 

Methods  

The comparison varied the population correlations be-
tween ρ = .00 and .90 (in increments of .10) and sample 
sizes N from 10 to 50 (in increments of 10) and 100. For 
each condition, six types of standard errors  for r were 
examined either following (7) in Pearson and Filon (1898), 

A Brief Note on the Standard Error of the Pearson Correlation

Collabra: Psychology 3

D
ow

nloaded from
 http://online.ucpress.edu/collabra/article-pdf/9/1/87615/789047/collabra_2023_9_1_87615.pdf by guest on 26 April 2024



(8) in Soper (1913), (9) in Bonett (2008), (4) using the in-
tegral by Hotelling (1953) with , or (15) in Hedges 
(1989). Moreover, also the standard error of a regression 
coefficient was derived to demonstrate its inadequacy for 
the correlation coefficient. The approximations in (10) to 
(13) were not considered because they are rarely used in 
practice and, more importantly, are superseded by the di-
rect evaluation of the integral in (4). The performance of 
these estimators was compared using the relative percent-
age bias (Hoogland & Boomsma, 1998) which is given as 

. Values of %Bias less than 
5% were considered negligible. The true standard error 
was calculated following (4) using the population correla-
tion ρ from the data-generating process. Moreover, the ef-
ficiency of the estimators was studied using the root mean 
squared error, . Because 
the RMSE can be decomposed into the squared bias and the 
variance of , it represents a trade-off between the two 
components. Thus, an estimator might be more biased but 
at the same time also more efficient if it has a smaller vari-
ance.1 The Bias and RMSE were computed by numerical in-
tegration using adaptive Simpson’s quadrature with respect 
to r, that is,  and 

. 

Results and Discussion    

The relative bias of the different estimators of  for dif-
ferent sample sizes is summarized in Figure 2. These re-
sults show little differences between the compared estima-
tors for sample sizes of N = 40 or larger. Except for the 
standard error of the regression coefficient, the approxi-
mations of the standard error of the correlation yielded 
largely unbiased estimates. In contrast, at a small sample 
size such as N = 10 or 20 more pronounced differences were 
observed. Estimators using N (Pearson & Filon, 1898) or N 
- 1 (Soper, 1913) as degrees of freedom resulted in nega-
tive relative biases that increased for larger population cor-
relations. In contrast, the estimator by Bonett (2008) with 
N – 3 degrees of freedom resulted in unbiased estimates 
of the standard error across a wide range of correlations; 
only for very large correlations a slight negative bias was 
observed. Similarly, an evaluation of the integral in (4) led 
to comparably unbiased estimates for sample sizes of at 
least 20. However, in extremely small samples it was less 
precise than the approximation by Bonett (2008), presum-
ably because Equation (4) uses the estimate of the popu-
lation correlation multiple times which is estimated rather 
imprecisely in small samples. Interestingly, the approxima-
tion by Hedges (1989) was only unbiased for correlations up 
to about .60; larger correlations resulted in a slightly neg-
ative bias. These results also emphasize that - independent 

of the sample size - the standard error of the regression co-
efficient yielded unbiased results only for population corre-
lations close to 0. For larger correlations, the relative per-
centage bias increased up to 125%. Thus, mistakenly using 
this standard error as an indicator of precision might result 
in severely distorted meta-analytic summaries of product-
moment correlations. 
The root mean squared error resulted in only marginal 

differences between the compared estimators (see Figure 
2). For samples of N = 50 or N = 100, the RMSE fell below 
.001 in all conditions. Although it was slightly larger for 
smaller sample sizes, the RMSE did not indicate pro-
nouncedly different efficiencies of the studied estimators. 
Except for N = 10, the different estimators resulted in com-
parable RMSEs. But again, the standard error of the regres-
sion coefficient was less efficient at larger population cor-
relations. Together, these results indicate that the simple 
approximation by Bonett (2008) results in the least biased 
estimates of the standard error for different values of ρ and 
sample sizes. More complex estimators that either require 
the evaluation of the integral in (4) or rely on the hyperge-
ometric function such as (15), do not seem to provide note-
worthy benefits for the accuracy of the standard error. 

Conclusion  

Despite its popularity in applied research, the distrib-
utional properties of the sample correlation are often not 
well understood or simply neglected. Particularly, the cal-
culation of the standard error of the Pearson correlation 
remains challenging because of the complex sampling dis-
tribution of r which does not give a simple analytical solu-
tion. Therefore, various approximations are currently used 
in substantive research. Although some of the more com-
plex expressions in Table 1 have only historical value today 
because the integration of complex functions became sub-
stantially easier with modern computers, it was unclear 
whether the choice between the simpler approaches might 
matter. Therefore, the simulation evaluated the accuracy of 
these estimators for different population correlations and 
sample sizes. The respective findings suggest that the least 
biased estimator used the expression  (Bonett, 2008). 
Particularly, for larger population correlations in small 
samples, this estimator should result in more precise stan-
dard errors. However, it needs to be emphasized that dif-
ferences between estimators become negligible as soon as 
sample sizes increase. At typical sample sizes in psychology 
that often exceed 50 or 100 respondents the choice of the 
estimator is unlikely to substantially matter. Thus, the esti-
mator in (8) that is currently often used in practice should 
be usually also acceptable in many applied situations. How-
ever, further research is needed to identify specific condi-

The simulation only considered correlations ρ ≥ 0 because the bias for negative correlations is simply the opposite of the bias for posi-
tive correlations, that is, , while the root mean squared error is identical in both cases, that is, 

. 
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Figure 2. Relative Percentage Bias of Different Estimators of the Standard Error of the Pearson Correlation               
Note. Dashed lines represent relative biases of 5%. Relative biases exceeding 20% are not presented. 

Figure 3. Root Mean Squared Error of Different Estimators of the Standard Error of the Pearson Correlation                

tions under which biased estimators might yield non-neg-
ligible consequences such as in meta-analytic applications 
with small samples. 
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