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Introduction 

 
A collection of empirical and theoretical studies have been conducted to model the effect of 
environmental impacts on land prices using the hedonic method. Some of these studies show 
that land prices are influenced by the infrastructure and socio-economic features (Barreca et al. 
2018), by the geographic and geometric accessibility (Morales et al. 2019), and by structure 
and accessibility variables (Chica-Olmo et al. 2019). These studies have examined the spatial 
effect on urban land prices from the influence of externalities. However, this research has not 
shown how important the geographical distance is as a spatial influence in modeling urban land 
prices. 
 
In the analysis of urban land prices, they can be considered as variables that have a spatial 
dependence. Spatial dependence is a form of assessing the correlation of a variable connected 
with the spatial location. This means that the ability of spatial dependence is a measure that 
states the relationship between the variations in land price properties and the spatial proximity 
or the geographic distance can be expressed by the continuous function of numerical 
differences in property compared to the distance. Thus, one can see that the closer the two 
locations are, more differences will be in the weak property (or the greater the similarity). This 
function also allows dependence on land prices where distance plays an important role in the 
concept of geographic distance and distance decay functions. This concept can be identified 
using a variogram or correlogram in calculating the spatial dependence. It should be noted the 
use of the words spatial dependence and spatial autocorrelation – both are closely related, as a 
spatial autocorrelation is a common form of spatial dependence. In its development, spatial 
dependence has its definition of distance (Legendre and Legendre 2012). 
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Abstract: The spatial autocorrelation measurement of land prices uses a covariance 
function to describe the spatial dependence and it can be identified as a geographic 
distance on the correlogram. The geographic distance of spatial dependence can state that 
land prices are interdependent to each other and scattered in the research area. Therefore, 
the purpose of this research is to define the geographic distance of spatial dependence on 
land prices using a nonparametric correlogram. A nonparametric approach to covariance 
functions using the composition of Bessel and Gaussian-type functions are adopted 
because they correspond to the positive definite characteristics. The cubic spline 
interpolation is used to refine the curve fitting, while the intersection between the 
nonparametric correlogram value C(h) against the horizontal axis is determined using the 
Jenkins Traub algorithm. The results showed that the nonparametric correlogram identified 
a geographic distance of land prices smaller than the correlogram used so far. A small 
distance means that the land price in a location is greatly affected by the neighbors 
compared to a larger distance. 

 
Key Words: geographical distance, land prices, nonparametric correlogram, spatial  
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Some research on land prices with regards to geographic distance has been observed by 
Chica-Olmo et al. (2019) using the variogram, Morales et al. (2019) with the multivariate 
regression, Barreca et al. (2018) using the spatial autocorrelation, while Crosby et al. (2018) 
performs the variogram fitting on land prices, and Shaker (2018) shows that Conditional 
Autoregressive (CAR) residuals were assessed by Moran’s I spatial correlogram, etc. The 
basic problem of this research of the spatial dependence is how to clearly and analytically 
determine the spatial dependence at a certain distance. Usually, the concept of this problem 
can be described through a correlogram that uses the covariance function. Correlogram as a 
plot of covariance function that changes with the distance against locations is very important to 
describe the spatial dependency. 
 
Before a statistician performs spatial the predictions, traditionally under stationary principles, 
two main things must be considered to estimate the correlation (Gorsich and Genton 2000). 
First, it is the estimation of correlation values at a certain lag or distance based on the 
stochastic process. If the process is isotropic, the correlogram is only a function of distance, so 
it can be estimated using several estimators (Cressie 2015). Second, the correlogram values 
are estimated and fitted using parametric models. This can be carried out because the 
estimated point does not guarantee the definite positive nature of the correlogram or the 
continuous nature of the correlogram is unknown. The disadvantage of this method is that 
researchers must choose their preferred model and determine their respective parameters 
(Genton and Gorsich 2002). 
 
For fundamental reasons like this, a nonparametric estimator for a correlogram is very 
important so the selection of parametric models is no longer needed. In development, several 
studies have been carried out that attempt to eliminate the selection of models and parameters 
on the correlogram. Such as the nonparametric curve fitting by Shapiro and Botha (1991), 
based on the spectral representation of isotropic or definite positive functions by Yaglom 
(1957). However, Hall et al. (1994) criticize the approach taken by Spahiro and Botha because 
it turns out that the definite positive estimator only applies discretely and not continuously, so 
they propose their estimators through the kernel method approach. The realization of the kernel 
method approach is made clear by Bjørnstad and Falck (2001) by proposing the use of a 
nonparametric kernel estimator where the asymptotic kernel function is the B-Spline cubic, 
which is called a correlogram spline. One important thing to remember is that not all functions 
can be used as candidate covariance functions because they must fulfill the positive properties 
of semidefinite. The nonparametric method here is based on the isotropic spectral 
representation of the positive definite function properties derived by Yaglom (1957), based on 
Bochner’s theorem.  
 
The use of the correlogram itself has been applied to various fields, such as the detection of: 
TB case notification rates (CNR) in Bangladesh (Rood et al. 2019); neighborhood and spillover 
effects on rice farmers (Villanueva et al. 2017); landscape in Moldova (Shaker 2018); copper 
mining area (Nguyen et al. 2016); land prices (Jiao and Liu 2012); genetics (Diniz-Filho et al. 
2009); semiconductors (Jeong et al. 2008) and ecology (Bjørnstad and Falck 2001). In the 
research on land prices, Jiao and Liu (2012) used an index on the spatial correlogram (Moran 
Index and Geary’s Index) derived from monoton variance plots. However, the use of Moran 
Index as a correlogram function has the disadvantage of not having definite positive 
characteristics. Though not all data has a variance plot that is monotonous but non-
monotonous, where the plot of variance decreases to a minimum then rises, or vice versa. But 
unfortunately, for non-monotonous cases, the availability of literature and research on the 
spatial dependence analysis, more specifically to the value of using a correlogram, is still 
difficult to find. The covariance function to describe the case of the non-monotone hole effect is 
found in several previous studies, for example Ye et al. (2015) and Weku et al. (2019) which 
use the Bessel and Gaussian-type functions, and Yang and Shao (2018), using Bessel and 
Gaussian functions. Although the correlogram is fundamentally not the main key in the concept 
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of spatial statistics, it is also useful in conducting exploration and as a descriptive tool. For this 
reason, the correlogram can help the variogram to provide richer information. 
 
Therefore, in this study, in order to improve the ability of previous correlograms, it is proposed 
to use the non-parametric covariance function with the general class. The nonparametric 
covariance function also applies to variogram classes for all dimensions and it is a definite 
positive. Since the form used is nonparametric, we refer to this modification as a correlogram 
nonparametric. To test the effectiveness of the nonparametric correlogram, it is applied to the 
land price data in the city of Manado. This is intended to determine the geographical distance 
from the spatial dependence of land prices from the locations that are mutually influential and 
have similarities. 
 

Literature review 
 
The spatial correlogram is very good for checking patterns of spatial autocorrelation in data or 
residual models. It also shows how the correlation of spatial observations when the lag 
increases. Based on the direction, the spatial correlogram is divided in two. First, non 
directional spatial autocorrelation, such as the traditional spatial correlates using the 
autocorrelation index (Moran I or Geary c) will be plotted against the distance or the Spline 
Correlogram with non-parametric covariance functions with distances plotted kernels have also 
been introduced by Bjørnstad and Falck in 2001. Second, the directional spatial autocorrelation 
such as windrose correlogram. This procedure calculates directional correlation using a method 
introduced by Oden and Sokal (1986). In the traditional spatial correlogram, the pairs of points 
are inserted into separate classes/bin based on the distance between the points, while the 
correlational windrose, class/bin is based on distance and direction. For example, a point pair 
that is 50 km away with an angle of 60° between them will be placed in a separate bin from a 
point pair that is 50 km away at an angle of 20°. However, windrose correlograms require large 
samples rather than nondirectional correlograms. To handle small-sized samples, a bearing 
correlogram is introduced using a bearing procedure that is combined with a windrose 
correlogram (Rosenberg 2000).  

Correlogram Estimation 
 
Spatial data is data obtained from the measurement results of a location. Spatial data comes 
from different spatial locations that indicate dependencies between the measurement values 
and the location of lands. Expressed that {Z(s): s∈D} is a spatial process for D of a particular 

nature and D⊂R2, Euclidean space of the two dimensions and s is the position of the location 
(Cressie 2015). 
 
The classic estimator for variogram proposed by Matheron in 1962 used the moment method 
as follows (Weller and Hoeting 2015, Luo et al. 2018): 

Like the variogram, the covariogram can also be estimated using (Bjornstad and Falck 2001): 
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       (1) 

where  and  limited number of elements from .  

                   (2) 

where  is the average sample of land prices from observation. Equation (2) . 



 

 
 

 

is more often used because it guarantees positive definite form estimates on  
 

Nonparametric Covariance Function 
 
The property of the definite positive function is (Zastavnyi and Porcu 2017): 

  

         (3) 
 

for all , h and n, then C(h) is a covariance function. 
 
One of the main keys in nonparametric modeling for a correlogram is the theorem given by 
Bochner. He provides an approach through spectral representation for any positive definite 
function. Bochner’s theorem states that a function can be used as a covariance function if it 
conforms with the positive definite properties and can be solved in a fourier transformation from 
F(w) as a positive measure unbounded to finite, written as follows (Yao 1999, Weller and 
Hoeting 2015): 
 

         (4) 
 

where h represents the distance. 
 
It is assumed that the correlogram is isotropic, meaning that it depends only on the distance 
and not on the direction of the vector lag h. Nonparametric estimations of isotropic 
correlograms use the series given by Yaglom (1957) as a representation of Bochner’s theorem, 
as follows: 
 

         (5) 

where  is a positive coefficient, scalar  reppresents the nodes and  is the basis for 

the function on  expressed as (Golinskii et al. 2018): 
 

       (6) 

 is gamma function dan  is first kind of Bessel function with v orde.  
 

If  isotropic, then Bochner's theorem can be written as follows (Gorsich and Genton 
2000):  
 

         (7) 
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Here  is a limited-not increase function and . When d = 1, 

then , when d = 2, then ; when d = 3 then , 

when d → ∞, then  (Gorsich and Genton 2000, Ploner and Dutter 2000).  
 
The periodicity function has a weak hole effect structure when d increases and becomes a 
Gaussian function when d → ∞. 

For two dimensional random field (d = 2), when  which is the first form Bessel function 

with order υ and , then the idea becomes . Therefore 

 which can be expressed as: 

                       (8) 
 
where b is number of sign. 
 

Methodology 
 

Proposed Model: Nonparametric Correlogram 
 

To identify the geographical distance of urban land prices, we develop a nonparametric model 
of covariance functions in place as a correlogram. This Correlogram works based on equation 
(8) which uses the Bessel function to fit the covariogram. Because of the properties of the 

linear combination , which   and 

.  
 
Our multiplication correlogram model can be written as: 
 

           (9) 
 
Note, that the nonparametric correlogram depends on the bin size. The more bin is chosen, the 
more smooth the curves will be, but this will cause the pair to decrease in some places 
(keeping in mind that there is a limit of at least 30 sample pairs for each bin). It is important to 
choose the bin carefully. 
 

Research Area 
  
This research was carried out in the city of Manado which is the capital of the province of North 
Sulawesi (Fig. 1). Geographically, Manado is located on the Manado Bay and it is surrounded 
by a mountainous terrain. The population in 2017, based on BPS data, is of 430 133 
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inhabitants. The large population in the city of Manado caused a high population density. With 
an area of 157.26 km2, the population density reaches 2736 people/km2. The city of Manado is 
located at the edge of the northern peninsula of the island of Sulawesi, at a geographical 
position of 124°40′ - 124°50′ East and 1°30′ - 1°40′ North. 

 
Data preparation 

 
In this study, we use processed data obtained from the BP2RB (Regional Tax and Retribution 
Management Agency) of Manado which is listed in the Source of Taxpayers’ Association 
according to the book category of Manado municipality for 2018. In this, processed data with 
attributes consisted of: taxpayers interests, the object tax number, the taxpayer’s address, the 
object of land and building tax, each of which is divided into the object area, object class and 
NJOP (Nilai Jual Objek Pajak – Tax Object Selling Value), as well as the property tax 
provisions. 
 
There are 150 spatial locations that were selected to be used in this research (Fig. 2). The 
locations of land prices to be observed are considered as dependent variables. The legend on 
the map illustrates the land price in rupiahs, where the red color indicates the high land price 
(30000-3500000), while the bright color states that the land price is low (0-500000). High land 
prices are near shopping and service areas, while low land prices are on the outskirts of 
Manado. 
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Fig. 1 – Localization of Manado City, North Sulawesi Province, Indonesia 



 

 
 

 

Results 
 

The first step is to estimate the covariogram. Based on equation (2), a calculation is made to 
estimate the covariogram, where the results are as shown in Table 1 and Fig. (3a). It appears 
that the estimation curve oscillates around C(h) = 0, it decreases to local minima at C(h) = - 
0.1043 and it rises again pass through C(h) = 0 while it reaches the local maxima at C(h) = 
0.1146. In Table 1, it is stated that the first distances located at the interval [1577.7304, 
2022.0978] have a strong correlation. This value of C(h) was carried out through the principle 
of curve fitting using the nonparametric covariance functions. 
 
The second step is fitting the covariance value C(h) with the correlogram. There are two 
correlograms that are often used so far – the spatial correlogram and the correlogram spline 
(Fig 3b, 3c). The spline correlogram with non-parametric covariance functions using kernel was 
plotted against the distance, while the traditional spatial correlogram using autocorrelation 
indices (Moran I or Geary c) has also been plotted against the distance. Both of them shows 
that the land price correlation decreases when the lag increases and it has intercepts at a 
certain distance when the correlation is 0. Note that both the monoton spline and the spatial 
correlogram cannot fit the estimation curve given by equation (2) to the maximum distance of 
(9174.1743 m) at class 21. These correlograms may identify only one intercept of C(h) = 0, 
even though after a distance of 4000 meters, the correlogram should fluctuate over C(h) = 0. 
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Fig. 2 – Administrative map of Manado city and the 150 observation points 
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Table 1 
Classes, data pairs, distances and covariance values based on equation (2) 

Bin 
Classes np dist C(h) 

  
Class np Dist C(h) 

1 383 274.9404 0.0877   12 466 5168.0557 -0.1043 
2 676 678.4604 0.1455   13 442 5621.5478 -0.1559 

3 768 1119.8843 0.0459   14 352 6061.8550 -0.0129 

4 799 1577.7304 0.0576   15 198 6505.1697 -0.0681 

5 822 2022.0978 -0.0001   16 179 6977.5815 0.1146 
6 817 2477.9712 0.0676   17 139 7391.2285 0.0089 
7 951 2919.6496 -0.0741   18 137 7891.1404 0.0408 
8 915 3363.5502 -0.1420   19 141 8326.1946 0.0170 
9 702 3821.0236 -0.0367   20 135 8772.5338 0.2610 

10 637 4263.9529 0.0358   21 66 9174.1743 -0.0599 
11 566 4729.4027 -0.2497       

a                                                                              b 

c 

Fig. 3 – (a) The covariogram estimation for 

land prices using equation (2) in ;  

plot on the relationship between the 

spatial correlation to distance for land 

price data  

(using the R software-gstat package) with (b) 
Spline Correlogram; and (c) Spatial 

Correlogram 



 

 
 

 

Then we applied the nonparametric correlogram model to overcome the periodicity problem on 
the covariogram. This model is a combination of multiplication of Bessel and Gaussian-type 
functions as stated in equation (8). The use of spline cubic interpolation to approach the results 
of the combination approach looks much better than the use of smoothing curves using 
LOWESS on spatial correlograms and spline correlograms with cubic B-spline as asymptotic 
kernel functions. By taking p=1, 2, ... , 5, in equation (2), the results of estimation and curve 
fitting is shown as in Table 2 and Fig. 4 with a periodicity which passes C(h) = 0.  
 
According to the calculations made with the R program, the intersection between the 
correlogram curve with the horizontal axis occurs at h = 2433.812 (correlogram spline) and h = 
2265.832 (spatial correlogram). This means that the correlation at the distances will be very 
strong, while when the distance is increasing, then the correlation of the location of land prices 
will be weaken. Where the locations are close to each other in the range of the distance, this 
will give a strong influence on the land prices. 

The availability of function C(h) and data pairs (distance, correlation) make it easy to determine 
the intersection. There are 3 points intercept at h when C(h) = 0 which divides the distance into 
3 parts. Intersections can occur together with the changes in the value of spatial autocorrelation 
from positive to negative and from negative to positive. The nonparametric Correlogram shows 
the existence of three distance clusters that affect the high and low prices of land. The first 
cluster shows a strong distance correlation, while the second cluster and the third cluster show 
a less strong correlation because the lag distance increases.  
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                       a                                                b                                                 c                                       

d                                                              e                                                                              

Fig. 4 – Nonparametric Correlogram with different bases to plot the correlation  
of land prices against the geographic distance 



 

 
 

 

The geographical distance can be determined by observing the fluctuations that occur around 
the zero horizontal axis. For p=1, the geographic distance is between class 5 and class 6 at 
interval [2022.0978, 2477.9712], and after that the autocorrelation is negative until the classes 
13 and 14 at interval [5621.5478, 6061.8550], then there is a rise with positive autocorrelation 
until classes 20 and 21 at interval [8772.5338, 9174.1743]. For p = 2,3,4,5, it gives slightly 
different results. In particular, the last fluctuation occurred between classes 19 and 20 at 
interval [8326.1946, 8772.5338].  
 

Optimal Geographic Distance 
 

The measurement of geographical distance is considered important because it always appears 
in the urban analysis and population geography. Our next concern is how to determine the 
optimal geographical distance which is located at each interval previously mentioned. The 
geographical distance can be calculated using the nonparametric correlogram as the smallest 
correlation value for h, such that C(h) = 0. In general, there are two patterns of autocorrelation 
that are formed, such as the positive and negative autocorrelation. If the land price has 
similarities with its neighbors, then there will be a positive autocorrelation, and vice-versa for a 
negative autocorrelation. 
 
The optimal geographic distance measurement is calculated from the correlogram C(h) as the 
smallest value for h such that C(h) = 0. The determination of this distance can be established 
when the correlogram curve passes through the abscissa for ordinate correlation at 0. For 
example, when p = 1, the geographical distance is between 2000 and 3000, and after that 
distance of the autocorrelation is negative and then it fluctuates around the zero line. The 
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Table 2  
Correlogram values for each model of 21 bin classes 

Bin Classes 
Lag distance 

(m) 
p=1 p=2 p=3 p=4 p=5 

1 274.9404 0.8975 1.3218 1.5144 1.5978 1.6317 

2 678.4604 0.7147 0.9565 1.0017 0.9892 0.9716 
3 1119.8843 0.4994 0.5382 0.4787 0.4489 0.4485 
4 1577.7304 0.2895 0.2028 0.1603 0.1752 0.1836 
5 2022.0978 0.1204 0.0174 0.0351 0.0471 0.0393 
6 2477.9712 -0.0060 -0.0553 -0.0232 -0.0356 -0.0334 
7 2919.6496 -0.0811 -0.0678 -0.0662 -0.0699 -0.0670 
8 3363.5502 -0.1146 -0.0690 -0.0890 -0.0800 -0.0841 
9 3821.0236 -0.1150 -0.0768 -0.0857 -0.0861 -0.0841 

10 4263.9529 -0.0940 -0.0842 -0.0746 -0.0805 -0.0797 
11 4729.4027 -0.0609 -0.0772 -0.0676 -0.0652 -0.0673 
12 5168.0557 -0.0285 -0.0515 -0.0541 -0.0508 -0.0493 
13 5621.5478 -0.0003 -0.0135 -0.0213 -0.0238 -0.0239 
14 6061.8550 0.0187 0.0203 0.0188 0.0173 0.0163 
15 6505.1697 0.0286 0.0396 0.0444 0.0465 0.0475 
16 6977.5815 0.0302 0.0406 0.0434 0.0436 0.0433 
17 7391.2285 0.0260 0.0299 0.0280 0.0263 0.0259 
18 7891.1404 0.0172 0.0132 0.0103 0.0108 0.0114 
19 8326.1946 0.0086 0.0022 0.0026 0.0036 0.0032 
20 8772.5338 0.0007 -0.0034 -0.0012 -0.0018 -0.0018 
21 9174.1743 -0.0045 -0.0048 -0.0039 -0.0046 -0.0042 



 

 
 

 

fluctuation of the curve around the zero axis (C(h) = 0) can be considered as a nonlinear 
equation, so that we can determine the h from the equation. The Jenkins-Traub algorithm can 
be used to solve nonlinear equations in order to obtain the h or the optimal geographical 
distance. 
 
The geographic distance plot shows that the low-pass component of the land price is the most 
important thing to analyze. The geographic distance in the first cluster shows that there is a 
positive autocorrelation until it reaches the upper bound and it forms the periodicity (Table 3). 
For example, for base p=1, it has 3 clusters of geographic distance, where the first cluster 
(0<h<2451.376) and the third (5626.905<h<8820.882) are positive autocorrelations, while the 
second cluster (2451.376<h<5626.905) is a negative autocorrelation. The first geographical 
distance cluster shows that there is a strong correlation between the locations at a distance of 
2451.376 to land prices, then the correlation of locations to land prices will decrease slowly 
after that geographical distance. An interesting finding is that the geographical distance will 
approach the correlogram spline for p = 1, while p = 3 causes the geographical distance to 
approach the spatial correlogram. 

The important thing about the nonparametric correlogram is the determination of the 
autocorrelation value as a geographical distance. When the geographical distance decreases, 
this means that there is a close autocorrelation between the locations that have similarities. 
Another consequence is that there will be a certain distance that does not have a significant 
correlation between the locations of observations separated by that distance. A further 
application to analyze land prices, this autocorrelation value is useful for determining the 
geographic radius of land prices that are close together or, in other words, the maximum 
distance where the spatial interaction of land prices is still significantly influential. 
 

Spatial Dependency with Geographic Distance Clustering 
 

The next step is to visualize the geographic distance cluster based on p. The geographic 
distance is important in looking at the effect of distance in the spatial dependency so that land 
prices are interrelated. The distance with a positive spatial autocorrelation is a different form of 
geographic distance with a negative spatial autocorrelation and it will form individual clusters 
(Fig. 5). The first distance cluster (colored in red) is represented by a geographic distance and 
a positive spatial autocorrelation; it has several points of location for the value of isolated land 
that does not have a spatial influence. This first distance cluster is the optimal cluster because 
it is close to the origin. This states that the location of land prices at a distance of 0 meters to 
2451,376 meters has a high land price that is affected by the adjacent locations with a high 
land price. The second distance cluster (blue) is represented by a distance and negative 
spatial autocorrelation, located at a distance of 2451,479 meters to 5627,115 meters. This 
cluster indicates that high land price are influenced by the low land price, and vice-versa. And 
the third distance cluster (green), with radius and positive spatial autocorrelation, is located at 
a distance of 5626,905 meters up to 8820,882 meters. This cluster indicates that high land 
prices are influenced by the high land price, and vice-versa. This third distance cluster is not 
optimal because it is far from the origin point compared to the first distance cluster. 
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Table 3 
Radius estimation (meters) with nonparametric, spline and spatial correlogram 

 Nonparametric Correlogram 
Spline Spatial 

Cluster base1 base2 base3 base4 base5 

1 2451.376 2091.351 2269.686 2251.173 2221.306 2433.812 2265.832 

2 5626.905 5782.948 5850.338 5880.357 5892.046 

3 8820.882 8455.558 8601.896 8608.763 8578.312 



 

 
 

 

The last stage is how to determine the optimal geographical distance. In this section we use the 
Moran Index which can determine the level of strength for the spatial autocorrelation. The size 
of the distance will be calculated by the Moran Index in exploring the size of the correlation 
object observation. In other words, this index will measure how the land price object in one 
location is similar to the other around it (Table 4). 
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c                                                                                   d                                                                                                                                                          

      a                                                                                   b                                                                                                                                                            

e                                                                               

Fig. 5 – Distance clusters of mutually influential observation locations 



 

 
 

 

For a larger base (p       5), it is known that the distance is getting smaller but not so with 
Moran’s I. From all bases, we can see that the largest distance is 2451.3760 meter at base p = 
1, while the smallest distance is 2091.3510 at base p = 2. Furthermore, by considering the 
largest Moran Index value (0.2267), the distance = 2091.3510 meters is chosen with the base 
model p = 2 to illustrate the correlation between the pairs of spatial observations when the lag 
increases. This means that the distance = 2091.3510 meters states that there is a strong 
correlation between the location of the land price of the adjacent land compared to the other 
geographic distances. 
 

Discussion 
 
As we already know in the analysis of spatial dependence, the price of the land of a location is 
influenced by the price of the surrounding neighbors. The core of this research is to find out 
how far the geographical distance in Manado, so that all areas within the geographical 
distance, will have a strong influence on each other in determining the land prices. 
 
In the results that have been done using a nonparametric correlogram, the optimal 
geographical distance is 2091.3510 meters. This means that each location of land within this 
geographical distance has a strong influence or correlation to one another. On the other hand, 
each location outside the geographical distance has a less powerful influence in determining 
land prices. 
 
In the discussion of this study, the relationship between the geographical distance and land 
prices is analyzed. The main findings of this relationship can be explained as follows: 
 

1. Accessibility (distance from the economic center), meaning that the easier access 
to the economic center to be reached, the more valuable the land will be. For 
example, the city of Manado has the highest land price in the city center or what is 
known as the city’s business district. This is due to the closeness between the 
community and economic activities and the workplace. The factors that influence 
land price movements are the most important in making various models of land 
prices. 

 
2. Infrastructure/facilities, here means that the price of land is influenced by the 

availability and closest distance to the facility, for example offices, education, 
health facilities, traditional or modern markets. Proximity to this facility will save 
time in accessing the location of the facility, resulting in an increase in the price of 
land in locations close to the infrastructure. 

 
3. A property that is in a geographical area with high infrastructure facilities or high 

economic activity will increase land prices. For example, the distance to 
transportation facilities and the existence of a highway will increase the efficiency 
of community work, and it will reduce the level of congestion. 

 
These findings have many implications for the urban society. In the Central Business District, it 
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Table 4 
Moran I and linear gradient forming the Moran scatter plot  

Basis p=1 p=2 p=3 p=4 p=5 

Distance 2451.3760 2091.3510 2269.6860 2251.1730 2221.3060 
Moran I 0.1853 0.2267 0.1939 0.1952 0.2075 
Gradien 0.0721 0.0524 0.0656 0.0650 0.0566 



 

 
 

 

is seen that high land prices (red colors) dominate in the region because the centers of 
economic activity, services, shopping, health, etc. are indeed centralized in the area. While low 
land prices (bright colors) are on the edge of the city of Manado. Therefore, for people who 
have high income levels, it is not a problem to choose to live in that geographical distance. 
Conversely, people who have a low income will choose to stay on the edge of the city of 
Manado that exceeds the geographical distances due to low land prices. For people who have 
activities close to the city center, for example the government employees, the service providers, 
or the infrastructure (offices, schools, modern and traditional markets, health centers), they will 
choose to stay within the geographical distance. So it is not surprising, if the land price in the 
downtown of Manado is so high and mutually influential among its neighbors.  
 
People who have high income levels or have jobs that are close to the Central Business District 
can buy land to work or live in the areas marked in red (within geographical distances that have 
strong correlations). Meanwhile, those with a low economic capacity can live in areas far from 
the CBD or on the edge of the city of Manado, which are marked by green areas.  
 
Because the outermost area of the city is a location with low land prices, so the region is still 
less populated, this could be due to the lack of infrastructure. Therefore, it can be a concern for 
the city government to equalize the infrastructure development so that land prices are evenly 
distributed throughout the city of Manado. For the development of the city in the future, it is 
strongly recommended to carry out development in the suburbs. Because land is still widely 
available at relatively lower prices compared to land prices close to the city center. 
 

Conclusions 
 
In this study, Bessel and exponential covariance functions have been used which play a very 
important role in estimating the correlogram in a nonparametric manner. The form of 
multiplication and additive composition applied has met the requirements of positive definite 
functions in the spectral representation. The form of periodicity (oscillation) can be well fulfilled 
by the composition of covarince functions. With this nonparametric correlogram model, a 
researcher has the advantage of not having to choose the model first. The nonparametric 
correlogram curve fitting using the spline cubic interpolation produces a smooth curve so it can 
fit the results of the covariogram method of the moment, things that cannot be done by spatial 
correlograms or correlogram splines. The larger the bin size, the more curved the resultant as 
the smaller bin size. The geographical distance occurs when C(h) = 0 is determined by using 
the Jenkins Traub algorithm.  
 
In applying for a land prices dataset, the nonparametric correlogram provides the optimal 
geographical distance for land prices given when the covariance value is zero. The oscillating 
covariance with a distance interval can be considered as a cluster form. The formed cluster 
illustrates the important relationship between the geographical distances with a positive spatial 
autocorrelation and a negative spatial autocorrelation. The Moran index can be used to 
determine the strength of the land price autocorrelation that occurs at a distance = 2091.3510 
meters with a composition model of Bessel base p = 2 and a Gaussian-type function. At this 
optimal distance, it can be said that two locations in Manado with identical attributes will have 
similar prices if they are adjacent to each other rather than if they are far apart (larger than 
2091.3510 m). The location of land which is within the geographical distance has a dependency 
or correlation to each other in order to determine and change land prices. The use of spatial 
dependence with geographical networks can represent a basis for determining land prices in 
the future. 
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