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Article

Linking Twitter and Survey Data:
The Impact of Survey Mode
and Demographics on Consent
Rates Across Three UK Studies

Tarek Al Baghal1, Luke Sloan2, Curtis Jessop3,
Matthew L. Williams2, and Pete Burnap2

Abstract
In light of issues such as increasing unit nonresponse in surveys, several studies argue that social
media sources such as Twitter can be used as a viable alternative. However, there are also a number
of shortcomings with Twitter data such as questions about its representativeness of the wider
population and the inability to validate whose data you are collecting. A useful way forward could be
to combine survey and Twitter data to supplement and improve both. To do so, consent within a
survey is first needed. This study explores the consent decisions in three large representative
surveys of the adult British population to link Twitter data to survey responses and the impact that
demographics and survey mode have on these outcomes. Findings suggest that consent rates for
data linkage are relatively low, and this is in part mediated by mode, where face-to-face surveys have
higher consent rates than web versions. These findings are important to understand the potential for
linking Twitter and survey data but also to the consent literature generally.
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This article is part of the SSCR special issue on “Integrating Survey Data and Digital Trace Data” guest
edited by Sebastian Stier, Johannes Breuer, Pascal Siegers (GESIS - Leibniz Institute for the Social
Sciences) & Kjerstin Thorson (Michigan State University).

Surveys have suffered from a gradual decline in response rates (de Leeuw & de Heer, 2002; Groves

et al., 2009). These problems affect longitudinal surveys as well, where initial response rates have

1 University of Essex, Colchester, England, United Kingdom
2 Cardiff University, Cardiff, Wales, United Kingdom
3 NatCen Social Research, London, United Kingdom

Corresponding Author:

Tarek Al Baghal, Institute for Social and Economic Research, University of Essex, Room 2N2.4.26, Wivenhoe Park,Colchester

CO4 3SQ, United Kingdom.

Email: talbag@essex.ac.uk

Social Science Computer Review
2020, Vol. 38(5) 517-532
ª The Author(s) 2019

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/0894439319828011
journals.sagepub.com/home/ssc

https://sagepub.com/journals-permissions
https://doi.org/10.1177/0894439319828011
http://journals.sagepub.com/home/ssc


fallen, and while wave-on-wave response rates have generally remained relatively high, cumulative

attrition can lead to higher overall nonresponse (Jäckle, Al Baghal, Burton, Kaminska, & Lynn,

2018; Schoeni, Stafford, McGonagle, & Andreski, 2013). In addition to the problem of unit

nonresponse, those that do participate may not respond to all items, which can be particularly

problematic in panel studies, given the focus on studying trends.

In light of issues surveys face such as nonresponse, several studies argue that data sources such as

Twitter can substitute or supplement surveys (DiGrazia, McKelvey, Bollen, & Rojas, 2013; O’Connor,

Balasubramanyan, Routledge, & Smith, 2011). However, social media data also face issues, including

understanding who is producing the data and the ability to explore data from specifically designed

measures for a representative sample of the population. This may be particularly problematic for

longitudinal studies where understanding microlevel change of key indicators is a significant goal.

Given the increasing problems with nonresponse in surveys and the popularity and potential uses of

data from social networking sites, adding social media and survey data together is an attractive, but to

date, little used possibility (American Association for Public Opinion Research [AAPOR], 2014).

Obtaining and linking survey respondents’ social media to their survey responses could add to the

richness of the data available and be used in improving measures and methods for nonresponse

adjustment. For example, unit nonresponse may be improved in the instance where a respondent who

agrees to link their social media data drops out of the study (other than explicit withdrawal or for

reasons making them ineligible), and passive data collection from social media could be continued.

This improvement is necessarily limited to those respondents having social media and consenting to

link these data, however. This limited sample set is of concern, as nonresponse in surveys can limit

the overall observed sample and those using platforms such as Twitter are a relatively small portion

of the population. Both limitations suggest questions about generalizability, but one of the goals of

linking the two data sources in the first instance is to test the extent that the different sources

supplement the other and to identify and potentially reduce the limitations of both.

Before any linkage between survey and social media data can be done, respondents must consent

to this linkage and provide their social media identifier. This study explores the feasibility of linking

Twitter social media data to survey responses by analyzing this initial and crucial component. Most

research that studies consent to link external data to surveys employ results from one study. In this

study, we add to our understanding by employing three surveys representative of the British adult

population: the Understanding Society Innovation Panel (IP), the NatCen Panel, and the British

Social Attitudes (BSA) survey. The IP and NatCen Panel are panels that asked for consent to link

Twitter data at a later than the first wave (both asked in 2017), while the BSA is a cross-sectional

survey that asked for consent in 2015.

Background

Twitter in Research

Twitter provides researchers with access to a vast amount of data concerning attitudes, behaviors,

and so on. that have been utilized for a wide range of applications including predicting elections

(Burnap, Gibson, Sloan, Southern, & Williams, 2016) and user incomes (Preoţiuc-Pietro, Volkova,

Lampos, Bachrach, & Aletras, 2015), investigating crime patterns (Williams, Burnap, & Sloan,

2016). However, on its own, Twitter data are a point of consternation for social scientists. Twitter

use is not universal, but it is also not insignificant: The studies reported on in this article estimate

Twitter usage in the UK adult population of 18.3% in 2015 (BSA) and 21.6% (USIP) or 25.6%
(NatCen Panel) in 2017. Further, it is notoriously “data-light” (Gayo-Avello, 2012) with many of the

key demographic variables used in social scientific analysis such as age, gender, occupation, and

class missing—there is a lot of data, but we don’t know who is producing it (Sloan, 2017a).
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In response to this challenge, researchers have endeavored to derive demographic data from the

content and metadata of tweets to make the data more useful for academic research, including

information on location and language (Graham, Hale, & Gaffney, 2014), gender (Sloan et al.,

2013), occupation, social class, and age (Sloan, Morgan, Williams, Edwards, & Burnap, 2015). A

difficulty with such derivations is that there is no way of evaluating the accuracy of this information

through verification or cross-referencing with another source. Indeed, recent research profiling the

British Twitter population using a national probability-based survey demonstrates that the demo-

graphic distribution indicated through derived proxies may be inaccurate (Sloan, 2017b).

Linking Twitter and survey data provides an opportunity to verify the accuracy of demographic

categorizers and to understand where they are going wrong. We can refine scalable tools for efficient

“big data” analysis tested against a gold standard, build improved classifiers, and in turn be more

confident (or more realistic) in understanding the power of algorithms to make important social

scientific distinctions between groups.

The mirror image of how surveys can enhance our ability to deal with Twitter data is how Twitter

can help us to understand survey data. While surveys are often seen as the gold standard in social

research, there are a number of possible limitations that can potentially be lessened through the use

of social media data. For example, answers to survey questions can be predicted to an extent by

social media data (Murphy, Landwehr, & Richards, 2013). This ability to predict suggests the

potential for its use in understanding the possible extent of nonresponse bias (AAPOR, 2014) or

for nonresponse adjustment, which has been done by other linked administrative data such as health

records (Gray et al., 2013; Gorman et al., 2014).

Twitter data could also supplement the survey data through improved measurement or by providing

stand-alone measures. Measurement error in surveys, such as the impact of social desirability bias (even

for self-completion surveys), is well-documented. For example, underestimations regarding the right-

wing vote in the UK stand in sharp contrast to Burnap, Gibson, Sloan, Southern, and Williams’s work

(2016) showing significant support for right-wing parties (notably the United Kingdom Independence

Party (UKIP)) being expressed on Twitter. Linking the two sources and operationalizing variables

similar to those on the survey based on the social media data opens up the possibility of calibration,

verification, or challenging of survey estimates. In a similar vein, it is the starkest differences between

survey and Twitter data that could provide the most interesting methodological and substantive insights,

particularly in longitudinal settings. The locomotive nature of Twitter (Edwards, Housley, Williams,

Sloan, & Williams, 2013) and the way that it captures instant reactions to events can add richness to

surveys that ask respondents to retrospectively evaluate happenings with the distortion of hindsight.

Consent to Linking External Data to Surveys

In order to collect data from Twitter (or other social media) and link to their survey responses, it is first

necessary to obtain consent from the survey respondent, not only for ethical consideration but to obtain

an identifier with which to access their data. Linking additional sources of data to survey responses is

increasingly used to expand and enhance available information for analysis and address issues with

nonresponse (e.g., Al Baghal, 2016; Eisnecker & Kroh, 2017; Korbmacher & Schroder, 2013; Sak-

shaug, Couper, Ofstedal, & Weir, 2012; Sala, Burton, & Knies, 2012). However, most previous

research on consent has focused on administrative records (e.g., health or education records), and

understanding consent to other data sources is needed if the use of those data is to be explored.

Generally, decisions on whether or not to give consent within a survey can be understood in

frameworks similar to the decision to complete the survey in the first instance (Al Baghal, 2016;

Korbmacher & Schroder, 2013). These frameworks suggest that multiple factors influence the

decision to consent to a request or not, not only from the respondent but also the respondent’s

environment and the survey features. Many studies asking for consent to link administrative records
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to survey data have found that, like the survey request itself, a substantial portion of the sample do

not affirmatively respond, possibly introducing a consent bias. Reported rates of consent vary widely

(see da Silva et al., 2012, Kho, Duffett, Willison, & Brouwers, 2009; Sakshaug et al., 2012, for

reviews), from as low as 19.0% (McCarthy, Shatin, Drinkard, Kleinman, & Gardner, 1999) to as

high as 96.5% (Rhoades & Fung, 2004). Further, consent rates apparently vary by which types of

records are being requested (e.g., health, benefits, tax) and can vary by respondent characteristics,

though not always in a consistent manner. For example, several studies have found women were less

likely to consent (Knies, Burton, & Sala, 2012; Sala et al., 2012), others have found females were

more likely to consent (Bryant, Robson, Ullman, Friedenreich, & Dawe, 2006; Dunn, Jordan, Lacey,

Shapley, & Jinks, 2004), while others have found no differences between sexes (Korbmacher &

Schroder, 2013; Sakshaug et al., 2012; Sakshaug, Tutz, & Kreuter, 2013).

Design features such as mode have been found to impact a number of survey outcomes, although

less is known about the impact of mode on consent in surveys. One study has directly compared

consent rates across modes, finding lower consent rates and higher consent bias in self-administered

surveys compared to those administered by interviewers (Sakshaug, Hülle, Schmucker, & Liebig,

2017). While some respondent characteristics were found to be related to consent outcomes, none of

these relationships were differentially impacted by survey mode. Similarly, recent qualitative evidence

suggests that face-to-face interviews may lead to higher consent rates than web surveys (Thornby,

Calderwood, Kotecha, Beninger, & Gaia, 2017). However, more evidence is needed to understand the

impact of mode on consent rates, particularly in the context of social media data as different types of

consent requests lead to different outcomes and may be affected by mode differentially.

In particular, there are theoretical considerations and empirical findings suggesting that requests

to link social media such as Twitter to surveys may be influenced by the mode of completion

differently than other requests. Respondents using an online survey mode are more likely to be

more frequent and adept Internet users and as such may have greater preferences for response in that

mode (Al Baghal & Kelley 2016; de Leeuw, 2005; Jäckle, Lynn & Burton, 2015). As more frequent

Internet users, web respondents are more likely to be Twitter users than respondents in other modes,

which may increase their comfort with and understanding of Twitter. Similarly, attitudes to data

security and privacy concerns reflected in choosing to respond to a web survey may be associated

with consent decisions regarding linking additional data to survey responses. Willingness to respond

to a web survey is related to fewer security concerns (Manfreda et al., 2008; Wenz, Jäckle, & Couper

2017). Those consenting to link additional data to survey responses also have lower data privacy

concerns (Sakshaug et al., 2012). To the extent that web respondents have lower data security

concerns about Internet-based data such as those on social media, they may be expected to be more

likely to consent to link their Twitter and survey data.

However, research has also found that those using social media to post personal activity and

photographs and using the Internet more frequently are marginally more likely to have concerns

regarding usage of their Twitter data for research purposes (Williams, Burnap, & Sloan, 2017). To

the extent that greater social media and Internet use increases privacy concerns but increases the

chance a person responds to the survey via the web, there should be a negative relationship between

web survey response and consent to Twitter linkage.

Additionally, respondents may feel more comfortable or trusting of the survey in the presence of

an interviewer, particularly in a longitudinal survey where the same interviewer can visit the same

household or person several times (Eisnecker & Kroh, 2017). The impact of mode can be heightened

in a longitudinal setting, where findings suggest asking the same consent request at different waves

can lead to different outcomes (Sala, Knies, & Burton, 2014). Where mode of response changed

across waves, the differences in outcome could be even greater. All of these factors further con-

tribute to the possibility that web respondents will be less likely than those responding in other

modes to consent to link their Twitter data to their survey responses.
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To date, there is little understanding about the nature of consent to linkage of Twitter and survey

data. This study has several research objectives. It is among the first to explore not only consent to

Twitter linkage, but how mode impacts these consent outcomes within and across several studies.

The study also explores differences of respondent characteristics beyond mode of survey response to

identify how these mediate any impact of mode and to identify potential linkage biases.

Data and Method

Data come from three surveys: the 2015 BSA survey, the July 2017 wave of the NatCen Panel, and

the 2017 tenth wave of the Understanding Society IP10.

BSA (2015)

The BSA is a cross-sectional survey designed to yield a representative sample of British adults aged

18 or over. The survey has been conducted since 1983, with new samples drawn every year. In its

2015 wave, households were selected in a three-stage design, using the Postcode Address File, a list

of addresses (or postal delivery points) compiled by the UK Post Office. The achieved sample size

was 4,328, with a response rate of 51.0% (for further technical details, see Curtice, Phillips, & Clery,

2016). All interviews were conducted face-to-face by an interviewer, through computer-assisted

personal interviewing (CAPI). As part of this interview, all respondents were asked whether they had

a personal Twitter account or not. If the respondent indicated they had a Twitter account, they were

asked whether they would consent to link their Twitter data to their survey responses (see Appendix

A located in the Online Supplement to this article for wording). If the respondent consented to this

request, they were then asked to provide their Twitter username.

NatCen Panel (July 2017)

The NatCen Panel is a probability-based mixed-mode panel designed to be representative of the British adult

(18þ)population. Panelmemberswere recruited fromrespondentscompletingBSAcross-sectional surveys,

with theJuly 2017 wave using panelmembers recruited fromthe 2015 and 2016waves. All respondents were

invited to participate in the panel; hence, the sampling design is based on those of the BSA described above.

The July 2017 wave was the ninth fieldwork wave of the NatCen Panel since November 2015, which had

been held at irregular intervals (no more than one in any month) to address specific research issues.

The NatCen Panel employs a sequential mixed-mode design, where panel members are first

invited to participate in the research online (using multiple points of contact by post, e-mail, and

text) before being contacted by telephone, using computer-assisted telephone interviewing (CATI),

if they had not yet completed the interview after 2 weeks (where telephone numbers were available).

Respondents could complete the web survey via any device; however, device of completion data is

not currently available. Fieldwork lasts about 1 month, and respondents can complete online during

any point of the fieldwork (for further technical details, see Jessop, 2018).

For the July 2017 NatCen Panel, where the consent to Twitter linkage was asked, all panel

members that had not left the panel in previous waves (through request, death, or moving out of

the country) were asked to complete the survey. The achieved sample size was 2,184, with 1,796

completing on the web (82.2%) and the remaining 388 (17.8%) completing via the telephone. The

survey response rate, that is, the proportion of participants invited to take part completing the survey,

was 59.6%. The overall response rate, that is, the participation from the original sample frame using

the proportion of participants eligible to be interviewed for the BSA, was 14.7%.

The questions used in the NatCen Panel were based on that used in the IP (which went to field

slightly earlier). First, the survey asked if a respondent had a Twitter account or not. For those who
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did, they were then asked for consent to link their Twitter data to survey responses (see Appendix A

located in the Online Supplement). In addition to this, help text was available to the interviewer on

screen if questions were asked. This help text was also available to web respondents via hyperlinks.

The additional text explained what data would be collected from the Twitter account, what the data

would be used for, who would have access to the data, and information about how the data would be

kept secure (full help text in Appendix A located in the Online Supplement). If the respondent

consented to this request, they were then asked to provide their Twitter username.

Since members of the 2015 BSA were invited to join the NatCen Panel, some respondents were

asked about having a Twitter account and for consent to link their Twitter data twice, albeit with

different question wording and in different survey contexts. Even with reduced numbers, insight can

be gained about how consent has changed between waves, only explored in one other identified

study (Sala et al., 2014). No study identified has explored the possible change in consent across

changes in mode, which is possible here given that all BSA respondents were completed via a face-

to-face interview and all NatCen Panel responses were collected via an online telephone interview.

IP Wave 10 (2017)

The 10th wave of the IP began fieldwork in May 2017. The IP is part of Understanding Society: The

United Kingdom Longitudinal Household Study. The IP is a vehicle for experimentation regarding

aspects of survey design in a longitudinal survey context. It uses a multistage probability sample of

persons and households in. At the fourth wave (IP4), seventh wave (IP7), and tenth wave (IP10),

refreshment samples were also drawn. Waves are conducted annually, and interviews are attempted

with all household members 16 years of age and older (University of Essex, 2018).

All interviews were initially conducted by interviewers, but some moved to sequential mixed-

mode web and CAPI design at IP5. Two thirds of households were allocated to the mixed-mode

design, while the other third were administered the standard single-mode CAPI design. In the mixed-

mode treatment, if any household member did not respond to the web survey within 3 weeks, an

interviewer was sent to attempt a face-to-face interview. This allocation has remained largely the

same for the original and IP4 refreshment samples, while the IP7 refreshment was allocated to the

mixed-mode design at the ninth wave (IP9). Being the first wave it was included in the study,

the IP10 refreshment sample was conducted only via the CAPI-only design. For those responding

via the web, respondents could access the survey by via PC, tablet, or smartphone. Paradata captured

during the survey process show that 60.1% of web respondents completed via a PC (n¼ 623), 29.1%
completed on a tablet (n ¼ 291), and 11.9% did the survey on smartphone (n ¼ 123).

Individual response rates for the IP are calculated as completion rates among those responding at

their initial wave of interview. At the initial wave (IP1), conducted in 2008, the individual response

rate by IP1 sample members was 52.4%. In 2011, for the IP4 refreshment sample, the initial response

rate was 44.1%, and the initial IP7 individual response rate was 24.3% in 2014. The reinterview rates

at IP10 for those interviewed at IP1 was 31.2%; for the IP4 refreshment sample, the reinterview rate

at IP10 was 48.4%; and the reinterview rate for the IP7 refreshment sample at IP10 was 61.8%.

The question asking for consent to link Twitter data to survey responses was placed early in the

survey, following findings in Sakshaug, Tutz, and Kreuter (2013) suggesting early placement

increased consent rates. As in the BSA and NatCen Panel, the IP first asked if a respondent had a

Twitter account or not. The consent question used was in the same form as the NatCen Panel (see

Appendix A located in the Online Supplement).

As with the NatCen Panel, help text was available to the interviewer on screen if questions were

asked. This help text was also available to web respondents via hyperlinks. The additional text

covered the same areas of information and used similar wording as in the NatCen panel, regarding

what data would be collected, data usage, access, and security (full help text in Appendix A located
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in the Online Supplement). If the respondent consented to this request, they were then asked to

provide their Twitter username.

Analysis Methods

Due to security procedures to minimize risks of identification and harm, access to the BSA linkage

data was limited to analysis within NatCen Social Research’s secure data facilities. This limited the

analyses possible to crosstabulations and tests for differences in bivariate distributions due to software

limitations. Consent rates in the BSA were compared across education levels, employment status,

income, sex, and age. Education is indicated in three categories (precoded in the available data): higher

education degree, professional degree/A levels, and anything lower. Those employed are compared to

those who are not, females are compared to males, and age is indicated as a continuous measure in

years. Income is categorized by monthly income and is dichotomized as more or less than £1,800 per

month, the (precoded) categorization closest to the median earnings in the UK.

Due to similar security procedures, the number of variables available from the NatCen Panel is

limited. However, access to NatCen Panel respondent-level data as well as full access to such data in

the IP allow for more detailed exploration of consent rates, including through multivariate methods.

In analyzing the IP, only the IP1, IP4, and IP7 samples are considered, as the IP10 sample had not

been allocated to the mixed-mode design and not comparable in this way.

Besides possession of a Twitter account and consent decisions, data from the NatCen Panel include

sex, age, education, employment, household income, and mode. The difference between income

measurement in income between the BSA (at the respondent level) and NatCen Panel (household)

is due to data availability in the NatCen Panel. Income in the NatCen Panel is divided into quartiles of

the respondent distribution, for household income ranges of £0–1,300, £1,301–2,400, £2,401–4,200,

and £4,201þ. Employment, education, sex, and age are otherwise indicated in the same manner as the

BSA. Mode of completion is also dichotomized for web or telephone response.

These variables and coding of NatCen Panel variables are replicated and used in analysis of Twitter

consent in the IP, excepting mode includes face-to-face rather than telephone. The data include imputed

data for respondents with missing income data, imputing using a number of techniques (Knies, 2016).

The imputed data are included in the following analyses, so there are no missing values for income.

The additional variables available in the IP also allow for some control of self-selection into

modes in the mixed-mode design, using significant correlates with mode of response in the IP

identified in Jäckle, Lynn, and Burton (2015). Urban location and respondents saying there was

definitely no chance of responding to a web survey were the only ones identified in Jäckle et al. as

jointly significant in predicting web response. However, the chance of responding via the web

measure was not included past IP6, and not available for the IP7 sample, so not included. Web use

and provision of e-mails were also related to whether everyone in the household completed the

survey or not and included in multivariate analyses. These variables also are indicative of Internet

usage and are likely related to having a Twitter account or not.

Urban location is dichotomized, urban/nonurban, and Internet use is indicated as a dummy

variable, with 1 for those saying they used the Internet every day, 0 for all else. Respondents who

provided an e-mail address at any wave were coded 1 and coded 0 if not. Sample status (IP1, IP4, or

IP7) is also included, to control for time in sample effects.

Results

BSA

There are 794 respondents in the 2015 BSA indicating they had a Twitter account (18.3%). Given

most respondents do not have a Twitter account, an initial problem arises with potential selection
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bias regarding how well any additional data from these users could represent the overall popula-

tion. Using the same BSA data, previous research has shown that Twitter users (in Great Britain)

are disproportionally male, younger, and more likely to have a professional occupation (Sloan,

2017b). An extension of this problem is related to survey nonresponse, which impacts all data

linkage research, as consent is only possible among survey responders. The BSA had a 51%
response rate, suggesting that if all Twitter users consented to linkage, only 9.3% of the original

sample would have linked data. However, nonresponse is an issue that impacts all surveys and that

these types of new data and linkages are trying to address. Those having records or using a

particular platform is largely out of researcher control, so the present concern is the possible

extent of consent bias among potential observations, for example, survey responders who are

Twitter users.

To initially assess this potential consent bias in the BSA, analyses presented in Table 1 show the

overall consent rates, as well as by sex, income, employment status, and education for the 791

respondents answering the consent question. For the demographic breakdowns, the sample size for

each categorization is presented; some sample sizes differ from the total due to missingness w2

tests were conducted to identify differences in distributions, and the p values of these tests are also

presented.

The overall consent rate among Twitter users is 36.8% (equating to 291 respondents), and all of

the presented demographic breakdowns have similar consent rates. None of the above breakdowns

show any significant differences with demographic characteristics. Differences do appear for age:

Consenters are significantly younger than nonconsenters, with consenters having a mean age of 37.3,

while the mean age of nonconsenters is 41.1, t(789) ¼ �3.64, p < .001.

The relatively low consent rate is problematic as it suggests that any final linked data set may be

biased to the extent that Twitter usage differs between consenters and nonconsenters. However,

with the exception of age, the lack of differences across demographics is suggestive that non-

consent bias across demographic groups may be minimized. To further understand if the BSA

consent rates are similar to other studies and to explore the effects of survey mode, two additional

data sets are used.

NatCen and IPs

As might be expected, in both panels, a significantly greater percentage of web respondents have a

Twitter account than those interviewed by an interviewer. In the NatCen Panel, 27.8% (n¼ 497) of

respondents reported having a Twitter account, compared to 15.7% (n ¼ 61) of telephone respon-

dents (w2
1 ¼ 23:96, p < .0001). Similarly, 25.2% of IP web respondents (n ¼ 260) and 17.7% (n ¼

168) of IP CAPI respondents indicated having a Twitter account (w2
1 ¼ 16:38, p < .0001). Overall,

25.6% of NatCen Panel and 21.6% of IP respondents reported having a Twitter account, both

higher than 18.3% in the BSA. Whether this is due to the 2-year progression (from 2015 to 2017),

additional nonresponse introduced in panel samples, or the introduction of selection bias through

Table 1. BSA Twitter Consent Rates, Total, and by Respondent Demographics.

Consent Total Male Female <£1,800 >£1,800 Employed Nonemployed

Higher
Education
Degree

Professional/
A Level

Other
Education

Consented (%) 36.8 38.8 34.8 40.1 38.4 37.9 33.9 36.1 38.5 34.9
Base n 791 400 391 211 326 570 221 288 291 206
w2 p value .247 .707 .300 .700

Note. BSA ¼ British Social Attitudes.
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using a web survey instead of CAPI is unclear. Again, this underscores the potential selection

problems survey nonresponse and Twitter use can have on overall representation, but a more

immediate concern is the extent consent rates limit the possible observable cases.

Consent to link their Twitter data to their survey responses was asked of the respondents indi-

cating having an account in both the NatCen Panel and IP. Table 2 presents the consent rates overall

and across mode of response for each of these two surveys. The table also presents how many cases

consented, to show the possible size of a linked data set, and significance tests between modes for

consent rates.

Consent rates are similar across studies and are similar to those found in the 2015 BSA and the

Murphy, Landwehr, and Richards’s (2013) study, which achieved a 26.8% consent rate. It seems

apparent that Twitter users are generally not inclined to link their survey data to their Twitter

information.

Table 2 also shows that the interviewer-administered designs produce higher consent rates than

the web designs. The results across modes are quite similar to consent rates in single mode surveys of

the same mode. Interviewer-administered versions of the IP and NatCen Panel have consent rates

more similar to the CAPI-administered BSA (36.8%), while the Internet versions are more similar to

the web-conducted study by Murphy et al. (2013; 26.8%). However, the observed differences across

modes are not statistically significant in both studies. In particular, the CAPI design in the IP led to

significantly higher consent rates, but the CATI design in the NatCen Panel led to directionally, but

not significantly, higher consent. Part of this may be due to the small number of cases in the CATI

design of the NatCen Panel. However, the difference is nearly twice as large between modes in the IP

(16.2%) than found in the NatCen Panel (8.2%), which may also explain the lack of statistical

significance in the latter. If consent decisions can be explained in similar frameworks as survey

response (e.g. Al Baghal, 2016), then it follows that CAPI may achieve higher consent rates than

CATI (Bowling, 2005). The impact of mode (or lack thereof) on consent may also be related to the

impact of other variables.

To explore these relationships, logistic regression models were run predicting consent to

Twitter linkage in both the IP and the NatCen Panel. The models use the same set of demographics

of initial interest as well as mode; the IP also includes indicators found important in understanding

possible selection into mode (Jäckle et al. 2015). Table 3 presents the odds ratios estimated by

these models.

The results of the multivariate analysis for both data sets mirror the findings the bivariate

results. In the NatCen Panel, females and older respondents are significantly less likely to consent

to link their Twitter data. No other indicators have statistically significant relationships with

consent. Similarly, only one measure is significantly related to consent on the IP, with web

respondents being significantly less likely to consent than CAPI respondents. This relationship

persists even after adding controls intended in part to control for potential self-selection into

survey modes.

The odds ratio for web response in the NatCen Panel directionally points in the same direction

that web response reduces the likelihood of consenting to Twitter linkage even after controlling for

other possibly related variables. It is possible that the lack of significance is to do with the

Table 2. NatCen and IP Twitter Consent Rates, by Mode.

Study Overall Interviewer Administered Web

NatCen panel 27.1% (n ¼ 151) 34.4% (n ¼ 21) 26.2% (n ¼ 130) (w2
1 ¼ 1:88, p ¼ .170)

Innovation panel 30.6% (n ¼ 131) 40.5% (n ¼ 68) 24.3% (n ¼ 63) (w2
1 ¼ 12:68, p < .0001)

Note. IP ¼ Innovation Panel.
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relatively small cell sizes. Another possibility is that presence of an interviewer increases chances

for consent, but as has been found for survey nonresponse, telephone acquiescence falls between

face-to-face and web interviewing. The unique nature of the NatCen Panel where some respon-

dents have been asked Twitter consent twice, always in different modes, allows for an initial

exploration of this possibility.

Change Between BSA and NatCen Panel

As outlined above, the NatCen Panel recruited its sample partly from the 2015 BSA respondents;

hence, the respondents were asked about having a Twitter account twice. Those who said they had a

Twitter account at both time points were also asked for consent twice. BSA respondents who said

they had a Twitter account at only one of the surveys were only asked to consent once, and so no

change was indicated. As well as exploring changes in consent rates within respondents across

surveys, it is also useful to measure the change in reporting having an account at both time points.

The top portion of Table 4 presents the comparison of Twitter usage within respondents across

surveys, while the bottom does the same for consent rates.

Table 3. Odds Ratios for Consent to Twitter Linkage, NatCen, and Innovation Panels.

Variables NatCen Panel Innovation Panel

Web mode 0.695 0.422*
Female 0.483* 1.060
Employed 0.758 1.086
Age 0.981* 1.001
Income (baseline £4,201þ)

<£1,300 1.837 0.361
£1,301–2,400 0.960 0.931
£2,401–4,200 1.073 0.778

Education (baseline other education)
Higher education degree 1.493 1.491
Professional/A levels 0.857 0.965
Urban — 1.001
Daily Internet use — 1.069
Provided e-mail — 3.315

Sample Status (baseline IP7 refreshment sample)
IP1 sample — 1.251
IP4 refreshment sample — 1.109

n 552 426

*p < .05.

Table 4. Change in Twitter Usage and Consent Between BSA and NatCen Panel.

Change
Yes BSA/Yes NatCen

Panel
No BSA/No

NatCen Panel
Yes BSA/No

NatCen Panel
No BSA/Yes

NatCen Panel

Twitter usage (total: n ¼ 1,353) 16.7% (n ¼ 226) 71.1% (n¼ 962) 4.6% (n ¼ 62) 7.6% (n¼ 103)
Twitter consent (total: n ¼

226)
21.4% (n ¼ 48) 45.1% (n¼ 102) 27.4% (n¼ 62) 6.2% (n ¼ 14)

Note. BSA ¼ British Social Attitudes.
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In terms of usage, there is a net gain, as may be expected over time. However, it is interesting to

note that of the people having a Twitter account in the BSA and taking the July 2017 NatCen survey

(n ¼ 288), 21.5% (n ¼ 62) reported they did not use Twitter (see first and third columns of Twitter

usage in Table 4). This finding is interesting because to date there have not been any quantitative

indicators of cessation of Twitter use, although there has been speculation about this possibility.

There were 226 respondents (16.7%) interviewed at both points that indicated they had a Twitter

account. These respondents were therefore asked consent to link their Twitter data in both surveys.

The largest percentage declined consent both times, 45.1%, while another 21.4% consented at both

times, meaning 66.5% of respondents who were asked both times gave the same decision. That also

means that 33.5% of respondents gave different answers during the two surveys. This change mostly

occurred with respondents changing their positive consent in the BSA to declining consent in the

NatCen Panel. After those saying no at both surveys, the second largest outcome was saying yes at

the BSA and no at the NatCen Panel, leading to a relatively large net loss in consents among those

asked in both surveys.

Breaking down these changes in consent by mode is made somewhat difficult by the small

number of telephone cases; of the 226 cases asked consent in both surveys, only 25 were asked

by telephone in the NatCen Panel. Still, the limited available evidence does suggest that web

respondents are more likely to change consent decisions and do so in the negative direction. Of the

201 web respondents at the NatCen Panel asked both consents, 29.4% (n¼ 59) consented in the BSA

but declined in the NatCen Panel. Only 6.0% (n ¼ 14) said no in the BSA and yes in the NatCen

Panel, while 43.8% (n ¼ 88) said no both times, and 20.9% (n ¼ 42) said yes both times.

Comparatively (albeit with small numbers), 12.0% (n ¼ 3) of telephone respondents changed

their consent from positive in the BSA to negative in the NatCen Panel; 8.0% (n¼ 2) declined in the

BSA but consented in the NatCen Panel; 56.0% (n ¼ 14) said no at both surveys; and 24.0% (n ¼ 6)

said yes both times. Looking at change in response overall (in any direction), 20% (n ¼ 5) of

telephone respondents changed consent decisions over the two surveys. Web respondents provided

a different consent decision from the BSA 35.3% (n ¼ 71) of the time. This difference is marginally

significant using a right-tailed Fisher exact test (p ¼ .093), suggesting that web respondents may

really be changing decisions at a significantly higher rate.

Discussion

Twitter is seen as a potentially useful source of data, and its linkage to survey data provides a

number of interesting opportunities for researchers. However, before any of these opportunities

can be explored, respondents must consent to link their Twitter data to their survey responses. The

present research is the first to explore consent rates to this type of linkage in a systematic manner,

over three separate data sets. The use of these data sets allowed for exploration of factors related to

consent outcomes, potentially giving insight into the decision-making process but also indicating

potential bias.

Results suggest that consent to link Twitter data to survey responses is relatively low, with

consent rates ranging from 27.1% to 36.8%. Given that Twitter users account for about 20% of

respondents, the linked data sets will be relatively small (depending on the sample sizes of the

survey). However, these data can still be used in a variety of manners to enhance data. Not only can

survey data be enhanced, but understanding how to use Twitter data as a stand-alone source will be

greatly enhanced through this linking. Improving Twitter as a stand-alone source is important as

there are fewer issues of numbers or, arguably, consent (if it is considered “public information”), but

concerns about validity and generalizability remain.

Few sociodemographic characteristics consistently impacted consent outcomes across data sets,

although in two of the data sets (BSA and the NatCen Panel), older respondents were less likely to
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consent than younger respondents. However, survey mode appears to have an important impact on

Twitter consent. CAPI respondents in the BSA and the IP provide higher consent rates than tele-

phone of web surveys. Those choosing to respond via the web are more likely to have a Twitter

account but are less likely to consent, particularly compared to a CAPI survey. The NatCen Panel

provide further suggestive evidence that mode can have an impact on consent decisions. First, the

CATI survey produced higher levels of consent, although the differences are not statistically sig-

nificant. This lack of significance may be due to the small number of telephone interviews but may

also be a differential impact of the interviewer-administered designs. In face-to-face interviews,

interviewers can get a “foot in the door,” provide greater motivation, and social norms indicate more

of an acquiescent disposition (Bowling, 2005; Tourangeau, Rips, & Rasiniski, 2000). The presence

of the interviewer on the telephone carries some of these effects compared to a self-completion

survey but less so than in a CAPI survey. Our findings also confirm results from other studies on

mode and consent (Sakshaug et al., 2017). Continued exploration of mode effects, whether due to

mode of presentation or self-selection into mode of response, is needed in future research.

Second, although there is a net gain in Twitter users among sample members in both the BSA and

NatCen Panel, there is a striking net loss in the percentage of consenters among those who reported

having a Twitter account at both waves. While not directly testable, this is potentially due to the

change in mode for all respondents from face-to-to face in the BSA to web or telephone in the

NatCen Panel. That change in consent decisions within respondents appears even stronger for those

switching to web mode than telephone mode and provides additional support to the above discus-

sion. However, it cannot be dismissed that this net loss is due to other reasons; for example,

respondents’ understanding and concern for data security may have changed between 2015 and

2017. It is also important to note that some respondents stop using Twitter over time, and for this

group, the information to link to a longitudinal study will cease. Conversely, given the greater

number of new users over time, these results also suggest that consent needs to be asked multiple

times (for new users) in a longitudinal study to ensure capturing these potential new data sources.

Any linkage consent requests made in surveys and the subsequent linkage processes have ethical

issues to be considered, but how these issues apply to Twitter (or other social media) data are not

well explored. The public nature of social media data that makes it accessible to researchers also

means that, in their raw form, individuals are identifiable from the data collected. This is proble-

matic as if directly linked to their survey responses, Twitter data would deanonymize the survey

responses. Any identifying information, such as Twitter handles and tweet text, would need to be

stripped to make the linked data anonymous, but this may in turn limit the utility of the data.

The question arises of how to provide access to linked raw social media data to analysts when

anonymization techniques will otherwise negate its usefulness. A number of possibilities exist:

secure on-site locations, secure remote access, researcher accreditation/training, and limiting link-

age to a data controller, so that no other researcher has access to raw Twitter data and survey

responses simultaneously, or the provision of variables derived securely by the field agency may

all contribute to enabling ethical and secure data access. Additionally, how these data will be

archived and shared with other researchers (e.g., to enable the replication of results or further

analysis) without breaking the social media platform’s terms and conditions and the consent agreed

to by the respondent needs to be ensured.

An additional note should be made about the finding that there was substantial change in consent

across the two requests, including those newly joining the platform over time. It seems desirable to

make new consent requests periodically, to ensure better coverage and larger numbers in the data set

in a longitudinal study. However, it is not clear whether it is possible or ethical to only ask new users

or whether all users be asked. If all users are asked, and a number consented at the first instance but

declined at some later instance, the question arises to the status of their data. Can data collected

between the two contradicting decisions still be used, or does that mean the data can longer be
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linked? Clearly, there are numerous possibilities in the usage of linked Twitter and survey data, but

many questions remain to be answered.

Finally, several limitations to the present research need to be pointed out and addressed in future

research. The largest limitation is one affecting all consent to data linkage research: the issues of

survey nonresponse and the existence of the desired linked data. Consent to data linkage is limited to

only survey responders, and data may only exist for some subset of these responders. In this

particular research, initial nonresponse and panel attrition and the relatively small percentage of

Twitter users mean that low consent rates suggest the eventual linked data will be limited in overall

numbers and representation of the initial sample. For the reasons outlined above, we still believe that

such linkage is worthwhile and useful, especially given that data linkage is partly done to help

address nonresponse in survey research (Sakshaug et al., 2012) and is potentially useful even when

records are limited to subset of the population (such as education records; Al Baghal, 2016). Our

results regarding mode impacts are also limited by potential selection into mode in the sequential

mode designs; however, this is an issue facing much of the mixed-mode research (Al Baghal, 2017).
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