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Abstract
Joint models for longitudinal and time-to-event data simultaneously model longitudinal and time-to-event information to
avoid bias by combining usually a linear mixed model with a proportional hazards model. This model class has seen many
developments in recent years, yet jointmodels including a spatial predictor are still rare and the traditional proportional hazards
formulation of the time-to-event part of the model is accompanied by computational challenges. We propose a joint model
with a piecewise exponential formulation of the hazard using the counting process representation of a hazard and structured
additive predictors able to estimate (non-)linear, spatial and random effects. Its capabilities are assessed in a simulation study
comparing our approach to an established one and highlighted by an example on physical functioning after cardiovascular
events from theGermanAgeing Survey. The Structured PiecewiseAdditive JointModel yielded good estimation performance,
also and especially in spatial effects, while being double as fast as the chosen benchmark approach and performing stable in
an imbalanced data setting with few events.

Keywords Bayesian statistics · Joint models · Piecewise additive mixed models · Piecewise exponential

1 Introduction

Biometrical studies often capture time-to-event and longitu-
dinal data on the same topic simultaneously. And often these
observation are endogenous in the sense that the longitudinal
observations inform on the event and the event on the lon-
gitudinal information, which is ceased to be recorded with
the occurrence of an event. Frequently used examples are the
count of CD4 lymphocytes in HIV-positive patients and their
time till onset of AIDS (Faucett and Thomas 1996; Rizopou-
los 2011; Wulfsohn and Tsiatis 1997) or the level of serum
bilirubin and other liver biomarkers in primary biliary cirrho-
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sis patients and time to death (Crowther et al. 2013; Hickey
et al. 2018). Other examples include PSA cancer marker and
progression to recurrence of prostate cancer (Jacqmin-Gadda
et al. 2010), autoantibody titers in children preceding the
onset of Type 1 diabetes (Köhler et al. 2017) or physical func-
tioning after a cardiovascular event and death (Rappl et al.
2022). Separate analysis of these longitudinal and time-to-
event outcomes leads to biased estimates and to avoid this
both should be modelled jointly. These joint models consist
of two submodels: A longitudinal submodel and a survival
submodel with both being linked through a subject specific
predictor and an association parameter. This predictor may
include a set of covariates relevant for both outcomes and
becomes subject specific via random effects.

While Wulfsohn and Tsiatis (1997) and Henderson et al.
(2000) proposed to maximize the likelihood of a joint
model via an Expectation-Maximization (EM) algorithm,
Faucett and Thomas (1996) used a Bayesian Gibbs-sampling
approach. In recent years advances have been made into sta-
tistical boosting (Griesbach et al. 2021; Waldmann et al.
2017). Software is available for all three estimation approaches
across various statistical computation platforms, of which
especially R hosts a number of well-established packages
such as JM (Rizopoulos 2010), JMbayes (Rizopoulos
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2016), joineRML (Hickey et al. 2018) and bamlss
(Umlauf et al. 2021). Comparisons of selections of avail-
able software can be found in Yuen and Mackinnon (2016)
and Rappl et al. (2022).

Traditionally the longitudinal submodel of a joint model
is a linear mixed model (LMM) and the time-to-event sub-
model is a proportional hazards (PH) model, though other
variants are possible. Depending on the scaling of the longi-
tudinal outcome a generalized linear mixed model (GLMM)
(Faucett et al. 1998; Rizopoulos et al. 2008; Viviani et al.
2014) or quantile regression model (Huang and Chen 2016;
Zhang et al. 2019) might be better suited. An alternative
to the PH models in the time-to-event submodel are accel-
erated failure time models (Huang and Chen 2016; Tseng
et al. 2005) and in certain data situations competing risks
models are best suited (Andrinopoulou et al. 2014; Blanche
et al. 2015; Huang et al. 2011). Also models with multivari-
ate longitudinal outcomes are in use (Lin et al. 2002; Mauff
et al. 2020;Rizopoulos andGhosh 2011) as are location-scale
models (Barrett et al. 2019). Köhler et al. (2018) expanded
joint models to structured additive joint models with pos-
sibly smooth random effects and established non-linear
association structures (2018) both via a Bayesian flexible
tensor-product approach using Newton-Raphson procedures
and derivative-based Metropolis-Hastings sampling. A good
historic overview on joint models can be found in Tsiatis and
Davidian (2004), while Alsefri et al. (2020) give a concise
summary of recent developments in Bayesian joint models
in particular.

From a perspective of longitudinal modelling joint mod-
els are known as shared parameter models and are used to
account for "missing not at random" (MNAR) dropout. The
idea was first presented by Wu and Carroll (1988) and Wu
andBailey (1988) with later expansions by Follmann andWu
(1995) and Hogan and Laird (1997). Roy (2003) proposes
the use of latent classes, i.e. discrete random effects, while
Tsonaka et al. (2009) leave the random effects unspecified
altogether. More recent research on modelling longitudinal
data including their dropout investigates the usage of hidden
Markovmodels replacing the random effects (Bartolucci and
Farcomeni 2015, 2019). Still jointmodelswith a spatial com-
ponent are rare. Martins et al. (2016, 2017) have described
estimation of a Bayesian joint model with a spatial effect and
a Weibull baseline hazard using OpenBUGS and WinBUGS
respectively. The above mentioned Bayesian tensor-product
approach by Köhler et al. (2017) implemented in the R pack-
age bamlss also has the capability of estimating spatial
joint models. In terms of model formulation both methods
have in common that they use a PH model for the survival
submodel. However, assuming a parametric baseline hazard
such as a Weibull hazard can be restrictive and derivative-
based Metropolis-Hastings algorithms are computationally

expensive as well as may prove sensitive towards data with
few events.

Therefore, in this paperwepropose aBayesian jointmodel
with a structured additiveLMMfor the longitudinal outcome,
but exchange the time-to-event submodel for a piecewise
additive mixed model (PAMM). The latter has been sug-
gested by Bender et al. (2018) for modelling survival times
based on the proportionality of a time-to-event process with
a Poisson-distributed count process (Friedman 1982) thus
expanding the available options for time-to-event models
(e.g. accelerated failure times, competing risk). This formu-
lation allows for estimation of the baseline hazard without
any assumptions about its distributional form and is similarly
flexible to the Köhler et al. (2018) model with respect to the
inclusion of (non-)linear, spatial and random effects. At the
same time, it reduces runtimes by about 50% (compared to
an established method) and has proven stable in imbalanced
data settings with few events.

The rest of the paper is structured as follows: In the next
section, the methodology of piecewise additive joint models
is described in more detail and our extension of the concept
is explained. In section three the results of a simulation study
comparing our approach to an established one to proof the
feasibility of the model formulation, its ability to estimate
spatial effects and its runtime performance. We then apply
this method to an example of physical functioning from the
German Aging Survey. Section five concludes with some
final remarks and further technical details can be found in
the Appendix.

2 Methods

2.1 Theoretical background

A joint model is applied for data collecting both longitudinal
and time-to-event outcomes on the same topic, which inform
each other in terms of drop-out. The model itself links a
submodel for the longitudinal information to a submodel to
the time-to-event information via an association factor and a
subject specific predictor, which contains random effects to
represent the subject specific variability and may contain a
set of further explanatory covariates. Those covariates - and
other covariates in the submodels - may follow (non-)linear,
spatial or interaction effects.

In its original form the joint model assumes a linear mixed
model (LMM) for the longitudinal outcome and a propor-
tional hazards model (PH) for the time-to-event outcome
(Faucett and Thomas 1996; Henderson et al. 2000;Wulfsohn
and Tsiatis 1997).

Let y denote the vector of longitudinal outcomes across
all individuals i = {1, . . . , n} and observations at time points
t . Further, let λ(t) be the vector of individual specific risks
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to experience an event at time t proportional to the baseline
hazard λ0(t) and based on the observed event or censoring
times T and event indicator δ. Then in itsmost generic variant
the original joint model takes the form

y(t) = ηl(t) + ηls(t) + ε, ε ∼ N(0, σ 2 I) (1)

λ(t) = λ0(t) exp{ηs + αηls(t)}, (2)

where ηs and ηl(t) are survival and longitudinal submodel
specific predictors respectively and ηls(t) is the shared pre-
dictor, via which both model parts are connected. The
parameter α quantifies the association between the longi-
tudinal and the time-to-event outcome. Also note that, while
it is theoretically possible to estimate time-varying survival
predictors ηs(t), the time-varying covariates included in that
predictor may be prone to measurement error and it is there-
fore in most cases better to model them jointly.

The predictors η· are additive and may include (non-)
linear, spatial or random effects of potentially time-varying
covariates xk(t), i.e. η· = ∑p·

k=1 fk(xk(t)), where fk is a
function representing the respective effect and p· denotes the
predictor specific number of covariates. Restrictions apply to
random effects, which need to be part of the shared predictor
ηls(t), since it is the subject specific variability that mutually
informs both the outcomes and spatial effects, of which there
can only be one in the model for identifiability reasons.

Reformulating predictor η· in matrix notation yields

η· = Z1γ 1 + · · · + Z p·γ p· , (3)

where Zk is an effect appropriate design matrix and γ k a
vector of corresponding effect coefficients. For the Bayesian
estimation of this model the generic prior for the coefficients
γ k is proportional to a normal distribution with zero mean,
variance σ 2

γk
and penalty matrix K k

p
(
γ k | σ 2

γk

)
∝

(
σ 2

γk

)−rk(K k )

exp

{

− 1

2σ 2
γk

γ ′
kK kγ k

}

. (4)

For non-linear and spatial effects the penalty matrix K k is
rank deficient and as a result prior (4) is partially improper.

2.1.1 Linear effects

For a vector γ k = (γk1 , . . . , γkJk
)′ of Jk linear fixed effects

the penaltymatrix K k is an Jk× Jk identity matrix I Jk reduc-
ing (4) to a Jk-variate normal distribution. An alternative is to
set p(γk j | ·) ∝ const ∀ j = 1, . . . , Jk . The corresponding
design matrix Zk is a matrix of covariates of order n × Jk ,
where n denotes the number of observations.

2.1.2 Random effects

In the case of joint models random effects appear in the
shared predictor exclusively. Thus let n be the number of
individuals and ni be the number of observations per indi-
vidual i , so that the total number of observations amounts
to N = ∑n

i=1 ni . Further, let ui be a vector of observations
(or 1i for random intercepts) of length ni specific to indi-
vidual i . Then Zk is a matrix of order N × n of the form
Zk = blockdiag(u1, . . . , un) and γ k is a vector of random
effects bi of length n, γ k = (b1, . . . , bn)′. The penaltymatrix
K k then is an n × n identity matrix In .

2.1.3 Non-linear effects

Modelling non-linear effects follows the Bayesian P-spline
approach with Zk being a matrix of B-spline basis functions
evaluated at observations xi (t). Then γ k is a vector of corre-
sponding basis coefficients. The common choice of prior for
these basis coefficients is a first or second order randomwalk.
This is achieved by setting the penalty matrix K k equal to
D′D, i.e. K k = D′D, where D is a matrix of first or second
order differences.

2.1.4 Spatial effects

For spatial effects Zk is assumed to be an n × S incidence
matrix (potentially also N × S, for spatio-temporal obser-
vations) with an entry of 1 if observation i ∀ i = 1, . . . , n
originates from location s ∀ s = 1, . . . , S with S unique
locations and 0 otherwise. The corresponding coefficients
γ k follow a Markov random field (MRF) prior achieved via
the penalty matrix K k . K k is an adjacency matrix of order
S × S with entries as the number of neighbours |n(s)| only
when locations s and r are neighbours (s ∼ r ) of the form

K k[s, r ] =

⎧
⎪⎨

⎪⎩

−1 if s �= r , s ∼ r

0 if s �= r , s � r

|n(s)| if s = r .

2.1.5 Interactions

This approach also allows for various interaction terms to be
modelled. These include linear interactions x1(t) · x2(t) ·
β, varying coefficients f (x1(t))x2(t), non-linear interac-
tions f (x1(t), x2(t)) or spatio-temporal models f (s, t). The
design matrix Zk is in these cases a row tensor product (�)
of the design matrices of the involved covariates, i.e. Zk =
Z1�Z2,with dimensionn×q withq = q1q2 andq1 the num-
ber of columns in Z1 and q2 the number of columns in Z2.
The corresponding vector of coefficients is then also of length
q = q1q2, γ = (γ11, . . . , γ1,q2 , . . . , γq1,1, . . . , γq1,q2)

′. The
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Table 1 Illustration of data
augmentation used for applying
Poisson regression

Standard dataset for
proportional hazards approach

Augmented dataset for
piecewise exponential approach

i δi Ti ti xi i κj−1 κj oj δj xj

1 1 0.85 0 0.83 1 0.0 0.30 -1.20 0 0.83
1 1 0.85 0.3 -0.28 1 0.3 0.40 -2.30 0 -0.28
1 1 0.85 0.6 -0.36 1 0.4 0.60 -1.61 0 -0.28
2 0 0.58 0 0.09 → 1 0.6 0.85 -1.39 1 -0.36
2 0 0.58 0.4 2.25 2 0.0 0.30 -1.20 0 0.09

2 0.3 0.40 -2.30 0 0.09
2 0.4 0.60 -1.71 0 2.25

Data augmentation in this toy example was carried out using pammtools (Bender and Scheipl 2018)

precision from (4) 1
σ 2
k
K k then changes to 1

σ 2
1
(K 1 ⊗ Iq2) +

1
σ 2
2
(Iq1 ⊗ K 2), where ⊗ denotes the Kronecker product and

I · an identity matrix of dimension as stated in the subscript.
Formore information on interaction termsKneib et al. (2019)
give a good overview in general and Köhler et al. (2017)
specifically for joint models.

The variance parameters of the coefficient distributions
σ 2

γk
as well as the model variance σ 2

ε will a priori follow
inverse gamma distributions, in particular

σ 2
γk

∼ IG(a, b) and σ 2
ε ∼ IG(a0, b0).

2.2 The piecewise exponential representation of the
time-to-event submodel

The idea behind a PH model is that an individual’s hazard at
time t is determined by an individual specific deviation of an
underlying baseline hazard λ0(t) at time t . In mathematical
notation a generic PH model looks similar to (2) and takes
the form

λ(t) = λ0(t) exp{η(t)},

where η(t) represents an unspecified, time-varying predic-
tor. The aim of estimating such a model then is to quantify
the coefficients governing η(t) and determining λ0(t) over
time t given the times to event T and the events δ. Now
this approach can be re-written as an equivalent log-linear
Poisson-model. This is achieved by dividing the continuous
observation time t = (0, tmax ] into J intervals and count-
ing the events δ j in any given interval j . The intervals are
specified by the boundaries 0 = κ0 < · · · < κJ = tmax and
assuming constant baseline hazards λ j within each interval
the generic PH model changes to a piecewise exponential
model of the form

λ(t) = λ j exp{η j }, ∀ t ∈ (κ j−1, κ j ].

Then this formulation is proportional to a Poisson regression
of the events δ j in intervals j = 1, . . . , J with expected
value E(δ j ) in the sense that

λ(t) = λ j exp{η j } = E(δ j )

exp{o j } , where

E(δ j ) = exp{log λ j + η j + o j }

with transformed exposure times o j = (o1 j , . . . , onj )′ of
each individual i in each interval j as offsets (exp{oi j } = ti j )
(Friedman 1982). This further generalises to a piecewise
additive mixed model (PAMM), when the interval-specific
log-baseline hazard log λ j is represented as a smooth func-
tion of time f0(t j ) instead of a step-function and the predictor
η j contains (non-)linear, spatial, interaction and/or random
effects (Bender et al. 2018).

This form of estimation requires the data to be structured
differently than in the conventional way. Table 1 gives an
example of this data augmentation and more details can be
found in Bender et al. (2018).

2.3 Structured piecewise additive joint models
(SPAJM)

Transferring this counting process representation to the con-
text of joint models changes the notation thereof to

y(t) = ηl(t) + ηls(t) + ε, ε ∼ N(0, σ 2 I) (5)

λ(t) = exp
{
f0(t j ) + ηs + αηls j

}
, ∀ t ∈ (κ j−1, κ j ].

(6)

The likelihoods then follow the distributions

y | ηl(t), ηls(t) ∼ N(ηl(t) + ηls(t), σ
2
ε I) and

δ j | ηs, ηls j ∼ Poi(exp
{
f0(t j ) + o j + ηs + αηls j

}
)

∀ t ∈ (κ j−1, κ j ] for the longitudinal and the time-to-event
submodel respectively.
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2.4 Posterior estimation and implementation

Posterior estimation of this model is accomplished via a
Markov Chain Monte Carlo (MCMC) sampler, which in
short is a combination of Gibbs-sampling and a Metropolis-

Hastings (MH)-algorithm with iteratively weighted least
squares (IWLS) proposals. The steps of this sampler are
outlined in Algorithm 1 and are implemented in the current
version of the statistical software BayesX (Belitz et al. 2022).

Algorithm 1 Posterior estimation of Structured Piecewise Additive Jont Models (Part 1)

Require: θ [0] = (θ
[0]
l ; θ

[0]
ls ; θ [0]

s )′ with 
 Initiate starting values

θ
[0]
l = (γ

[0]
l,1 , . . . , γ

[0]
l,pl

, σ
2[0]
ε , σ

2[0]
γl,1 , . . . , σ

2[0]
γl,pl

)′,
θ

[0]
ls = (γ

[0]
ls,1, . . . , γ

[0]
ls,pls

, σ
2[0]
γls,1 , . . . , σ

2[0]
γls,pls

)′ and
θ [0]
s = (γ

[0]
s,1, . . . , γ

[0]
s,ps , σ

2[0]
γs,1 , . . . , σ

2[0]
γs,ps

, α[0], σ 2[0]
α , γ

[0]
t , σ

2[0]
γt )′.

for t = 1 to T do

1. Longitudinal effects 
 Gibbs-update

for k = 1 to pl do draw γ
[t]
l,k from N

(
μ∗

γ l,k
, 	∗

γ l,k

)
with

	∗
γ l,k

=
(

1

σ 2
ε

Z′
l,kZl,k + 1

σ 2
γ l,k

K l,k

)−1

and

μ∗
γ l,k

= 	∗
γ l,k

(
1

σ 2
ε

(
Z′
l,k( y − ηl, -k − ηls)

) + 1

σ 2
γ l,k

K l,k

)

.

In μγ l,k
and 	γ l,k

use σ
2[t−1]
ε , σ 2[t−1]

γl,k , η[t−1]
ls and η

[t−1]
l,−k = η

[t−1]
l − η

[t−1]
l,k .

end for

2. Survival effects 
 IWLS-MH-update
for k = 1 to ps do determine γ

[t]
s,k as follows:

Draw IWLS proposal γ ∗
s,k from q

(
γ ∗
s,k | γ

[t−1]
s,k

)
= N

(
μγ s,k

, P−1
γ s,k

)
with

Pγ s,k
= Z′

s,kW sZs,k + 1

σ 2
γ s,k

K γ s,k
and

μγ s,k
=

(
Pγ s,k

)−1
Z′
s,kW s

(
ỹs − ηs,−k

)
.

In Pγ s,k
and μγ s,k

use σ
2[t−1]
γ s,k

, η[t−1]
s,−k = η

[t−1]
s − η

[t−1]
s,k , working weights W s and working

observations ỹs. The definition of working weights and observations is given in Appendix A.2.
Accept draw γ ∗

s,k with probability

α
(
γ ∗
s,k | γ

[t]
s,k

)
= min

⎧
⎨

⎩

L
(
γ ∗
s,k

)
p

(
γ ∗
s,k

)
q

(
γ

[t]
s,k | γ ∗

s,k

)

L
(
γ

[t]
s,k

)
p

(
γ

[t]
s,k

)
q

(
γ ∗
s,k | γ

[t]
s,k

) , 1

⎫
⎬

⎭

with likelihood L(γ s,k) = p(δ | γ s,k , ·).
end for
3. Shared effects 
 IWLS-MH-update
for k = 1 to pls do determine γ

[t]
ls,k as follows:

Draw IWLS proposal γ ∗
ls,k from q

(
γ ∗
ls,k | γ

[t−1]
ls,k

)
= N

(
μγ ls,k

, P−1
γ ls,k

)
with

Pγ ls,k
= Z′

ls,kW lsZls,k + 1

σ 2
γ ls,k

K γ ls,k
and

μγ ls,k
=

(
Pγ ls,k

)−1
Z′
ls,kW ls

(
ỹls − ηls,−k

)
.

In Pγ ls,k
and μγ ls,k

use σ
2[t−1]
γ ls,k

, η[t−1]
ls,−k = η

[t−1]
ls − η

[t−1]
s,k , working weights W ls and working

observations ỹls. The definition of working weights and observations is given in Appendix A.3.
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Algorithm 1 continued Posterior estimation of Structured Piecewise Additive Jont Models (Part 2)
Accept draw γ ∗

ls,k with probability

α
(
γ ∗
ls,k | γ

[t]
ls,k

)
= min

⎧
⎨

⎩

L
(
γ ∗
ls,k

)
p

(
γ ∗
ls,k

)
q

(
γ

[t]
ls,k | γ ∗

ls,k

)

L
(
γ

[t]
ls,k

)
p

(
γ

[t]
ls,k

)
q

(
γ ∗
ls,k | γ

[t]
ls,k

) , 1

⎫
⎬

⎭

with likelihood L(γ ls,k) = p( y | γ ls,k , ·) p(δ | γ ls,k , ·).
end for

4. Update variance parameters 
 Gibbs-update

4.1 Model variance
Let N = ∑n

i=1 ni be the total number of longitudinal observations as the sum of all observations
ni per individual i across all individuals n.
Draw σ

2[t]
ε from IG(ã0, b̃0) with

ã0 = a0 + N

2
and b̃0 = b0 + ( y − ηl − ηls)

′( y − ηl − ηls).

In ã0 and b̃0 use η
[t]
l and η

[t]
ls .

4.2 Effect variance
for F door k· = 1 to p· draw σ

2[t]
γ k· from IG(ãk· , b̃k· ) with

ãk· = ak· + rk(K k· ) and b̃k· = bk· + 1

2
γ ′·,k· K k·γ ·,k· .

In ãk· and b̃k· use γ
[t]
·,k· .

end for

end for

3 Simulation study

With the following simulation study we want to (a) illustrate
the flexibility of the SPAJM with regard to effect specifica-
tion, (b) highlight its capability for estimating spatial effects
and (c) confirm its computational advantage by comparing
the performance of our approach to an already existing one.
In order to meet intention (a) the simulated model will be
maximally generic, i.e. include various types of effects in all
possible predictors alongside a non-linear baseline hazard,
and to meet intention (b) the model will comprise a spatial
effect. Since the spatial effect can only be located in one of
the predictors for identifiability reasons we will look at three
settings to determine whether the quality of performance is
location specific:

Setting 1 The spatial effect is located in the shared predictor
ηls,

Setting 2 It is located in the survival predictor ηs and
Setting 3 In the longitudinal predictor ηl.

Lastly, to ascertain intention (c) the runtimes of our approach
will be contrasted to an already existing one.

In terms of software we will use the BayesX implemen-
tation of the SPAJM and benchmark it against the similarly
flexible joint model implementation of the tensor-product

approach using Newton-Raphson procedures and derivative-
based Metropolis-Hastings sampling by Köhler et al. (2018)
in the R package bamlss (Umlauf et al. 2021). We will use
the current developer version of BayesX (Belitz te al. 2022)
as well as bamlss version 1.1-8 on R-4.1.2 (R Core Team
2022).

3.1 Setup

The simulationmimics a study setup of duration (0, 1)with a
fixed number of planned visits per individual, of which not all
have been observed due to an event or censoring/ drop-outs.
The covariates in the data were assumed to be continuous
with some being time-constant and some time-varying. The
simulated effects underlying the data and determining the
longitudinal outcome y as well as the event outcome (T , δ)

have been chosen to represent a maximally generic joint
model. Therefore, each predictor η· consists of at least one
linear and one non-linear effect. The shared predictor fea-
tures the random intercepts and slopes, while the spatial
effect is rotated through each predictor according to the above
presented rationale. We generate longitudinal measurements
y(t) for n = 200 individuals over ni = 6 individual specific,
original time points each in the range of t ∈ (0, 1) according
to the generic model given in (5) and (6) with α = −0.3 and
the following predictors
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ηl = 0.5 xl1 + f1(xl2),

ηls = 0.9 xls1 − 0.5 f2(xls2) − 0.5 xl3(t)

+ 0.4 t + b0 + b1 t and

ηs = 0.1 xs1 + 0.5 f2(xs2)

with the non-linear functions f1(x) = 0.5 x + 15 φ(2(x −
0.2)) − φ(x + 0.4) and f2(x) = sin(x). The individual spe-
cific time points were determined as six general, equidistant
time points with a randomly sampled deviation for each indi-
vidual. The procedure mimics one visit per individual during
the course of a year (random element) over ni years (gen-
eral element) with subsequent standardisation to limit the
range to t ∈ (0, 1). All covariates xls· and xs· are sim-
ulated as time constant with the exception of xls3, which
is simulated time dependent just like covariates xl·, with
all x·· ∼ U (−1, 1). Further the model variance is set to
σ 2

ε = 0.5 and the variances of the random intercepts and
slopes are set to σ 2

b0
= σ 2

b1
= 2.

True survival times T ∗
i are determined based on aWeibull

baseline hazard function λ0(t) = pqtq−1 with scale p = 0.4
and shape q = 1.5. The event times are then set to Ti =
min(T ∗

i , 1) with event indicator δi = 1 if T ∗
i ≤ 1 and δi = 0

otherwise.All censored individuals, i.e. thosewith event indi-
cator δi = 0, thus receive an event time of Ti = 1. However,
to achieve a more realistic censoring scenario, we apply in
addition uniform censoring to 50% of the censored individ-
uals by randomly sampling ui from U (0, 1) and setting the
censoring time of those individuals to Ti = min(ui , 1).

The spatial effect is based on the map of counties in west-
ern Germany available from the R package BayesX and
calculated as fgeo = sin(cx ) · cos(0.5 cy) with cx and cy
being the scaled x- and y-coordinates respectively of the
centroids of each region. The regions are then randomly dis-
tributed across the individuals.

For each setting we use R = 100 replications. Conver-
gence is achieved in BayesX by using 70,000 iterations per
run with a burn-in of 10,000 and a thinning factor of 60 and
in bamlss by using 44,000 iterations (54,000 with fgeo in
ηl) with a burn-in of 4000 and a thinning factor of 40 (50).
In order to compare the results of both implementations we
calculate the mean squared error (MSE), bias and coverage
of the 95%-high density interval (HDI) of the posterior dis-
tribution of each parameter and compare runtimes between
BayesX and bamlss.

3.2 Results

The outcome of the estimation performance of the simulation
study can be found in Fig. 1 and the computational perfor-
mance is illustrated inFig. 2. The summarized results in Fig. 1
alreadymake it clear that a jointmodel with a piecewise addi-
tive formulation of the survival submodel is is equal in terms

of effect estimation to its established PH counterpart given
the small MSE and bias values as well as the high coverage
rates. Detailed results of the individual effects can be found in
the Appendix in Fig. 4, which confirm this high level impres-
sion. Both methods exhibit the largest deviation from the
true data in the shared predictors ηls. In terms of estimation
any effect in this predictor belongs to the most demanding
to estimate, as the corresponding likelihood features both
model parts. Thus the larger bias here is to be expected. Fur-
thermore, it quickly becomes clear that BayesX outperforms
bamlss in the estimation results of the shared predictors
ηls and the survival predictors ηs. The reason for the perfor-
mance of bamlss in the shared predictors ηls is due to the
random effects, which can be seen from the more detailed
Fig. 4 in the Appendix. Their estimates remain rather small,
which iswhy their high density intervals do not cover the sim-
ulated (true) random effects b0 and b1, which in turn affects
the overall results for the shared predictor ηls. Similarly the
survival predictors ηs perform rather weakly with bamlss,
which is mainly due to the rather large bias in the associa-
tion α (see Fig. 4). The estimation procedure implemented
in bamlss is in fact tailored to identify advanced associa-
tion structures in joint models, which is why the bias in α is
highly likely a result of the underestimation of the random
effects. Only in the estimation of the longitudinal predictor
ηl did bamlss surpass BayesX, which is interesting, since
the formulation implemented in bamlss does not extend to
longitudinal-only-predictors. It assumes ηl to be a part of ηls,
but since the data of ηl is simulated such that it is not asso-
ciated with the survival part of the model, the results of ηl
under bamlss are more precise than those of ηls. Figure1
further demonstrates the capability of both methods to esti-
mate spatial effects, while it also shows the indifference to
the position (in ηls, ηs or ηl) of the spatial effect within the
model. First of all, the figure indicates a stable performance
of the spatial effect fgeo in both implementations indepen-
dent of the predictor it belongs to. Secondly, also the other
predictors remain very stable in their performance regardless
of the simulation setting. If the position of the spatial effect
fgeo mattered, it would not just show in the estimation accu-
racy of the effect itself, but it would also affect the effects in
other parts of the model, which is not the case here. Again
the reason for the bamlss results are similar to before. The
estimation results for fgeo exhibit the same behaviour as for
the random effects: They remain surprisingly small, resulting
in a larger bias and thus only achieving a rather low coverage.

Lastly, in terms of computational cost the piecewise addi-
tive approach in BayesX has an advantage over the PH
approach in bamlss with lower runtimes (see Fig. 2). With
both methods Setting 1 with the spatial effect fgeo in the
shared predictor ηls is the most time consuming. But this is
also the most complex setting in terms of estimation, there-
fore, the increased runtime is not surprising. Setting 2 with
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Fig. 1 Boxplots of mean
squared error (MSE), bias and
95%-coverage for the
extcolorredspatial effect fgeo as
well as the predictors per
method and simulation setting
(Setting 1— fgeo in ηls , Setting
2— fgeo in ηs , Setting 3— fgeo
in ηl ). The orange horizontal
line marks the reference value of
each statistic
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Fig. 2 Boxplots of runtimes in hours permethod and simulation setting.
For readability reasons plots are clipped, therefore extreme outliers are
excluded. Diamonds represent respective means. BayesX has visibly
lower runtimes than bamlss. With both methods Setting 1 ( fgeo in
ηls ) is the most time consuming, while Setting 2 ( fgeo in ηs ) and 3
( fgeo in ηl ) are faster and take equally long

fgeo in the survival predictor ηs and Setting 3with fgeo in the
longitudinal predictor ηl are less complex from an estimation
perspective, which is also evident in the short runtimes.More
detailed descriptive statistics on the runtimes can be found
in the Appendix in Table 3.

4 Physical functioning after a caesura

"Caesurae" describe certain physiological events that act
like a turning point in the course of an individuals health,
among them heart attacks, strokes or diagnoses of cancer.
In 2015 the World Health Organsiation (WHO) concluded
in their "World Report on Ageing and Health" that the
physical capacity dimension of "Healthy Ageing" still suf-
fers from a lack of understanding. Physical capacity can be
measured as functional health (aka physical functioning),
which decreases naturally over time until death. A caesura,
however, has the power to alter the trajectory of an individ-
ual’s functional health both in a negative and positive way
(WHO, 2015).While the longitudinal modelling of these tra-
jectories is already of interest, the trajectories themselves
influence an individual’s survival time. Therefore, a joint
model is appropriate to capture both these aspects of the
data.

To examine the development of physical functioning after
a caesura in Germany we will resort to the German Ageing
Survey (DEAS), which aims at studying the second half of
life with people between 40 and 85 years old and living in
Germany being eligible for study participation. The DEAS
has collected information on physical functioning from a
SF-36 survey, health conditions qualifying as caesurae, ter-
minal dates and a multitude of other variables, which might
help explain the development of physical functioning after a
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Table 2 BayesX estimates of linear effects of physical functioning after
a caesura

Posterior mean 95%-HDI

β0 0.848 [0.827, 0.871]

Gender −0.091 [− 0.123, − 0.059]

t −0.247 [− 0.277, − 0.219]

α −3.381 [− 4.329, − 2.432]

caesura, over the course of seven waves (1996, 2002, 2008,
2011, 2014, 2017, 2021) (Engstler et al. 2014; Klaus and
Engstler 2017).

Our analysis will focus on data from waves 2008 to 2021
with originally 6622 participants, of which 750 suffered from
a heart attack or stroke i.e. a cardiovascular caesura, dur-
ing their panel participation. Single observations, cases with
missing data and caesuraewith onset prior to the participant’s
entry into the panel were excluded from the analysis. For the
remaining 636 the time of onset of the caesura was set to
coincide with the interview date, in which the caesura was
first reported, since the exact onset date of the caesurae is not
collected. Out of 636 participants 79 (12.4%) died.

As explanatory variables for the trajectory of functional
health (sf36) we consider time (t), gender (gender), the
age of onset (aoo) of the caesura as well as living location
of the participant on the level of European Nomenclature of
Territorial Units for Statistics (NUTS) 2. In order to avoid re-
identification of participants few regions had to be combined
leaving now33 regions of the original 36. The continuous and
strictly positive variables SF-36 sf36, age of onset aoo and

time t are scaled to the domain (0, 1). We then consider the
model

sf36i (t) = β0 + ηlsi + εi (t)

λ(t)x = exp{ f0(t) + αηlsi }
ηlsi = β1genderi + f (aooi ) + fgeo(NUTS2i )

+ βt t + b0i + b1i t

and estimate it with BayesX and bamlss.
With 79 events out of 636 individuals the survival data is

unbalanced and presents a situation that would already prove
difficult to estimate in a standard survival analysis setting.We
only present BayesX results here because bamlss proved to
react sensitive to this imbalance. The reason for this lies in the
combination of a lack of information due to few events and
the likelihood of a PH model involving an integral, which
can only be approximated numerically, whereas the piece-
wise additive approach relies on discretizing time and thus
avoiding this integral. More detail on this can be found in
Appendix D. The linear effects can be found in Table 2 and
the non-linear effects in Fig. 3.

None of the linear effects includes zero in their HDI, thus
they are significantly different from zero. The association α

of both model parts is negative meaning that a lower level of
the modelled trajectory of physical functioning sf36 trans-
lates to a higher probability of experiencing an event.

The intercept can be interpreted as a male individual at
scaled age of 0.402 (i.e. an unscaled age of 40.2) years
old at onset of the caesura can be expected to have an
average scaled SF-36 level sf36 of 0.848 [0.827, 0.871].

Fig. 3 BayesX estimates of the
smooth effect of the age of onset
aoo and the geographical
location on physical functioning
as well as the estimated baseline
hazard of the model
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For women this reduces on average by − 0.091 [− 0.123,
− 0.059]. Every scaled month after the caesura further
reduces the level of sf36 by − 0.247 [− 0.277, − 0.219].
The age of onset aoo has in general a decreasing effect on
sf36 (upper left panel Fig. 3). Though it needs to be pointed
out that before the scaled age of 0.55 (55 years old) the effect
is positive, i.e. it increases the level of sf36 thus slowing
down the natural decline of physical functioning, while for
an aoo between roughly 0.55 and 0.7 (55–70 years old)
the effect is constant around zero, i.e. it is negligible, and
a caesura after an aoo of 0.7 (70 years old) has a nega-
tive effect on sf36 translating to an accelerated decline of
physical functioning. In terms of living location there is a
South-West against North-East (and Mid-West) divide (right
panel Fig. 3). People in the North-Eastern part of Germany
especially in the area of Mecklenburg-Pommerania, Bran-
denburg and Saxony-Anhalt as well as those of the Western
parts in the Dusseldorf and Cologne regions see a negative
effect on their level of sf36. Those living in the South-
Western part especially in South-West Baden-Wurttemberg
(Black Forest region) see an increasing effect on their sf36
level. Given that the association is negative this means that
the probability for an event is decreasedmost for people from
the South West of Germany and increased most for those in
the North-East and Mid-West. What these two areas have in
common is that they comprise the most and least densely
populated areas in Germany. This might be a starting point
for further research to investigate what exactly triggers the
effect to take this particular shape, since the living location in
this example can be interpreted as a proxy for other variables
that have not been included in the model.

The baseline hazard is almost linear over time (lower left
panel Fig. 3), thus the risk of experiencing an event is roughly
the same at all times throughout the study.

5 Conclusion and discussion

The focus of this article has been on proposing a piecewise
additive joint model for longitudinal and time-to-event data
allowing for spatial, (non-)-linear and random effects to be
included as well as estimation of the baseline hazard without
any assumptions about its distributional form. In a simula-
tion study comprising (non-)linear as well as a spatial effect
it became evident that the piecewise additive approach yields
results similar or better to the equally flexibly bamlss-
methodology for joint models in R and that this performance
is high independent of the position of the spatial effect. This
method was illustrated by an example of the development of
physical functioning after a caesura in people in their second
half of life.

The concept of piecewise additive jointmodels has not just
proven its accuracy in estimating complex effects, but also

its ability in handling unbalanced data in terms of availability
of event observations.

Applying the piecewise additive approach requires aug-
menting data, which is part of the time-to-event process. This
augmentation artificially increases the size of the dataset and
when the original data is large, it can lead to longer run-
times. In our experience this is, however, seldom the case.
Furthermore, this method could also be combined with other
models in the longitudinal part of the model such as quantile
regression, a location-scale model or multiple longitudinal
outcomes in a multivariate joint model. Also, Bayesian vari-
able or effect selection in this type of joint model could be
investigated since very few methods for variable selection in
joint models exist yet.
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A Derivation of the full conditional and
IWLS-proposal distributions used for poste-
rior estimation

A.1 Longitudinal effects

Let γ l,k be the coefficients of one of k = 1, . . . , pl effects
in the longitudinal predictor with a prior as given in (4) and
let further denote ηl, -k = ηl − ηl, k, i.e. the longitudinal
predictor without the kth element. Then the derivation of the
full conditionals for this effect follows as:

p(γ l,k | ·) ∝ p(γ l | σ 2
ε , σ 2

γ l
) p( y | ηl, ηls, ·)

∝ exp

{

− 1

2σ 2
γ l

γ ′
l,kK l,kγ l,k

}

exp

{

− 1

2σ 2
ε

(Zl,kγ l,k − ( y − ηl,−k − ηls))
′

(Zl,kγ l,k − ( y − ηl,−k − ηls))

}

γ l,k | · ∼ N(μ∗
γ l,k

, 	∗
γ l,k

)

	∗
γ l,k

=
(

1

σ 2
ε

Z′
l,kZl,k + 1

σ 2
γ l,k

K l,k

)−1

μ∗
γ l,k

= 	∗
γ l,k

(
1

σ 2
ε

(
Z′
l,k( y − ηl, -k − ηls)

) + 1

σ 2
γ l,k

K l,k

)

A.2 Survival effects

Since the full conditional distribution of the kth survival spe-
cific coefficients p(γ s,k | δ, σ 2

γ s,k
, ·) out of k = 1, . . . , ps

survival specific effects are analytically intractable, we use
MH-steps with IWLS proposals, which approximate the true
log-full conditionals. Consider the (standard) full conditional

p
(
γ s,k | δ, σ 2

γ s,k
, ·

)
∝ p(γ s,k | σ 2

γ s,k
) p

(
δ | ηs, ηls, ·

)
.

Let Zs,k be the corresponding design matrix of effect γ s,k

and 1
σ 2

γ s,k
K the variance statement of prior p(γ s,k | σ 2

γ s,k
)

(compare prior given in 4). Then draw IWLS proposal γ ∗
s,k

from a normal distribution density q(γ ∗
s,k | γ

[t]
s,k) with γ

[t]
s,k

being the value of γ s,k at iteration t of theMCMC algorithm.
More specifically

γ ∗
s,k ∼ N

(
μ[t]

γ s,k
, P [t]−1

γ s,k

)

with P [t]
γ s,k

= Z′
s,kW

[t]
s Zs,k + 1

σ
2[t]
γ s,k

K γ s,k

and μ
[t]
γ s,k

=
(
P [t]

γ s,k

)−1
Z′
s,kW

[t]
s

(
ỹ[t]
s − η

[t]
s,−k

)
.

Here η
[t]
s,−k = η

[t]
s − η

[t]
s,k , and W [t]

s denotes the working

weights and ỹ[t]
s the working observations all evaluated at

the current state t of the MCMC chain. The definition of
working weights and observations is given further below.

The acceptance probability of the IWLS proposal γ ∗ is
then

α
(
γ ∗
s,k | γ

[t]
s,k

)
= min

⎧
⎨

⎩

L
(
γ ∗
s,k

)
p

(
γ ∗
s,k

)
q

(
γ

[t]
s,k | γ ∗

s,k

)

L
(
γ

[t]
s,k

)
p

(
γ

[t]
s,k

)
q

(
γ ∗
s,k | γ

[t]
s,k

) , 1

⎫
⎬

⎭

with L(γ s,k) = p(δ | γ s,k, ·) being the likelihood evaluated
at the proposal γ ∗

s,k as well as the current state γ [t] of the
effect.

If the proposal then is accepted it becomes the new state
γ

[t+1]
s,k = γ ∗

s,k , otherwise the current state remains γ
[t+1]
s,k =

γ
[t]
s,k . Acceptance is established via random draws from a

uniform distribution following the logic:

1. Draw u ∼ Unif(0, 1)
2. If u ≤ α

then γ [t+1] = γ ∗
else γ [t+1] = γ [t].

For the definition of theworkingweights and observations
consider the log-full conditional

log(p(γ s,k | δ, σ 2
γ s,k

, ·)) ∝ − 1

2σ 2
γ s,k

γ ′
s,kK γ s,k

γ s,k + 
(ηs),

where 
(ηs) denotes the log-likelihood depending on predic-
tor ηs = ∑ps

k=1 Zs,kγ s,k (compare 3) thus including γ s,k .
Further, define the score vector vs as

v[t]
s = ∂
(η

[t]
s )

∂η
[t]
s

,

i.e. the vector of first derivatives of 
(ηs) with respect to
the predictor ηs evaluated at the current iteration t and the
working weights also evaluated at iteration t as

W [t]
s = diag

(
w1

(
η

[t]
s,1

)
, . . . , wna

(
η[t]
s,na

))

with na the number of observations in the augmented dataset
(compare Sect. 2.2 Table 1) and

wi

(
η

[t]
s,i

)
= −E

(
∂
(η

[t]
s,i )

∂2η
[t]
s,i

)

= −E

(
∂v

[t]
s,i

∂η
[t]
s,i

)

.

Thevector ofworkingobservations ỹ[t]
s =

(
ỹs1

(
(η

[t]
1

)
, . . . ,

ỹsna
(
η

[t]
na

))′
is then determined by

ỹ[t]
s = η[t]

s +
(
W [t]

s

)−1
v[t]
s .
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A.3 Shared effects

The coefficients p(γ ls,k | y, δ, σ 2
γ ls,k

, ·) of the shared effects
neither have tractable full conditionals. Therefore, we also
apply an MH-step with IWLS-proposal here. The procedure
is similar to the survival specific coefficients but needs to con-
sider the joint likelihood of both model parts. First consider
the full conditional

p
(
γ ls, k | ·) ∝

p(γ ls, k | σ 2
γ ls

) p( y | ηl, ηls, ·) p(δ | ηs, ηls, ·).

Let Zls,k be the corresponding designmatrix of effect γ ls,k

and 1
σ 2

γ ls,k
K the variance statement of prior p(γ ls,k | σ 2

γ ls,k
)

(compare prior given in 4). Now to approximate the full
conditional we draw IWLS proposal γ ∗

ls,k from a normal dis-

tribution density q(γ ∗
ls,k | γ

[t]
ls,k)with γ

[t]
ls,k being the value of

γ ls,k at iteration t of theMCMC algorithm.More specifically

γ ∗
ls,k ∼ N

(

μ[t]
γ ls,k

,
(
P [t]

γ ls,k

)−1
)

with P [t]
γ ls,k

= Z′
ls,kW

[t]
ls Zls,k + 1

σ
2[t]
γ ls,k

K γ ls,k

and μ[t]
γ ls,k

=
(
P [t]

γ ls,k

)−1
Z′
ls,kW

[t]
ls

(
ỹ[t]
ls − η

[t]
ls,−k

)
.

The rest of the algorithm is analogous to the survival effects.
To see how the working weights and observations build

for the coefficients in the shared predictor, consider first the
log-full conditional
log(p(γ ls,k | y, δ, σ 2

γ ls,k
, ·)) ∝

− 1

2σ 2
γ ls,k

γ ′
ls,kK γ ls,k

γ ls,k + 
y(ηls) + 
δ(ηls),

where 
y(ηls) denotes the longitudinal part of the log-
likelihood and 
δ(ηls) the survival/ poisson part of the
log-likelihood depending on predictor ηls = ∑pls

k=1 Zls,kγ ls,k
(compare 3) thus including γ ls,k .

The vector of scores, i.e.~first derivatives of the log-
likelihoods with respect to the ηls evaluated at iteration t ,
is

v
[t]
ls = v

[t]
y,ls + αv

[t]
δ,ls = ∂
y(η

[t]
ls )

∂η
[t]
ls

+ ∂
δ(η
[t]
ls )

∂η
[t]
ls

.

The working weights evaluated at iteration t can then be
derived as

W [t]
ls = diag

(
w1

(
η

[t]
ls,1

)
, . . . , wna

(
η

[t]
ls,na

))

with na the number of observations in the augmented dataset
and

wi (η
[t]
ls,i ) = −E

(
∂v

[t]
ls,i

∂η
[t]
ls,i

)

= −E

(
∂v

[t]
y,ls,i + αv

[t]
δ,ls,i

∂η
[t]
ls,i

)

= −E

(
∂
y(η

[t]
ls,i )

∂2η
[t]
ls,i

)

− E

(
∂
δ(η

[t]
ls,i )

∂2η
[t]
ls,i

)

= wy,i (η
[t]
ls,i ) + α2wδ,i (η

[t]
ls,i ).

The working observations then follow analogously as

ỹ[t]
ls = η

[t]
ls +

(
W [t]

ls

)−1
v

[t]
ls .

A.4 Variances

A.4.1 Model variance

Let N = ∑n
i=1 ni be the total number of longitudinal obser-

vations as the sum of all observations ni per individual i
across all individualsn. Then the full conditional of themodel
variance follows as

p(σ 2
ε | ·) ∝ p(σ 2

ε ) p( y | ηl, ηls, σ
2
ε )

∝ (σ 2
ε )−a0−1 exp

{
− b0

σ 2
ε

}

(
σ 2

ε

)− N
2

exp
{
− 1

2σ 2
ε
( y − ηl − ηls)

′( y − ηl − ηls)
}

∝
(
σ 2

ε

)−(a0+ N
2 )−1

exp
{
− 1

σ 2
ε
(b0 + 1

2 ( y − ηl − ηls)
′( y − ηl − ηls))

}

σ 2
ε | · ∼ IG

(
a0 + N

2 , b0 + ( y − ηl − ηls)
′( y − ηl − ηls)

)

A.4.2 Variance of coefficients

With p· being the number of covariates in each predictor
(longitudinal, shared, survival) the full conditional of the k· =
1, . . . , p· variances of the corresponding effects is analogous

p(σ 2
γ k· | ·) ∝ p(σ 2

γ k· ) p(γ k· | σ 2
γ k· )

∝ (σ 2
γ k· )

−ak·−1 exp

{

− bk·
σ 2

γ k·

}

(
σ 2

γ k·

)−rkK k·
exp

{

− 1
2σ 2

γ k·
γ ′·,k· K k·γ ·,k·

}

∝
(
σ 2

γ k·

)−(ak·+rkK k· )−1

exp

{

− 1
σ 2

γ k·
(bk· + γ ′·,k· K k·γ ·,k·)

}

σ 2
γ k· | · ∼ IG

(
ak· + rkK k· , bk· + γ ′·,k· K k·γ ·,k·

)
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B Detailed results of simulations study

Figure4 displays the results of the simulation study detailed by individual effect.
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Fig. 4 Boxplots of mean squared error (MSE), bias and 95%-coverage per method by effect and simulation setting (Setting 1 - fgeo in ηls , Setting
2 - fgeo in ηs , Setting 3 - fgeo in ηl ). The orange horizontal line marks the reference value of each statistic
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C Statistical overview of run times

Table 3 details descriptive measures of the run times.

Table 3 Statistical overview of run times of 100 replications per setting
and estimation method

Method Min. 1st.Qu. Median Mean 3rd.Qu Max

Setting 1

BayesX 1.30 1.53 1.58 1.58 1.62 1.80

bamlss 3.17 3.30 3.38 3.86 3.42 10.62

Setting 2

BayesX 1.10 1.22 1.26 1.26 1.30 1.41

bamlss 1.68 2.04 2.17 2.50 2.26 9.62

Setting 3

BayesX 1.03 1.25 1.30 1.28 1.32 1.40

bamlss 2.01 2.06 2.21 2.58 2.26 12.98

DUnbalanceddatasets, thePH likelihoodand
algorithmic stability

In a joint modelling setting using the PH formulation the
survival submodel is denoted as

λ(t) = λ0(t) exp
{
ηs + αηls(t)

}

= exp
{
log λ0(t) + ηs + αηls(t)

}
(7)

(note its similarity to 6) and the likelihood takes the form

L(T , δ) =
n∏

i=1

λi (Ti )
δi exp

{

−
∫ Ti

0
λi (u) du

}

.

Here Ti is the event or censoring time of individual i , δi is
the indicator whether i is censored (δi = 0) or not (δi = 1).

The respective log-likelihood the follows as

l(T , δ) =
n∑

i=1

{

δiλi (Ti ) −
∫ Ti

0
λi (u) du

}

(8)

and shows rather distinctly that the contribution of individual
i to the (log-)likelihood consists of the risk of experiencing
an event at time Ti , i.e. λi (Ti ) if i experienced an event or
0 if i was censored, minus the (logarithmic) probability of
survival of i up to point Ti , i.e. log S(Ti ) = − ∫ Ti

0 λi (u) du.
If there are few events observed in the data, there are few

observations that contribute to the likelihood with informa-
tion on the risk of an event at time Ti , i.e. the distribution of
actual events T ∗

i , and thus to the estimation of the baseline
hazard λ0(t), which remains very small as a consequence and
the probability for survival is very high, S(t) ≈ 1.

This can be seen when looking at the traditional Cox-
PH model, where all covariates are assumed constant (Cox
1972). Then (7) simplifies toλ(t) = exp {log λ0(t) + η}with
η = ηs + αηls. For illustration let ηs = Zsγs, i.e. a linear
predictor, then the parameter vector corresponding to η fol-
lows as γ = (γ s, α)′ and the design matrix of the data as
Z = (Zs, ηls). The hazard ratio of subject i to subject j then
is

λi (t | ηi )

λ j (t | η j )
= exp{γ ′(zi − z j )},

which results in a partial likelihood for estimation of the form
(Cox 1975)

pl(γ ) =
n∑

i=1

δi

⎧
⎨

⎩
ηi − log

∑

Tj≥Ti

exp η j

⎫
⎬

⎭
.

From a numerical perspective another problem emerges:
The integral in the likelihood (8) has an analytical solution
only when the baseline hazard is constant and covariates
with the exception of time itself are constant. In all other
cases it is analytically intractable. Expectation-Maximization
algorithms for joint models usually use Gauss-Kronrod
quadrature, bamlss uses the trapezoid rule with 25 fixed
integration points (Köhler et al. 2018).

Since the latter employs aderivative-basedMH-algorithm,
an update on the parameters γ · governing predictors ηs and
ηls(t) ensues from

γ [t]· = γ [t−1]· + ν[t−1]H(γ ·)[t−1]s(γ ·)[t−1],

where H(γ ·) is the Hessian matrix of the parameters, s(γ ·)
the score vector and ν a parameter specific step length, which
is optimized over (0, 1] in each iteration. Apart from this pro-
cedure being computationally expensive, the Hessian matrix
and the score vector involving the time-to-event likelihood
need a numerical approximation as well. For more informa-
tion see Köhler et al. (2017).

Both factors—few events and numerical instability—
especially when combined create a challenging situation for
such an algorithm.

In contrast the SPAJM avoids the integral in the time-to-
event likelihood via the re-formulation of the risk λ(t) as a
counting process. The log-likelihood of the ensuing Poisson
distribution takes the form

l(δ | ηs, ηls(t)) =
n∑

i=1

Ji∑

j=1

δ j
(
f0(t j ) + oi j + ηs,i + αηls,i j

)

− exp
{
f0(t j ) + oi j + ηs,i + αηls,i j

}
,
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where Ji is the last interval individual i has been observed
in. So the contribution of individual i to the (log-)likelihood
still consists of the risk of experiencing an event at time
Ti = tJi , i.e. δ j

(
f0(t j ) + oi j + ηs,i + αηls,i j

)
, which is 0

if i is censored or f0(tJi ) + oi Ji + ηs,i + αηls,i Ji if i expe-
rienced an event and the probability of survival up to this
point, exp

{
f0(t j ) + oi j + ηs,i + αηls,i j

}
.

Since the baseline hazard is assumed constant in the inter-
vals defined by the actual event times T ∗

i (and the observation
times, at which the longitudinal observation happened), the
survival probabilities are discretised and the integral can be
replaced by a sum. This way numerical integration can be
avoided. In addition, few events still impede estimation of
the baseline hazard - the resulting intervals are fewer and
the boundaries further apart assuming the baseline hazard
to be constant over longer periods of time, but without the
algorithm having to simultaneously perform numerical inte-
gration.
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