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Statistical Mediation
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Abstract
This paper provides both a theoretical foundation and a simulation analysis of different 
statistical approaches to mediation. Regarding theory, a brief sketch of the fundamentals 
of mechanism-based explanations sets the argument of adhering to a consecutive order 
of predictor, mediator and outcome in mediation analysis. Having summarized the sta-
tistical fundamentals of different approaches to mediation analysis including simple me-
diation within OLS regressions, fixed-effects (FE) regressions, generalized-method-of-mo-
ments (GMM) regressions, causal mediation analysis without (CM) and with fixed effects 
(CMFE), and fixed-effects cross-lagged panel models (FE-CLPMs), I provide a simulation 
analysis with known but variable values for the intercorrelations between predictor, media-
tor and outcome in presence of unobserved heterogeneity and reverse causality. The aim of 
the simulation study is to examine differences in the relative performance of the aforemen-
tioned statistical approaches to mediation under different scenarios of causal order.
Results reveal that OLS estimates are generally upwardly biased, FE and CMFE estimates 
by trend downwardly biased, and the ones of CM models (without FEs) can be biased in 
both directions. In contrast, coefficients and confidence intervals estimated by both GMM 
regressions and FE-CLPMs are most accurate – particularly if the structure of lags in the 
empirical models met the consecutive order set up in the data-generating process. Fur-
thermore, FE-CLPMs are least sensitive to whether the first lag of the outcome variable is 
included as an additional predictor. All in all, analyses imply the importance that research-
ers most carefully translate their theoretical assumptions into an empirical model with the 
appropriate causal order.
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Whether an observed association between two social constructs is based on a 
causal effect is one of the most fundamental methodological questions in the 
social sciences. Apart from simply asking if X causes Y, social scientists are con-
cerned with how a causal effect is brought about. From a theoretical perspective, 
this relates to the idea of a social mechanism M (Hedström & Swedberg, 1996) 
along which an effect of X on Y is transmitted (X => M => Y). Statistically, this 
perspective translates into the broad field of mediation analysis which investi-
gates whether a significant parameter estimate from some type of regression of 
Y on X persists once M is controlled for. Also, it is possible to specify the share 
of the X => Y effect that is transmitted via M (“indirect” effect via the mediator), 
and the residual part (“direct effect”; Baron & Kenny, 1986). 

When it comes to the identification of mediation effects in panel data, (at 
least) two important challenges need to be considered: First, if unobserved het-
erogeneity of either time-constant or time-varying covariates which are exog-
enous either to X or to M is present, the seeming mediation effect may be spurious 
(Imai et al., 2010). Second, a proper measurement of the causal order underlying 
the X => M => Y chain must ensure that no reverse causality (in terms of current 
values of X and/or M being endogenous to prior values of Y) is present.

The aim of this paper is to explore how well different statistical approaches 
to mediation analysis are capable of addressing problems of causal order in the 
presence of unobserved heterogeneity with simulated data. In a brief theoretical 
section, I will first outline how the idea of mediation analysis relates to the social 
mechanisms approach to causality in the social sciences. I will then summarize 
different statistical approaches to mediation analysis and how they address prob-
lems of unobserved heterogeneity and reverse causality. Concretely, I will start 
with the simple “covariate inclusion” approach to mediation analysis in Ordinary 
Least Squares (OLS) regression. I will then move on to discuss how the introduc-
tion of (person) fixed-effects (FE) may solve problems of time-constant unob-
served heterogeneity in panel data. A further extension, the Generalized Method 
of Moments (GMM), the most prominent of which is the Arrelano-Bond (AB) 
estimator (Arellano & Bond, 1991), additionally addresses the challenge of reverse 
causality by instrumenting both predictors and outcome by their respective lagged 
values of first, second, or higher order. A different approach to mediation is given 
by the causal mediation (CM) approach (Imai, Keele, Tingley, & Yamamoto, 2011) 
which advances Rubin’s (1986) potential outcomes (PO) model by the introduc-
tion of potential outcomes for the mediator variable giving treatment status on the 
one hand, and for the outcome given treatment and mediator status on the other 
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hand. As this model has primarily been developed for cross-sectional data, it will 
prove useful to investigate its applicability to the analysis of panel data. Finally, 
I will discuss a more recent version of Fixed-Effects Cross-Lagged Panel Models  
(FE-CLPMs) which addresses both unobserved heterogeneity and reverse causal-
ity in the Structural Equation Modeling (SEM) framework (Allison, Williams, & 
Moral-Benito, 2017).

As the crucial touchstone of this study, I put all of the aforementioned 
approaches to mediation analysis to the test of an in-depth simulation analysis. 
Concretely, I will build on Leszczensky and Wolbring’s (2019) simulation study 
to generate random data with known but variable parameters for intercorrela-
tions between X, M, and Y in the presence of both unobserved heterogeneity and 
reverse causality. I will then explore how well different statistical approaches to 
mediation analysis can approximate the ‘true’ parameters. Finally, in the conclu-
sion section, I will summarize the relative advantages of one analysis method 
over the other and provide practical recommendations in light of the theoretical 
idea of mediation. 

Theoretical Background
Causality and Social Mechanisms

As statistical techniques matured over the course of the 20th century, it has been 
criticized that the quantitative approach might have gotten lost in “variable soci-
ology”, i.e., a mainly data- and model-driven enterprise that lost sight of trying 
to ‘understand’ (e.g., Esser, 1996). Luckily, since the 1990s, mainly quantitative 
sociologists began to place renewed emphasis on the “understanding” dimen-
sion of explanation. One prominent proposition is grounded in the philosophy of 
social (but also life) science and posits a mechanism-based approach to explana-
tion in the social sciences (Hedström, 2005; Hedström & Swedberg, 1996).

There exist numerous definitions of social mechanisms (Hedström & 
Ylikoski, 2010), the common denominator of which can be described as follows: 
“Social mechanisms are abstract and general models of spatially, temporally, and 
functionally organized entities and activities that explain why and how social 
phenomena are generated by preceding causal factors” (Tranow, Beckers, & 
Becker, 2016, 5f.; my emphasis). 

Methodologically, the conceptual idea of a social mechanism as an explana-
tion of why and how social phenomena are generated by preceding causal factors 
is closely related to the idea of statistical mediation. Consider the mechanism of 
“wishful thinking” (Elster, 1989): the desire for something to be true influences 
my belief about whether it is actually true and, in consequence, my correspond-
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ing social action. For instance, sports betters might overestimate the winning 
chances of their preferred team (Babad & Katz, 1991).1 

More generally, the impact of desires Di on action Ai is brought about via 
(or, statistically speaking, mediated by) beliefs Bi (Figure 1, Panel A). Continuing 
the above example, the effect of a better’s team preference on betting investments 
would be mediated by the subjective winning chances that the better attributes to 
their preferred team. But the mechanism approach is also suited to mapping the 
ideas of unobserved heterogeneity and reverse causality: With respect to unob-
served heterogeneity, let Op refer to an unobserved component of the opportu-
nity structure (O) (e.g., changes in shadow prices) which is prior (subscript p) to 
both individuals’ desires Di, beliefs Bi, and their corresponding action Ai. Let us 
further assume that Op brings about Di, Bi, and Ai. In that case, we would not call 
desires Di a social mechanism with causal force (Figure 1, Panel B). Similarly, let 
us assume that Bp refers to an (even observable) prior instance of belief Bi which 
brings about desires Di. In this case of reverse causality and in contrast to the 
general idea of wishful thinking (cf. panel A), Di would rather be a mechanism 
(or statistically: mediator) of Bp effects on Ai (Figure 1, Panel C).2

Statistical Approaches to Mediation Analysis

Simple mediation
A seminal definition of mediation analysis was formulated by Baron and Kenny 
(Baron & Kenny, 1986, p. 1177; also see Figure 2): 

1 For the DBO scheme linking individuals’ desires and beliefs to situational opportuni-
ties see Hedström (2005).

2 There exist of course other forms of heterogeneity that might complicate the identifica-
tion of mediation effects. Below, I will only briefly touch upon these issues as they 
surpass what will be covered in the simulation analyses presented below, but I will 
advise directions for future research in the conclusion section.
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Figure 1  A social mechanism approach to mediation, unobserved heterogeneity and reverse causality. 

 

1 For the DBO scheme linking individuals’ desires and beliefs to situational opportunities see Hedström (2005). 
2 There exist of  course other forms of  heterogeneity that might complicate the identification of  mediation effects. Below, I 
will only briefly touch upon these issues as they surpass what will be covered in the simulation analyses presented in section 
3, but I will advise directions for future research in the conclusion section. 

Figure 1 A social mechanism approach to mediation, unobserved heterogeneity 
and reverse causality.
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“A variable functions as a mediator when it meets the following conditions: 
(a) variations in levels of the independent variable significantly account for 
variations in the presumed mediator (i.e., Path a), (b) variations in the media-
tor significantly account for variations in the dependent variable (i.e., Path 
b), and (c) when Paths a and b are controlled, a previously significant rela-
tion between the independent and dependent variables is no longer significant, 
with the strongest demonstration of mediation occurring when Path c is zero.”

It is further common to distinguish between a direct, an indirect, and the total 
effect of a predictor (or treatment) variable on its outcome. In Figure 2, the direct 
effect is given by path c, the indirect effect is the product of paths a and b, and 
the total effect is the sum of both the direct and the indirect effect, i.e. c + a*b 
(Hayes, Preacher, & Myers, 2011, p. 438).

Consequently, a rigorous application of the simple mediation model in 
regression analysis would first estimate the effect of an independent variable X 
on the potential mediator variable M to ensure that Baron and Kenny’s (1986) 
condition a) is met:

 

𝑀𝑀��� �  𝛽𝛽�� �  𝛽𝛽�𝑋𝑋� � �����. (1) 

 

 (1)

In a second step, the dependent variable of interest Y is predicted by X (2), and in 
a third step, by both X and M (3) to explore whether the effect of X on Y persists 
once (2) is controlled for M. In practice, both (2) and (3) will often add a vector 
of covariates C to ensure that neither the relation of X nor the one of M to Y is 
spurious:

 

𝑌𝑌� �  𝛽𝛽�� �  𝛽𝛽�𝑋𝑋� � 𝛽𝛽�𝐶𝐶� � �����, (2) 

𝑌𝑌� �  𝛽𝛽�� �  𝛽𝛽�𝑋𝑋� � 𝛽𝛽�𝐶𝐶� � 𝛽𝛽�𝑀𝑀� � �����. (3) 

 

 (2)

 

𝑌𝑌� �  𝛽𝛽�� �  𝛽𝛽�𝑋𝑋� � 𝛽𝛽�𝐶𝐶� � �����, (2) 

𝑌𝑌� �  𝛽𝛽�� �  𝛽𝛽�𝑋𝑋� � 𝛽𝛽�𝐶𝐶� � 𝛽𝛽�𝑀𝑀� � �����. (3) 

 

 (3)

Both unobserved heterogeneity and reverse causality can be addressed in the 
simple mediation model once we assume to have panel data at our disposal. In 
that case, unobserved heterogeneity can be addressed using (person-level) fixed 

 

Figure 2 A simple mediation model. 
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effects (FEs) which ‘de-mean’ both X and Y to remove any variation between 
individuals which is constant over time (e.g., gender, migration background, or 
the fixed part of personality differences).3 Adding subscript t to refer to observa-
tion time, equation (3) amounts toamounts to 

𝑌𝑌���� � 𝑌𝑌�� �  𝛽𝛽�� �  𝛽𝛽������� � ��� � �  𝛽𝛽������� � �̅�� �  𝛽𝛽��𝑀𝑀���� �  𝑀𝑀��� 
���� � ��� � �  𝜖𝜖����� � 𝜖𝜖�̅���. (4) 

 

 (4)

Since αi is time-constant by definition, it is identical to its person-specific mean. 
Consequently, (, (𝛼𝛼� � 𝛼𝛼��  F1)  ) amounts to zero, and unobserved heterogeneity is wiped 
out after demeaning. 

FE regressions build on the assumption of strict exogeneity, meaning that 
current values of ϵYi(t) should not depend on past, present and future values of 
Xit (Brüderl & Ludwig, 2015). This assumption is violated in the case of reverse 
causality, i.e., when Yi(t) affects Xi(t+1) (Leszczensky & Wolbring, 2019). As a con-
sequence, estimates of (4) will be biased if reverse causality is present. To address 
this issue, researchers often apply ‘lags’ to X or M, i.e., they use observations one 
or even more waves prior to the one in which Y is observed. In accordance to the 
idea of a causal order in terms of changes in X affecting changes in Y via changes 
in M, one approach could be to predict Yit via Xi(t-2) and Mi(t-1), i.e., applying the 
first lag to the mediator of interest, and the second lag to the main predictor at 
hand: hand:  

𝑌𝑌���� � 𝑌𝑌�� � ��� � ���������� � ��� � � �������� � ���� � ���������� � ���� 
������� � �����������. 

(5) 

 

 (5)

However, it has been shown both analytically and based on simulations that lags 
of either variable do not circumvent biased estimates and statistical inference in 
the case of reverse causality (Reed, 2015). A more generalized approach that also 
relies on lagged variables, but tries to resolve identification issues of previous 
approaches, is the Generalized Method of Moments (GMM), a particular ver-
sion of which is known as the Arellano-Bond (AB) estimator (Arellano & Bond, 

3 There are several methods to address the problem of unobserved heterogeneity in panel 
data: first-differences, where each current value of a variable is subtracted by the one 
of the previous wave, person dummies, which include dummy variables for all n-1 in-
dividuals in the sample, and demeaning, where each value of a variable is subtracted 
by its unit-specific mean over time. The latter approach is explained more extensively 
below and is also the one that will be used in the simulation study to follow.
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1991). In its most simplistic form, the AB approach starts from the following 
model:4

 

𝑌𝑌���� � ��𝑌𝑌������ � ��𝑋𝑋���� � �� � �����. (6) 

 

 (6)

As a first step, first-differences for all terms in (6) are computed to get rid of time-
constant unobserved heterogeneity αi: 

 

𝛥𝛥𝛥𝛥���� � ��𝛥𝛥𝛥𝛥������ � ��𝛥𝛥𝛥𝛥���� � 𝛥𝛥�����. (7) 

 

 (7)

As a second step, Yi(t-2) is used as an instrument for ∆Yi(t-1). In practice, and as 
recommended by the authors, additional higher-order lags of Y (∆Yi(t-3), ∆Yi(t-4), 
…) are often used to instrument ∆Yi(t-1) (Arellano & Bond, 1991). Alternatively, 
or in addition, ∆Yi(t-1) may be instrumented by second, third, or even higher-order 
differences of Y (∆Yi(t-2), ∆Yi(t-3), …). By this design, it is possible to separate 
strictly exogenous from sequentially exogenous or predetermined variables from 
one another. Consequently, “AB-type panel estimators thus weaken the exogene-
ity assumption for a subset of regressors, thereby providing consistent estimates 
even if reverse causality is present” (Leszczensky & Wolbring, 2019, p. 9).

Yet, despite this pleasant statistical property, real-world applications of the 
AB estimator are not without pitfalls: As Allison et al. (2017) outline, while the 
AB-estimator provides consistent estimators, “there is evidence that the estima-
tors are not fully efficient, have considerable small-sample bias, and often per-
form poorly when the autoregressive parameter (the effect of a variable on itself 
at a later point in time) is near 1.0” (p. 1f.). In my discussion of the FE-CLPM, 
I will come back to how these drawbacks may be circumvented by a maximum-
likelihood approach.

Causal mediation analysis
Imai, Keele, et al. (2011) advance the idea of mediation analysis as a method-
ological approximation to causal mechanisms within the potential outcomes (PO) 
framework (Rubin, 1986). In contrast to previous common practice when social 
scientists tended to interpret each estimate of multivariate analysis as causal, the 
PO approach focuses on the causal identification of solely one effect, called treat-
ment T, on the outcome of interest, Y. Although the question of how a particular 
individual i in the treatment group would have behaved had they not received 
the treatment cannot be answered empirically, it can be approximated by com-
paring outcome Y of the treatment group (Yi  T⃒=1) with the non-treatment group  
(Yi   T⃒=0):

4 As a distinct AB-type equation for the mediator is not shown, subscript Y is omitted for 
now.
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𝑇𝑇� ≡ 𝑌𝑌��1� � 𝑌𝑌��0�. (8) 

 

 (8)

The next step is to introduce the mediator variable into the PO main equation. For 
dichotomous mediators, outcome Y in the treatment group under the condition of 
M=1 (Yi  ⃒T=1, M=1) is compared to Y in the non-treatment group under the condi-
tion of M=0 (Yi   T⃒=0, M=0): 

 

𝑇𝑇� ≡ 𝑌𝑌��1,𝑀𝑀��1�� � 𝑌𝑌���,𝑀𝑀��0��. (9) 

 

 (9)

Having defined mediation in the PO framework, it is possible to define the indi-
rect or causal mediation effect

 

𝛿𝛿��𝑡𝑡�  ≡ 𝑌𝑌��𝑡𝑡,𝑀𝑀��1�� � 𝑌𝑌��𝑡𝑡,𝑀𝑀��0��. (10), 

 

 (10)

which refers to paths a) and b) in Figure 2, as well as the direct/residual effect
 

𝜁𝜁��𝑡𝑡� ≡ 𝑌𝑌��1,𝑀𝑀��𝑡𝑡�� � 𝑌𝑌��0,𝑀𝑀��𝑡𝑡�� (11) 

 

 (11)

which amounts to path c) in Figure 2 .
Another important assumption for causal mediation in the potential out-

comes framework is the one of sequential ignorability (SIA), which can be 
decomposed into ignorability of treatment assignment (ITA) given X,

 

�𝑌𝑌��𝑡𝑡�,𝑚𝑚�,𝑀𝑀��𝑡𝑡�� ⊥ 𝑇𝑇� ∨ 𝑋𝑋� � �, (12) 

 

 (12)

and ignorability of mediator status (IMS) given T + X:
 

𝑌𝑌��𝑇𝑇,𝑚𝑚� ⊥ 𝑀𝑀��𝑡𝑡� ∨ 𝑇𝑇� � 𝑡𝑡,𝑋𝑋� � �. (13) 

 

 (13)

Concretely, ITA given X in (12) means that having controlled for a vector of 
covariates (which is here denoted X), it should be random whether a particular 
individual i belongs to the treatment or to the control group. Furthermore, IMS 
given T and X in (13) means once I know whether individual i belongs to the 
treatment or to the control group and I have controlled for my set of covariates 
X, there should (by assumption) be no other systematic variation in the mediator 
variable.

How are unobserved heterogeneity and reverse causality addressed in the 
causal mediation model? Regarding unobserved heterogeneity, the SIA is crucial: 
If the set of covariates C is exhaustive and both treatment and mediator status are 
independent of unmeasured confounders, unobserved heterogeneity is no issue 
by definition. For particular scenarios in which the causal effect of T on Y is 
passed on across a second, unobserved mediator N that either runs parallel to 
the observed mediator M or is endogenous to the latter (Figure 3, Panel A; taken 
by Imai, Keele, et al., 2011, p. 786), the SIA is violated but can yet be addressed 
via sensitivity analyses in which the correlation between the residual terms of 



15 Becker: Many Roads to Mediation

both the mediator and the outcome equation is examined (Imai, Keele, & Tin-
gley, 2010; Imai, Keele, & Yamamoto, 2010). For that purpose, it is useful to 
specify mediation in the linear structural equation framework again (Imai, Keele, 
& Yamamoto, 2010, p. 57; Imai, Keele, et al., 2011, p. 774): In our notation (cf. 
equations (1) and (2)), the correlation of interest is defined as ρ = corr(ϵY(i), ϵM(i)). 
The magnitude of ρ can be used to measure to what extent the SIA is violated: 
in the case of no violation, ρ should amount to zero; the more severely the model 
deviates from this ideal state, the larger ρ. The key element of the sensitivity anal-
ysis is now to approximate the unobserved mediator by a random variable whose 
correlations with T, M and Y are varied over the course of the estimation process. 
As an alternative measure of potential bias due to an unobserved mediator, rela-
tive changes in R² can be used. In contrast, the case of M being endogenous to 
an unobserved mediator N constitutes a severe threat to the SIA and cannot be 
addressed by sensitivity analyses (Figure 3, Panel B).

Concerning reverse causality between T, M and Y, the causal mediation 
proponents simply state that “[l]ongitudinal data with covariates (realized and 
measured before treatment assignment) and treatment assignment (realized and 
measured before outcomes) eliminates the possibility of reverse causality and 
thus provides a clear way to adhere to this prescription of design followed by 
analysis” (Imai, Jo, & Stuart, 2011, p. 868). Since it is well known, however, 
that a discrete longitudinal measurement of relevant indicators (i.e., in terms of 
annual panel waves) is no insurance against unobserved forms of reverse causal-
ity (Leszczensky & Wolbring, 2019), it remains an open question as to how the 
causal mediation approach can handle this challenge. I will address this issue in 
my simulation analysis section.5

5 Lutz, Sordillo, Hokanson, Chen Wu, and Lange (2020) provide a first insight into how 
sensitively the causal mediation approach reacts to reverse causality. However, they do 
not consider the case in which both unobserved heterogeneity and reverse causality is 
present simultaneously. 

 
Figure 3 Methodological challenges of the causal mediation model. Summary 

of Imai, Keele, et al. (2011, 786f.)
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SEM approach to mediation
The SEM approach to mediation advances the simple mediation model both 
structurally and in terms of measurement: First, as longitudinal data is structur-
ally arranged in ‘wide’ format, more complex mediational structures (e.g., two 
mediators at once) can be easily implemented. Second, the SEM approach holds 
a more elaborate perspective on the measurement component of the constructs 
at hand, which amounts to the option of using latent variable models for both 
predictor variable(s), mediator(s), outcome(s), and covariates. As for the ease of 
comparison between mediation approaches I will refrain from using latent vari-
able models in the simulation models; the formal details to follow will focus on 
observed variable models which are just a special case of latent variable models.

For a conventional “x ‘causes’ y” model without any mediator, the structural 
part is defined as in conventional OLS regression analysis (cf. Bollen, 1989, 41ff.):

 

, (14) 

 

 (14)

where Y denotes the dependent variable, X the independent variable with regres-
sion weight γ1 on Y, and ζ1 the error, residual or disturbance term.

As before, a mediator variable M can be introduced by setting it exogenous 
to Y and endogenous to X: 

, (15) 

 

 (15)
. (16) 

As usual, 

 (16)

As usual, the indirect effect for observed variable models is defined as the differ-
ence between the total effect and the direct effects. For latent variable models, the 
decomposition of direct, indirect and total effects is more complex (see Bollen, 
1989, 376ff.). Luckily, modern statistical software which is capable of estimat-
ing SEMs – such as Stata, R (with lavaan in particular) or Mplus – provides 
handsome sub-routines to decompose total, direct and indirect effects in both 
observed and latent variable models (see, e.g., Mehmetoglu, 2018; Muthén, 2017; 
Rosseel, 2012).

While the added value of mediation of observed variables within the SEM 
approach may not be evident at first sight, its advantage becomes more obvious 
when it comes to addressing the challenge of reverse causality in panel data. 
There is a long tradition within the SEM approach to do so by means of cross-
lagged panel models (CLPMs; also see Finkel, 1995). Taking advantage of the 
wide data structure underlying the SEM approach, in case of a predictor X and 
an outcome Y measured at times t1 and t2, a cross-lagged panel model applies the 
following steps:
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𝑋𝑋� � 𝛽𝛽�𝑋𝑋� �  𝛽𝛽�𝑌𝑌� � ��, (17) 

 

 (17)
𝑌𝑌� � 𝛽𝛽�𝑌𝑌� �  𝛽𝛽�𝑋𝑋� � ��. (18) 

That  

 (18)

That is, Y2 is regressed on both X1 and Y1, while at the same time, X2 is regressed 
on both X1 and Y1. Apart from simply controlling for potential reverse causality 
effects, one appeal of the CLPM is that reciprocal effects which are often assumed 
by theory can be directly estimated (Selig & Little, 2012, p. 268). A crucial objec-
tion that has been raised against the CLPM is that it may lead to biased results 
in case of unobserved stable individual-level characteristics (Hamaker, Kuiper, 
& Grasman, 2015). There have already been several approaches to incorporate 
the FE estimator into the SEM framework both with and without a cross-lagged 
structure (Allison, 2009; Curran & Bollen, 2001). A more recent approach to 
Fixed-Effects Cross-Lagged Panel Models (FE-CLPMs) by Allison et al. (2017) 
draws on previous work of Moral-Benito (2013) who has outlined a maximum-
likelihood-based estimation method that circumvents several computational 
drawbacks of GMM estimators in general and of the AB method in particular. 
The contribution of Allison et al. (2017) is to integrate Moral-Benito’s (2013) 
approach into the general SEM framework, as a consequence of which it can be 
estimated using conventional SEM software subroutines. 

The FE-CLPM is defined as follows:
 

𝑌𝑌���� � 𝜇𝜇��� � 𝛽𝛽�𝑋𝑋������ � 𝛽𝛽�𝑌𝑌������ � 𝛿𝛿�𝑊𝑊���� � 𝛾𝛾�𝑍𝑍� �  𝛼𝛼� � 𝜖𝜖����, (19) 

 

 (19)
𝑋𝑋���� � 𝜏𝜏��� � 𝛽𝛽�𝑋𝑋������ � 𝛽𝛽�𝑌𝑌������ � 𝛿𝛿�𝑊𝑊���� � 𝛾𝛾�𝑍𝑍� �  𝜂𝜂� � 𝜈𝜈����. (20) 

where  

 (20)

where in (19) μt describes the intercept of Y that varies across time t, β1 and β2 are 
scalar coefficients assessing how Y is predicted by former values of both X and Y, 
δ1 and γ1 are row vectors of coefficients for both time-variant controls variables 
W and time-constant control variables Z, α1 refers to the joint effects of time-
constant unsobservables (assuming them to exert constant effects on Yi(t), and ϵi(t) 
is a random error term.

Accordingly, in (20), τ(t) describes the intercept of X that varies across time 
t, β3 and β4 are scalar coefficients assessing how X is predicted by former values 
of both X and Y, δ2 and γ2 are row vectors of coefficients for both time-variant 
controls variables W and time-constant control variables Z, η1 refers to the joint 
effects of time-constant unsobservables (assuming them to exert constant effects 
on Xi(t)), and νi(t) is a random error term.

The most notable difference compared to the ‘traditional’ CLPM presented 
in (17)-(18) is the inclusion of terms α1 and η1 to address time-constant unob-
served effects on Yi(t) and Xi(t), respectively. In econometric approaches, α1 and 
η1 are often assumed to be “fixed”, i.e., exert the same effect for each individual, 
whereas in other social science disciplines, this assumption might be relaxed 
(e.g., Hamaker et al., 2015).
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To recall, a combination of fixed effects and lagged outcome variables will 
lead to biased estimates of the β coefficients. Within the AB approach, this has 
been addressed by, first, removing fixed effects by computing first differences for 
X and Y, and then, second, instrumenting these differences by lagged difference 
scores (cf. eq. (7)), which are finally, third, estimated by GMM. It is well-known, 
however, that GMM approaches are particularly sensitive to the number of lags 
and corresponding instruments (Leszczensky &  Wolbring, 2019; Roodman, 
2009). In contrast, the ML approach to reverse causality produces estimators that 
are asymptotically equivalent to GMM, but have more preferable finite sample 
properties in case of weak and/or numerous instruments (Moral-Benito, 2013). 

In what follows, Allison et al. (2017) argue that the ML approach to the 
cross-lagged model with fixed effects is a special case of the general SEM frame-
work outlined in (12) which is illustrated in Figure 4  Leaving aside both W and 
Z variables and focusing on the case of manifest X and Y the latter of which is 
measured on four occasions, it is evident that while Yt is predicted by Yt-1, this 
is not the case for instances of X which are simply allowed to correlate with one 
another. In addition, each Yt is predicted by Xt-1 as well as α1, which is the FE 
estimate intended to address time-constant unobserved heterogeneity. Coefficient 
α1, in turn, correlates with all instances of X (but is not allowed to correlate with 

 
Figure 4 The FE-CLPM. Source: Allison et al. (2017, 6).
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any time-invariant observable Z if the latter is present in the model).6 Finally, 
and of crucial importance, x3 is allowed to correlate with ϵ2, the error term of Y2. 
According to Allison et al. (2017, 6), it is this correlation that makes X predeter-
mined (by Y). In other words, this correlation is the crucial leverage to account 
for reverse causality between X and Y.

Observed heterogeneity and interim conclusion

Apart from the challenges of reverse causality and unobserved heterogeneity, the 
statistical approaches just discussed can also address several issues of observed 
heterogeneity. There are different terms by which this kind of heterogeneity is 
referred to, the most prominent of which are interaction effects, moderator effects, 
multiplicative effects, and treatment effect heterogeneity (Baron & Kenny, 1986; 
Brambor, Clark, & Golder, 2006; Xie, Brand, & Jann, 2012). As a common 
denominator, a predictor (or treatment) variable is multiplied (i.e., “interacted”), 
with an observed variable Z. In our case, we can generally distinguish three pos-
sible interaction terms: i) between the main predictor (or treatment) variable (usu-
ally denoted X or T) and another moderating variable Z; ii) between the mediator 
M and Z, and between X (or T) and M. It can be formally outlined that the above 
approaches are generally capable to address either form of observed heterogene-
ity (available upon request). In contrast, and as outlined above, they differ in their 
capacity to address unobserved heterogeneity and reverse causality. The essence 
of this methodological comparison is tabulated in Table 1.

6 As a consequence of this identificatory step, it is advised to exclude all time-constant 
variables from the estimation model (Allison et al. 2017: 6).
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Table 1 Comparison of different statistical approaches to mediation analysis in 
their capacity to address several methodological challenges

Observed  
heterogeneity

Unobserved  
heterogeneity

Reverse causality

OLS Can incorporate interac-
tions of type XZ, MZ, and 
XM

Not in baseline model, 
but can be advanced to 
FE estimator by manual 
demeaning

May incorporate lags of 
X and Y, but results will 
be biased

FE Can incorporate interac-
tions of type XZ, MZ, and 
XM

Rules out time-constant 
unobserved heterogene-
ity by demeaning all 
variables

May incorporate lags of 
X and Y, but results will 
be biased

AB/GMM Can incorporate interac-
tions of type XZ, MZ, and 
XM

See FE First-differences for X 
and Y instrumented by 
higher-order lags

CM Can incorporate interac-
tions of type XZ and XM 
(unclear if MZ identified)

See OLS. Yet, empirical 
performance of manual 
approach untested hith-
erto.

May incorporate lags of 
X and Y, but empirical 
performance of this ap-
proach untested hitherto.

SEM Can incorporate interac-
tions of type XZ, MZ, and 
XM

Not in baseline model Addressed by cross-
lagged panel-model

FE-CLPM Can incorporate interac-
tions of type XZ, MZ, and 
XM

Introduces variables 
α and η to capture 
unobserved heterogeneity 
effects on X and Y, 
respectively

See SEM

Simulation Analysis
The Present Study

Previous simulation studies have revealed that both OLS and FE analysis are 
biased when both unobserved heterogeneity and reverse causality are present 
(Leszczensky &  Wolbring, 2019). Other research based on simulation analysis 
suggests that GMM strategies such as the AB estimator can run into problems, for 
instance, when the number of waves is small and lags are long (Newey & Wind-
meijer, 2009; Windmeijer, 2005). Further simulation studies suggest that the FE-
CLPM can keep up with the GMM approach in the presence of both unobserved 
heterogeneity and reverse causality (Allison et al., 2017; Moral-Benito, Allison, 
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& Williams, 2019; also see Leszczensky &  Wolbring, 2019). Yet, two gaps in 
research can be identified which the present contribution aims to address.

First, it has not yet been explored if these results generalize to the inclusion 
of a mediator variable which, in an ideal-world data-generating process (DGP), 
will be preceded by the main predictor but succeeded by the outcome (see below). 
Second, it has not been tested how the gold standard in mediation analysis, the 
causal mediation model in the potential-outcomes framework, performs if the 
challenges of unobserved heterogeneity and reverse causality are addressed by 
“on-board resources” in terms of demeaning and lagging all relevant variables.

Consequently, I will now present a simulation analysis to evaluate which of 
the statistical approaches to mediation analysis identifies the parameter values of 
predictor X, a mediator M, and their corresponding lags – which have been speci-
fied in the DGP prior to the simulation analysis – with minimal bias.

Parameters and scenarios of the simulation model

My simulation analysis builds on the one by Leszczensky and Wolbring (2019) 
but advances it by including an additional variable M which shall mediate the 
effect of X on Y in the simulated data set. I first generated data with intercorrela-
tions of ρ{X,M,Y} = .5 and standard normally distributed independent error terms 
at t0, respectively. This data was expanded to waves 1-5 in a second step by the 
following data-generating process (DGP): 

𝑌𝑌�� � 𝛽𝛽�𝑌𝑌���� �  𝛽𝛽�𝑋𝑋���� � 𝛽𝛽�𝑀𝑀���� �  𝛽𝛽�𝑍𝑍� � 𝜖𝜖��  with  𝜖𝜖�� � ��0; 1�,  
𝑋𝑋�� � 𝛽𝛽�𝑌𝑌���� � 𝛽𝛽�𝑍𝑍� � 𝜇𝜇�� with 𝜇𝜇�� � ��0; 1�, 
𝑀𝑀�� � 𝛽𝛽� 𝑌𝑌���� �  𝛽𝛽�𝑋𝑋���� �  𝛽𝛽�𝑍𝑍� �  𝜈𝜈�� with  𝜈𝜈�� � ��0; 1�. 

Above Above, β1 refers to the extent of autocorrelation for outcome Y. As the variation 
of β1 had no substantial impact on the simulation results by Leszczensky and 
Wolbring (2019), I set the parameter to be constant (β1 = .5). Most important, Yit 
is modeled as an outcome of both Xit-2 (with effect β2) and Mt-1 (with effect β3). 
That is, in accordance to the idea of a social mechanism which is by definition 
situated between a cause and its outcome, the DGP understands the mediation 
model as the statistical pendent of a mechanism-based explanation. Consequently, 
the consecutive order of X, M and Y is of vital importance here. While Leszczen-
sky and Wolbring (2019) switch between contemporaneous and lagged effects of 
X on Y, my model is more simplistic in assuming constant effects of Xit-2 on Y(t).

In addition, Z denotes an unmeasured, time-constant normally-distributed 
variable that addresses the challenge of unobserved heterogeneity. Z is associ-
ated with Y, X, and M by parameters β4, β6 and β9, respectively. To simplify the 
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simulation model, these were set to 0.5 (unobserved heterogeneity moderately 
present), respectively. For all possible combinations of parameters (which are 
summarized in Table 2), 500 datasets with 500 observations each were generated. 

Models

To compare point estimates and corresponding confidence intervals of the afore-
mentioned mediation approaches, for either of them, the same set of sub-models 
will be estimated. Concretely, for both 1) FE regressions, 2) the GMM approach, 
3) the causal mediation (CM) approach, and 4) the FE-CLPM, the following sce-
narios will be compared (see Table 3): Scenario A) employs a simultaneous anal-
ysis of Y predicted by the variables at the same point in time. Scenario B) takes 
the first lag of all variables to predict later instances of Y. Scenario C) follows the 
idea of a consecutive order between X, M, and Y (which is inspired by the ratio-
nale of mechanism-based explanations) by modeling Y by the second lag of X and 
the first lag of M. Finally, scenario D) amends scenario C) by adding the first lag 
of Y to account for potential reverse causality between X and Y.

Moreover, for each scenario, the following two submodels are estimated: 
Submodel i) predicts Y only by X (or its first or second lag) or, as in scenario D), 
the first lag of Y, and submodel ii) adds the mediator variable M (or its first lag).

Table 2 Parameter values of the simulation analysis

Parameter Concept Values

β1 Autocorrelation of Y 0.5

β2 Effect of Xt-2 on Yt 0, 0.5

β3 Effect of Mt-1 on Yt 0, 0.5

β8 Effect of Xt-1 on Mt 0, 0.5

β4 / β6 / β9 Unobserved heterogeneity on Y, X, M, respectively 0.5

β5 / β7 Reverse causality on X and M, respectively 0.5
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Table 3 Scenarios for the simulation study

Scenario Submodel i) Submodel ii)

A) Simultaneous scenario (no lags) Yt = Xt Yt = Xt + Mt

B) Lagged scenario Yt = Xt-1 Yt = Xt-1 + Mt-1

C) Consecutive scenario Yt = Xt-2 Yt = Xt-2 + Mt-1

D) Consecutive scenario + L1(Y) Yt = Yt-1 + Xt-2 Yt = Yt-1 + Xt-2 + Mt-1

Results

Tables 4-6 show the results of the simulation study. Table 4 lists the predicted β 
coefficients and their corresponding standard errors for both OLS and FE analy-
ses of the simulated data. Between columns, it is differentiated between the four 
data simulation scenarios (see Table 3). Between rows, the values for the regres-
sion parameters are varied (see Table 2), and it is differentiated between two sub-
models one of which predicts Y only by X, and the other one by both X and M. 
If the predicted β coefficients of X and/or M are subject to a bias of  ε⃒β  ⃒ > 0.1, 
the background color of the corresponding table cell is highlighted in different 
shades of green for upward bias, and in different shades of red for downward 
bias (see the explanatory notes below Tables 4-6). In addition, Figures A1-A6 in 
Appendix A show coefficient plots of all parameter estimates and corresponding 
confidence intervals. These plots may provide visual aid to answer the question 
of if the statistical approaches applied to the simulation models correctly identify 
mediation effects which may or may not have been set in the underlying DGP.

For the OLS approach, when all β coefficients have been set to zero, the 
predicted effects of X and M on Y are overestimated given they have been set 
to be absent in the DGP (see left panel of Table 4). The upward bias within this 
particular setting is largest in the lagged scenario, and smallest in the consecu-
tive scenario controlled for the first lag of Y. Once β2 and/or β3 are set to .5, this 
pattern persists for most of the predicted effects of X, and their bias is generally 
larger as long as the analyses have not controlled for M. If they do, the OLS 
approach incorrectly identifies mediation effects of M although β8 is still set to 
zero (see Appendix A, Figure A1a). Furthermore, if β8 is set to .5, the amount of 
mediation predicted by the OLS approach is way too high particularly in case of 
β3 =.5 (Appendix A, Figure A1b). The general upward bias of the OLS approach 
is most pronounced if both β2 and β3 are set to .5. In contrast, when both β2 and 
β8 are set to .5, predicted effects of X may be slightly downwardly biased in the 
contemporary and lagged scenarios given they have not been controlled for M.
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In contrast to the OLS approach, the estimates of the FE approach (see 
right panel of Table 4) tend to be downwardly biased (though its bias is generally 
smaller compared to OLS). While some of the estimates are significantly nega-
tive although the respective β coefficients have been set to zero, several predicted 
values of both β2 and β3 get remarkably close to the generated ones in the con-
secutive scenario (C) without modeling an effect of L.Y (which had been set in 
the DGP, though) in particular. Moreover, on the one hand, the FE approach does 
not stand at risk to erroneously predict a mediation effect that has not been intro-
duced in the DGP (Appendix A, Figure A2a). On the other hand, however, once a 
mediation effect is considered in the DGP, it is correctly identified by scenario C) 
only (Appendix A, Figure A2b).

The average bias of the GMM approach is even smaller compared to the 
FE approach (see left panel of Table 5). Note that the contemporary scenario (A) 
of the GMM approach is a replication of the corresponding OLS approach mod-
eled as a special case of GMM – which is why the respective point estimates are 
almost identical to the contemporary scenario from the OLS approach (left panel 
in Table 4); with smaller standard errors, though. While there is some amount 
of downward bias in the effect of X in the lagged scenario (B), the consecutive 
scenario (C) in particular performs very well to detect the coefficients modeled in 
the DGP (although their corresponding confidence intervals still overlap in case 
of β2 = β3 = β8 = .5; see Appendix A, Figure 3b). Interestingly, the consecutive 
scenario which controls for the lag of Y (D) is also slightly biased downwardly 
once β3 has been set to .5. 

The FE-CLPM approach (right panel of Table 5) yields results that are, on 
average, similarly accurate as the ones produced by the GMM approach – but 
with a few differences that deserve to be carved out: First, while most parameter 
estimates from the contemporary scenario (A) of the GMM approach (which is 
equivalent to the one by the OLS approach) are upwardly biased, most param-
eter estimates from the contemporary scenario of the FE-CLPM approach are 
downwardly biased. Second, the downward bias in the lagged scenario (B) of the 
FE-CLPM approach is comparable to the one of the GMM approach. Third, in 
the consecutive scenarios (C) and (D), the FE-CLMPs correctly identify both the 
effects of X and M on Y as well as the mediation effects once they have been mod-
eled in the DGP (also see Appendix A, Figure A4). Fourth, as an advantage to the 
GMM approach, the predicted coefficients from the FE-CLMP approach are less 
sensitive towards the specification of the first lag of Y in the estimation process.

In the CM models without fixed effects (left panel of Table 6), the parameter 
estimates can be biased in both directions: On the one hand, in case of β2 = β3 = 
β5 = 0, significant positive effects are predicted for all parameters (including the 
ACME) although they have been absent in the DGP. On the other hand, in case 
of β2 =.5 and β8 =.5, the direct effect of X on Y is notably underestimated within 
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all scenarios, while the effect of M is still overestimated.7 The coefficient plots of 
the CM models without fixed effects are displayed in Figure A5 of Appendix A.

Finally, in the CMFE models (right panel of Table 6), most predicted param-
eters suffer from a considerable downward bias. For instance, in case of β2 = β3 
= β8 = 0, all parameter estimates of the contemporary scenario (A) are negative. 
While the other scenarios correctly identify the above effects to be absent, for 
other values of β2, β3 and β8, they likewise fail to identify effects that should be 
present according to the DGP (i.e., the corresponding coefficients are not signifi-
cant). This bias of the CMFE approach is most pronounced in case of β2 = β3 = 
8 = .5. The coefficient plots of the CMFE models are displayed in Figure A6 of 
Appendix A. A concise summary and corresponding interpretation of all findings 
will be given in the conclusion section.

Conclusion
The aim of this paper was to provide both a theoretical foundation and an empiri-
cal examination of different statistical approaches to mediation analysis. Regard-
ing theory, a brief sketch of the fundamentals of mechanism-based explanations 
set the argument of adhering to a consecutive order of predictor, mediator and 
outcome in mediation analysis. Having summarized the statistical fundamentals 
of different approaches to mediation analysis, I provided a simulation analysis of 
the data-generating process (DGP) which could be actively manipulated to exam-
ine differences in relative performance under different scenarios: A) all-simulta-
neous, B) first lag of all coefficients; C) consecutive order; D) consecutive order 
plus first lag of Y as a predictor. Each scenario was analyzed by the following 
methods: OLS regressions, fixed effects (FE) regressions, generalized method of 
moments (GMM) regressions, causal mediation analysis without (CM) and with 
fixed effects (CMFE), and fixed-effects cross-lagged panel models (FE-CLPMs). 

The results of the simulation study suggest that the estimates of the OLS 
approach are generally upwardly biased, the ones of the FE and CMFE regres-
sions are by trend downwardly biased, and the ones of the CM models (without 
FEs) can be biased in both directions. In contrast, the coefficients and confidence 
intervals estimated by both GMM regressions and FE-CLPMs are most accurate, 
in particular if the structure of lags in the empirical models met the consecutive 
order which had been set up in the underlying DGP. Most interestingly, while 
the GMM approach tended to be sensitive against whether or not the first lag of 
Y (L.Y) was modeled as an additional predictor (the autocorrelation of Y was set 

7 For ease of interpretation, recall that the total effect of X on Y (TEXY) is computed as 
follows: TEXY = β2 + (β3 · β8). 
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to .5 in all models), the FE-CLPMs appeared to be insensitive in this respect. 
As a first practical implication, FE-CLPMs could be more applicable in cases of 
mediation analysis where the researcher is not sure whether or not L.Y should be 
included as a predictor. A second practical implication is that even GMM regres-
sions and FE-CLPMs can only detect the true parameter values when the order 
of the DGP is met. Consequently, it is of utmost importance that researchers most 
carefully translate their theoretical assumptions into an empirical model with the 
appropriate causal order: if a researcher is theoretically convinced that the causal 
order of the hypothesized effect is X(t-2) → M(t-1) → Yt, then naïvely predicting Yt 
by Xt and Mt or even by X(t-1) and M(t-1) in any applied data might yield biased 
results irrespective of the statistical method used.

Concerning directions for future research, one direct advancement would be 
to shed more light on how different values for the autocorrelation of Y affect the 
extent to which the results of the GMM approach depend on the inclusion of L.Y 
as an additional predictor of Y. A second, more challenging direction could be to 
consider more complex data structures (such as time nested in individuals nested 
in additional contexts) or modeling purposes (such as moderated mediation). As 
a third, related, direction, future simulation studies could manipulate different 
forms of observed heterogeneity (between X and Z, M and Z, and/or X and M) to 
explore the performance of each approach to mediation under different scenarios 
of moderation.

All in all, analyzing various DGP scenarios by different statistical approaches 
to mediation analysis will yield important implications for applied research-
ers who aim to translate particular mechanism-based explanations in statistical 
mediation models.
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