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Abstract

In binary and ordinal regression one can distinguish between a location component and a scaling component. While the
former determines the location within the range of the response categories, the scaling indicates variance heterogeneity. In
particular since it has been demonstrated that misleading effects can occur if one ignores the presence of a scaling component,
it is important to account for potential scaling effects in the regression model, which is not possible in available recursive
partitioning methods. The proposed recursive partitioning method yields two trees: one for the location and one for the scaling.
They show in a simple interpretable way how variables interact to determine the binary or ordinal response. The developed
algorithm controls for the global significance level and automatically selects the variables that have an impact on the response.
The modeling approach is illustrated by several real-world applications.

Keywords Recursive partitioning - Tree-structured modeling - Location-scale model - Heterogeneity of variances - Ordinal

responses

1 Introduction

Tree-based models are strong nonparametric tools that allow
to investigate interaction effects of covariates on responses.
The basic concept is very simple: By binary recursive par-
titioning the predictor space is partitioned into a set of
rectangles and on each rectangle a simple model (for exam-
ple a constant) is fitted. The most popular versions are CART
(Breiman et al. 1984), which is an abbreviation for classifi-
cation and regression trees, and conditional inference trees,
abbreviated by CTREE (Hothorn et al. 2006). Introductions
and overviews were given, among others, by Loh (2014) and
Strobl et al. (2009). Recursive partitioning methods, or sim-
ply trees, have several advantages: (i) they can be used in
high-dimensional settings because they provide automatic
variable selection, (ii) they have a built-in interaction detec-
tor, and (iii) they are easy to interpret and visualize. Besides
classical regression trees for metrically scaled response vari-
ables, also versions for binary and ordinal responses are
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available, see Piccarreta (2008), Archer (2010) and Galim-
berti et al. (2012).

The objective of the present paper is to introduce trees
in regression structures with ordinal responses that include
scale effects, which are needed if unobserved heterogeneity
of variances is present. The modeling of scale effects in ordi-
nal regression was already considered by McCullagh (1980),
who introduced the so-called location-scale model and gave
a simple example with one binary covariate dealing with the
quality of right eye vision for men and women. The location-
scale model was considered and extended, among others, by
Cox (1995) and Tutz and Berger (2017); Ishwaran and Gat-
sonis (2000) investigated the link to ROC analysis; Hedeker
et al. (2008), Hedeker et al. (2009, 2012) showed how to use
it in the case of repeated ordinal measurements.

Scale effects are also found in binary data. Their potential
impact found much attention since Allison (1999) demon-
strated that comparisons of binary model coefficients across
groups can be misleading if one has underlying heterogeneity
of residual variances. The problem has been investigated in
various papers since then, see Williams (2009), Mood (2010),
Karlson et al. (2012), Breen et al. (2014) and Rohwer (2015).
One strategy to account for heterogeneity is to use McCul-
lagh’s location-scale model, which in the social sciences is
also known as the heterogeneous choice or heteroskedastic
logit model (Alvarez and Brehm 1995; Williams 2009). It
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is included in various program packages as Stata, Limdep,
SAS, and R.

As a parametric model that uses linear predictors the
location-scale model is rather restrictive. In particular inter-
actions of higher order are hard to include and lower order
interactions are restricted to linear interactions. Tree-based
methods offer a nonparametric alternative to investigate the
interaction structure and automatically select variables. Vari-
able selection is important since typically it is not known
which variables contribute to location and to scaling. Since
there are two components in the model, location and scaling,
classical recursive partitioning methods cannot be used. The
method developed in the following is explicitly designed to
account for these two components. Two separate trees are
obtained, one for each component.

In Sect. 2 the basic approach is introduced and illustrated
by an application. In Sect. 3 the proposed algorithm is given
in detail. More applications are considered in Sect. 5. The
paper concludes with a summary given in Sect. 6.

2 Trees with scale effects

In the following we first consider basic ordinal models and
the problems that might occur if variance heterogeneity is
ignored. Then, we introduce the tree-structured modeling
approach that is proposed.

2.1 Proportional odds and location-scale model

A common way to derive ordinal regression models is to
assume that a latent variable is behind the ordinal response
Y. Let the latent regression model have the form

Yi*=a0+xiTa+asi, i=1,...,n,

where Y. l.* is the latent variable, x; is a vector of covariates, and
o is the standard deviation of the noise variable ¢;, which has
symmetric distribution function F(.). The essential concept
is to consider the ordinal response as a categorized version
of the latent variable with the link between the observable
ordinal variable Y; with k categories and the latent variable
Y[ given by

Yi:I‘@@r_l <Yi*§9r, (1)

where —00 =6y < 6 < --- < 6 = oo are thresholds on
the latent scale. Simple derivation yields that the response
probabilities are given by

T
04 —X:
P(Y; <rlx;) = F (—0’ i ) ,
o

@ Springer

where oo, = 6, — og. However, the model parameters are
not identifiable. An identifiable version is obtained by setting
o = 1 or, equivalently, using Bo, = aor/0, B = /o, which
yields the cumulative model

P(Yi <rlx;)) = F(Bor —x! B). 2)

The most prominent member of the family of cumulative
models is the proportional odds model, which uses the logis-
tic distribution function F (1) = exp(n)/(1 +exp(n)). It has
the form

PY; <rlx;) T

_— = N, = — X . 3
(P(Yl - r|x,~)) Nir ﬂOr i ﬂ ( )
The strength of model (3) is that the parameters have an
easily accessible interpretation. Let y.(x;) = P(Y; >
r|x;)/P(Y; < r|x;) denote the cumulative odds for category

r. Then, one can derive that the effect of the jth variable is
given by

eﬁj — Vr(xi],~--,xij+17~-~,xip)
Vr(xil’-- ‘7xip)

, “

.,x,-j,..

which does not depend on r. That means that ¢?i represents
the multiplicative change in cumulative odds if x;; increases
by one unit for each category. Of course, the interpretation
holds only if the model holds or is at least a good approxi-
mation to the data generating model.

It has been shown that the cumulative model (2) can
yield very misleading results if there is variance heterogene-
ity in the underlying continuous regression model. Allison
(1999) considered an example with the binary response being
the promotion to an associate professor from the assistant
professor level. It turned out that the number of published
articles had a much stronger effect for male researchers
than for female researchers, which seems rather unfair. He
demonstrated that this effect could be due to heterogeneous
variances.

The effect of heterogeneous variances is easily seen. Let
the latent regression model be given by Y;* = ag + xl.Toc +
o;¢ei, where o; now depends on the specific observation i. In
the simplest case one has o; = z;y, where z; is an indicator
variable, which takes the value one for group 1 (for example
males) and the value zero for group O (for example females).
Then, the simple cumulative model (2) is mis-specified. The
derivation from the latent variable yields

P(Y; <rlx;) = F(aor/o — x] (a/0))
for observations from group 1 and
P(Y; <rlx;) = Flao — x] @)

for observations from group 0.

&)



Statistics and Computing (2021) 31:17

Page3of12 17

Thus, effects of covariates differ between the groups. One has
a/o in group 1 and « in group 0. If, for example, o = 0.5
the effect strength in group 1 is twice the effect strength in
group 0. The dependence on the group is simply ignored if
one sets 0 = 1, which is typically assumed in categorical
regression. It means that in both groups the same scaling is
used, although different ones are needed, see also Williams
(2009), Mood (2010).

This form of mis-specification can be avoided by explicit
modeling of the heterogeneity of variances. Let the stan-
dard deviation be determined by o; = exp(ziTy), where z;
is an additional vector of covariates, then one obtains from
assumption (1) the location-scale model

T
—X:
P(Y; <rlx;.2i) = F M : ©)
exp(z; ¥)
which for the logistic distribution function yields
P(Y; <rlx;, zi —x!
10g< (Y; < rlx; Zz)>:mr:,30r :lﬂ %
P(Y; > rlx;, zi) exp(z; ¥)

The model contains two terms in the predictor that speci-
fies the impact of covariates. The first is the location term
Bor + xl.T B, and the second is the variance or scaling term
exp(zl.Ty), which derives from the “variance equation” o; =
exp(ziTy). Importantly, if x; and z; are distinct, the interpre-
tation of the x-variables is the same as in the proportional
odds model. With y,(x;,z;) = P(Y; > r|x;,z;)/P(Y; <
rlx;, z;) denoting the cumulative odds for category r one
obtains again the relation (4) and therefore an interpretation
of parameters that does not depend on the category.

The location-scale model was introduced by McCullagh
(1980) but is also known as heterogeneous choice model or
heteroskedastic logit model (Alvarez and Brehm 1995). It
should be noted that although the scaling component is typ-
ically motivated from variance heterogeneity it can also be
seen as representing interactions or effect-modifying effects,
see Rohwer (2015) and Tutz (2018). As Williams (2010)
noted, it is also strongly related to the logistic response
model with proportionality constraints proposed by Hauser
and Andrew (2006) and extended by Fullerton and Xu (2012).

2.2 Tree-structured location-scale models

Recursive partitioning methods for ordinal responses have
been proposed by Archer (2010), Galimberti et al. (2012) and
are available in R packages. Also the conditional unbiased
recursive partitioning framework as proposed by Hothorn
etal. (2006) allows to fit trees for ordinal responses. However,
all of these methods do not account for possible heterogeneity
induced by variance.

The problem with modeling heterogeneity is that one has
to fit two separate predictors, the location term and the vari-
ance term. In the traditional location-scale model (6) they are
represented by the linear predictor Bo, — xiTﬂ and the vari-
ance term exp(zl.T y), respectively. The tree proposed here
also distinguishes between location and variance; for both
components separate trees are fitted. It is crucial that the par-
titioning of location and variance terms has to be done in
a coordinated way. Trees have to be grown by taking both
components into account simultaneously.

In the following, we first sketch the basic algorithm, which
will be given in more detail in Sect. 3. The basic concept is
to replace the predictor n;, = (Bor — xiTﬂ)/exp(ziTy) of the
location-scale model (6) by coordinated recursive partition-
ing terms.

Basic algorithm

Let us consider the building of a tree when starting at the root.
We will first focus on metrically scaled and ordinal (including
binary) covariates. In this case the partition of a node A into
two subsets A; and A, has the form

A1 =AN{x; <c} and Ay =AN{x; > c},

with regard to threshold ¢ on variable x;.

First step

For each variable x; and all corresponding thresholds ¢ that
can be built for this variable one investigates the following
fits:

(a) Location term:
One fits the location-scale model with one split in the
location term and predictor

nir = Bor — BI(xij <),
where (.) is the indicator function. Then, one obtains

nir = Bor — B ifx;; <c and
nir = Bor ifxjj > c.

Alternatively, one can replace I(.) by I*(.) =21(.) —1,
which means one uses effect coding and replaces the 0—1
dummy variable by the variable /*(.) = 1if x;; < c and
I*(.) = —1 otherwise. Accordingly, one obtains

Nir = /30’. — 13 lfx,/ <c and
nir =Por +p ifxi; >c.

@ Springer
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(b) Variance term:
One fits the location-scale model with one split in the
variance term and predictor

IBOr

= xp (I <o)

Then, one obtains

Nir = /30r ifx,-j <c¢ and
exp(y)
nir = Bor if xjj > c.

One chooses the best split according to an appropriate split-
ting criterion (for details, see Sect. 3) among all the fitted
models from (a) and (b). Thus, in the first step one split is
performed either in the location term or the variance term.
Later steps

In later steps the splitting is done in a similar way. Let
Aloe A}gﬁw denote the nodes (subsets of the predictor
space) of the location term from the previous steps. Accord-
ingly, let A, ..., A,S,fsc denote the nodes (subsets of the
predictor space) of the variance term from the previous
steps. Note that, all nodes are determined by a product of
indicator functions. For example, if the splits were in the
metric variables x3 and x7 a node may be determined by
I(x;j € A) = 1(xj3 > 20)1(x;7 < 4).

One fits all the candidate models

(a) for the splitting of A}COC
term with predictors

, k =1,..., m in the location

Bor — 3¢ BT (x; € Al€) — BI(x; € AV (x;; < ¢)

exp (202 vel (xi € AY))

to obtain the (mjoc + 1)th node in the location term with
parameter estimate S,

(b) for the splitting of A3}°, k = 1,..., my in the variance
term with predictors

Bor — > mmoe Bl (x; € Al%)
exp( ) vel (x; € AY) + yI(xi € A (x;; <¢)

to obtain the (mg. + 1)th node in the variance term with
parameter estimate y.

One chooses the best split according to an appropriate split-
ting criterion among all the possible models from (a) and (b).
Again, each step means an update of the location term or the
variance term. After termination of the algorithm according
to an appropriate stopping criterion, the final model consists
of two trees: one for the location component and one for the
scale component, with different partitions.

@ Springer

We refer to the concept as tree-structured model building
to distinguish it from the model-based recursive partition-
ing models as considered by Zeileis et al. (2008). The basic
idea of model-based recursive partitioning is to fit models in
subspaces of the predictor space and then decide which par-
titioning explains the predictor-response relationships best.
Of course elaborated methods are needed to ensure that the
splits represent relevant information, for example, by using
appropriate tests, see Zeileis et al. (2008). Although in prin-
ciple this approach could also be used in the location-scale
framework the obtained tree would not separate between the
two types of influential terms. The main difference between
tree-structured modeling and model-based recursive parti-
tioning is that tree-structured model building means that the
predictor structure is determined by trees, whereas model-
based approaches do not structure the predictor but fit the
whole model in subspaces. Tree-structured modeling yields
separate trees for the two influential terms: one tree for the
location and one tree for the variance heterogeneity. Thus, itis
easily seen which variables contribute to which component.
Tree structures in the predictor have been considered before,
but in a quite different context; Berger and Tutz (2017) and
Tutz and Berger (2018) considered trees to model the effect
of categorical predictors on the response if the predictors
have a very large number of categories.

Before considering an illustrative example we briefly con-
sider the interpretation of parameters. Let Alloc, e, Al,gﬁ)c
denote the end nodes of the location term, and A%, .. ., AL
denote the end nodes of the variance term. Then, one has the
predictor

Bor — Y_mies Bl (x; € Al)
exp(3_p= yel (x; € AY))

Nir = r=1,...,k—1.

The interpretation is similar to the interpretation of param-
eters in the location-scale model, the S-parameters indicate
the location and the y -parameters variance heterogeneity. For
illustration let us consider extreme cases.

— If By = —o0, one obtains for x; € AlsOC (fixed variance
component) the probabilities P(Y; = 1l|x;) = 1, and
PY; =2|x;))=...P(Y; =k|x;) =0.If By = o0, one
obtains forx; € A}YOC the probabilities P(Y; = k|x;) = 1,
and P(Y; = 1|x;) = ... P(Y; = k — 1|x;) = 0. That
means the size of B indicates the preference for high
categories.

— If y» — 00, one obtains for x; € A]ZOc (fixed location
component) the probabilities P(Y; = 1|x;) = P(Y; =
k|x;) = 0.5, which means maximal heterogeneity with
all responses in the extreme categories.
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Nominal covariates

For a categorical covariate with K unordered categories
xj € {l,..., K}, the partition of a node A has the form
ANSand AN S, where S and § are disjoint, non-empty
subsets S C {l,...,K} and S = {1,..., K} \ S. Thus,
one has 2K—1 — [ possible splits. For large K the number
of candidate splits is excessive, it increases computational
complexity and restricts the possible number of categories
that can be sensibly used.

For continuous and binary responses it has been shown
that ordering the categories by increasing means of the
response and treating these ordered categories as ordinal also
leads to the optimal splits (Fisher 1958; Breiman et al. 1984).
This reduces computational complexity because only K — 1
splits have to be considered.

For categorical responses, Wright and Koénig (2019) pro-
posed a sorting algorithm for ordering the categories, which
is based on a approximate solution by Coppersmith et al.
(1999). For each categorical covariate, the basic steps of the
algorithm are the following:

1. Compute the probability matrix P € RX** where the
rows contain the relative class frequencies conditionally
on the covariate categories.

2. Compute the covariance matrix S € RXXK from P,
weighted by the absolute frequency of the covariate cate-
gories.

3. Sort the covariate categories by the scores of the first prin-
ciple component of S.

Particularly, Wright and Koénig (2019) show that it is suf-
ficient to order the categories a priori, that is, once on the
entire data before the analysis (but not in every split during
tree building). This approach results in faster computation,
does not suffer from a category limit problem and has the
advantage that categories not present in a node can still be
assigned to a child node. In our R program we make use of
the sorting algorithm by Wright and Konig (2019) prior to
tree building and subsequently treat categorical variables as
ordinal.

2.3 lllustrative example
Confidence data

We consider data from the general social survey of social
science, in short ALLBUS, a study by the German institute
GESIS. The data are available from http://www.gesis.org/
allbus. Our analysis is based on a subset containing 2935
respondents of the ALLBUS in 2012. The response is the
confidence in the federal government measured on a sym-
metric scale from 1 (no confidence at all/excessive distrust)

to 7 (excessive confidence). As explanatory variables we con-
sider the gender (0: male, 1: female), the income in thousands
of Euros, the age in decades (centered at 50) and the self
reported interest in politics from 1 (very strong interest) to 5
(no interest at all).

Figure 1 shows the tree obtained for the location term
and Fig. 2 the tree for the variance term. It is seen that
the main drivers of confidence are interest in politics and
age. Among respondents that have strong interest in political
issues (interest = 5) those above 40 years of age have weak
confidence (node 5), whereas those below 40 years tend to
prefer higher categories (node 4). Among respondents that
are less interested in politics, in particular young people (age
lesser than 25) and older people (age above 74) show a strong
tendency to choose high confidence categories (Bs = 0.951
and ﬁs = 0.824). From the variance tree it is seen that males
with low income (node 4; y, = 0.214) are the most hetero-
geneous groups with comparatively large variance, whereas
females form the most homogeneous groups.

3 The algorithm in detail

In all tree-based methods, one has to decide in particular how
to split and how to determine the size of the trees. In tradi-
tional approaches, one typically grows large trees and prunes
them to an adequate size afterward, see Breiman et al. (1984)
and Ripley (1996). An alternative strategy, which was prop-
agated within the conditional unbiased recursive partitioning
framework (Hothorn et al. 2006), is to directly control the
size of the trees by early stopping. We also use this approach
and control the significance of splits by using tests for cumu-
lative regression models.

Let us consider again the construction of the first split. A
split in the location term with regard to the jth variable yields
the model with predictor

nir = Bor — Bjl(xij < cj),

and a split in the variance term with regard to the jth variable
yields the model with predictor

IBOr
exp(yjl(xij <c¢j)’

Nir =

To test for the best split among all the covariates, the set
of possible split points and the two components (location or
variance) one examines all the null hypotheses Hp : 8; =0
and Ho : y; = 0 and selects that split as the optimal one
that has the smallest p value. As test statistic, we use the
LR test statistic. Computing the LR test statistic requires
fitting of both models, the full model and the restricted model
under Hy. We nevertheless prefer the LR statistic because it
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location term

interest<=4

income<=1600

interest=5

Fig.1 Tree for location term of confidence data. The parameter estimates B are given in the terminal nodes

Fig.2 Tree for variance term of
confidence data. The parameter
estimates y, are given in the
terminal nodes

income<=1800

corresponds to selecting the model with minimal deviance.
This criterion is also equivalent to minimizing the entropy,
which belongs to the family of impurity measures.

To decide whether the selected split should be performed,
we apply a concept based on maximally selected statis-
tics. The basic idea is to investigate the dependence of the
ordinal response and the selected variable at a global level
that takes the number of splits into account. For one fixed
component and variable j, one simultaneously considers all
LR test statistics chj, where ¢; are from the set of possi-
ble split points, and computes the maximal value statistic
Tj = max; Tjc;. The p value that can be obtained by the
distribution of T); provides a measure for the relevance of
variable j. The result is not influenced by the number of
split points; therefore, the method explicitly accounts for the
involved multiple testing problem; for similar approaches,
which inspired the proposed method, see Hothorn and Lausen
(2003), Shih (2004), Shih and Tsai (2004) and Strobl et al.
(2007). As the distribution of T in general is unknown we

@ Springer

variance term

income>1800

use a permutation test to obtain a decision on the null hypoth-
esis. The distribution of 7 is determined by computing the
maximal value statistics based on random permutations of
variable j. A random permutation of variable j breaks the
relation of the covariate and the response in the original data.
By computing the maximal value statistics for a large number
of permutations one obtains an approximation of the distri-
bution under the null hypothesis and the corresponding p
value. Importantly, to determine the p value with sufficient
accuracy, the number of permutations should increase with
the number of covariates.

In all later steps the basic procedure is the same; one
searches for the statistic with the maximal value trying all
combinations of variables and split points in both com-
ponents. For the components that already have been split
(location, variance or both) one starts from already built
nodes. Given overall significance level « the significance
level for the permutation test that tests splits in one variable is
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chosen by «/2p, where p denotes the number of covariates
that are available in the two components.

Altogether, the following steps are carried out during the
fitting procedure:

1. (Initial model) Fit the model with category-specific inter-
cepts only, yielding the estimates So1, . .., o k—1-
2. (Tree building)

(a) For all explanatory variables x;, j =1, ..., p, fitall
the candidate models with one additional split in one
of the already built nodes in both components.

(b) Select the best model using the p values of the LR test
statistics.

(c) Carry out the permutation test for the selected node
(defined by a combination of variable, split point and
component) using the maximal value statistic with sig-
nificance level «/2p. If significant, fit the selected
model and continue with Step 2(a), else continue with
Step 3.

3. (Selected model) Fit the final model with components BOr s
Band y.

The final model consists of one or two separate trees: one
referring to the location component and one referring to the
variance component. In general, the trees will be different but
can also yield the same partitioning. It should be noted that
in contrast to the way trees are grown in traditional recursive
partitioning all parameter estimates change if an additional
split is performed.

Prediction for new observations
For a (new) observation with covariates X; and Z; one obtains

predictions of the cumulative odds by identifying the corre-
sponding terminal nodes of the two trees and computing

Bor — Y1 oI (%; € A1)

ﬁ' = ~ = )
T exp (00 el Gi € AY))

and

PY; <rlx;,zi)

=exp(fiy), r=1,....k—1.

P(Y; > rlx;, zi)

4 Simulation study

In this section, we present the results of numerical experi-
ments to investigate the performance of the proposed mod-
eling approach. The primary aim of the study is to analyze
the ability of the tree-structured algorithm to correctly detect

the informative covariates in both the location term and the
variance term.

4.1 Experimental design

In all simulations scenarios the ordinal responses Y; €
{1,...,5},i=1,...,n, were simulated from the location-
scale model (6) with differing specifications of the predictor
functions n;-. We generated datasets with n € {500, 1000}
observations (1000 replications each), and included two stan-
dard normally distributed covariates, x1, xo ~ N(0, 1), two
binary covariates, x3, x4 ~ B(1,0.5) and two nominal
covariates with four categories xs, x6 ~ M(1,0.25). The
category-specific intercepts were set to o, € {—0.25, —0.08,
0.08, 0.25}. All permutation tests were based on 1200 per-
mutations with overall significance level « = 0.05.

Evaluation criteria

In order to evaluate the performance of the algorithm we
computed true positive rates (TPR) and false positive rates
(FPR) for the location term and variance term, respectively.
Let 5‘].°° and 8 j = 1,..., 4, be indicators with sloc = 1 if
covariate x; is influential in the location term and &3° = 1 if
covariate x; is influential in the variance term. Otherwise, the
two indicators are equal to zero. Then with indicator function
1(-), the used performance measures are:

— True positive rate in the location term:

1

TPRIOC -
#j a;oc =1}

Z ¢ =1

jisle=1

— True positive rate in the variance term:

1 .
sC __ sC __
TPR COH#j 8 =1) 2, 167 =1
J jisy=1

— False positive rate in the location term:

1

FPR = — —
#(j: 80 =0}

PRIt

Jj:8%e=0

1y

— False positive rate in the variance term:

1 R
FPR* = Yy Y PR ICHES)

@ Springer
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Simulation scenarios

We consider four simulation scenarios with the following true
underlying predictor functions. In each case the influential
terms correspond to trees with three terminal nodes.

— Scenario 1 without informative variables:

nirZﬂOr,rZI,u-,‘L

— Scenario 2 with informative variables in the location term
only:

Nir = Bor + BI({x1 > 0}) =2 BI({x1 >0} N{x3 =0},
B e {0.4,0.6,0.8}.

— Scenario 3 with informative variables in the variance term
only:

IBOr

T Yl > 0) —2y1({x2 > 0} N {x6 € {1,3}])
y €1{0.5,0.75, 1}.

Nir

— Scenario 4 with informative variables in both terms:
- Por +BI(x1 > 0D —2BI({x1 > 0} N{xz =0}
T yIxg > 0D — 2y I({x2 > 0} N {xe € {1, 3}})
B €{04,0.6,0.8}, y €{0.5,0.75,1}.

4.2 Results

Table 1 summarizes the results of the four simulation sce-
narios. Each value in the table corresponds to the average
detection rate over 1000 replications. It is seen that the TPR
(fourth and fifth column in Table 1) highly depend on the
sample size and the true effect size. While for n = 500 and
small effect size (8 = 0.4 and/or y = 0.5) the algorithm is
not very efficient in detecting the influential covariates, the
detection works quite perfect in the settings with n = 1000
and strong effect size (8 = 0.8 and/or y = 1). In the latter
cases the TPR are all higher than 0.96. The results of sce-
nario 4 (where different covariates are influential in the two
components) further show that the procedure is well able to
separate between the two types of influential terms, as the
TPR are widely comparable to those in scenario 2 and sce-
nario 3.

Regarding the FPR (sixth and seventh column in Table
1) the results demonstrate that the algorithm hardly includes
one of the non-influential covariates. In scenario 1 without
any influential covariates the procedure is most restrictive.
Importantly, the FPR are below the overall significance level
of & = 0.05 in both terms throughout all settings, even with
strong effects of the informative variables.

@ Springer
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Table 1 Results of the simulation study

B y TPR!¢ TPR*® FPRIo° FPR*
n =500
1 - - - - 0.008 0.007
2 0.4 - 0.156 - 0.009 0.006
0.6 - 0.465 - 0.018 0.012
0.8 - 0.788 - 0.018 0.020
3 - 0.5 - 0.074 0.008 0.009
- 0.75 - 0.320 0.011 0.008
- 1 - 0.717 0.020 0.011
4 0.4 0.5 0.168 0.067 0.012 0.009
0.6 0.5 0.522 0.054 0.016 0.012
0.8 0.5 0.829 0.057 0.022 0.024
0.4 0.75 0.203 0.254 0.013 0.010
0.4 1 0.295 0.549 0.021 0.009
n = 1000
1 - - - - 0.007 0.007
2 0.4 - 0.437 - 0.015 0.009
0.6 - 0.865 - 0.021 0.017
0.8 - 0.989 - 0.019 0.024
3 - 0.5 - 0.263 0.010 0.009
- 0.75 - 0.761 0.016 0.013
- 1 - 0.983 0.021 0.022
4 0.4 0.5 0.476 0.240 0.015 0.013
0.6 0.5 0.904 0.241 0.024 0.027
0.8 0.5 0.993 0.264 0.027 0.032
0.4 0.75 0.623 0.686 0.025 0.021
0.4 1 0.841 0.964 0.041 0.029

TPR and FPR in the location term and in the variance term for n = 500
(upper panel) and n = 1000 (lower panel) averaged over 1000 repli-
cations, respectively. Note that the algorithm showed fitting problems
in 0.3% (scenario 2), 0.2% (scenario 3) and 1.9% (scenario 4) of the
replications, because of the ordering constraint on the intercepts in the
cumulative model

5 Further applications
Biochemists data

Let use consider the application used by Allison (1999) when
investigating the problem if effects of variables differ over
gender groups. The dataset, which has also been used by
Long et al. (1993) and Williams (2009), investigates the
careers of 301 male and 177 female biochemists (the fol-
lowing description is adapted from Allison, 1999). Binary
regression is used to predict the probability of promotion to
associate professor from the assistant professor level (1: no
promotion, 2: promotion). The variables in the model are
the number of years since the beginning of the assistant pro-
fessorship (years), undergraduate selectivity as a measure of
the selectivity of the colleges where scientists received their
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location term

prestige<=1.68 prestige>1.68

Fig.3 Tree for location term of biochemists example. The parameter estimates B are given in the terminal nodes

Fig.4 Tree for variance term of
biochemists example. The
parameter estimates p; are given
in the terminal nodes

articles<=6

bachelor’s degrees (select), the number of articles (articles)
representing the cumulative number of articles published by
the end of each person year, and job prestige (prestige) mea-
suring the prestige of the department in which scientists were
employed. Figures 3 and 4 show the fitted trees for location
and variance, respectively.

While Allison (1999) focused on gender as a relevant vari-
able in the variance term, it is seen from the trees that gender
does not seem to be very influential; neither in the location
term nor in the variance term gender is present. A similar
result was obtained by Williams (2010). When he used a
stepwise forward strategy to select variables in the paramet-
ric location-scale model, the only variable that entered the
variance equation was the number of articles. He also made
aplausible argument for this by stating that “there may be lit-
tle residual variability among biochemists with few articles
(with most of them being denied tenure) but there may be
much more variability among biochemists with more articles
(having many articles may be a necessary but not sufficient
condition for tenure).”

variance term

articles>6

year<=4

It is seen from the trees that the chances of a promotion to
associate professor are best for biochemists who have spent at
least three years at a department with not the highest prestige
(node 6). Applicants with articles < 6 or articles > 6 in com-
bination with year < 4 seem to form the most homogeneous
groups.

To evaluate the issue of unfairness further we fitted trees
when only the covariates gender and number of articles are
included in the analysis. The corresponding trees are given in
Fig. 5. Itis seen that only the number of articles was found to
have an impact on location as well as on variance. There is no
indication that gender plays a crucial role for the promotion
to associate professor.

Retinopathy data

In a 6-year follow-up study on diabetes and retinopathy sta-
tus reported by Bender and Grouven (1998) the interesting
question was how the retinopathy status is associated with
risk factors. The considered risk factors were smoking (SM
= 1:smoker, SM =0: non-smoker), diabetes duration (DIAB)

@ Springer
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location term

articles<=6 articles>6

variance term

articles<=1 articles>1

Fig.5 Tree for location (left) and variance (right) of biochemists example with only gender and articles included. The parameter estimates BS and

¢ are given in the terminal nodes, respectively

location term

DIAB<=13.57

GH<=7.36 GH>7.36

DIAB>13.57

GH<=7.96 GH>7.96

Fig.6 Tree for location term of retinopathy data. The parameter estimates By are given in the terminal nodes

variance term

DIAB<=14.64 DIAB>14.64

Fig. 7 Tree for variance term of retinopathy data. The parameter esti-
mates y, are given in the terminal nodes

measured in years, glycosylated hemoglobin (GH), which is
measured in percent, and diastolic blood pressure (BP) mea-
sured in mmHg. The response variable retinopathy status
has three categories (1: no retinopathy; 2: nonproliferative
retinopathy; 3: advanced retinopathy or blind).

@ Springer

It is seen from Fig. 6 that in particular the duration of
diabetes is influential followed by glycosylated hemoglobin.
The lowest risk is found in node 10 (DIAB < 13.57,
GH < 7.36). Even if GH > 7.36 but DIAB < 11.53, the
risk is still very low. The highest risks are found for long
duration of diabetes DIAB < 23.34 in combination with low
values of glycosylated hemoglobin GH < 7.96 (node 7) and
in node 9, which combines long diabetes duration and high
values of glycosylated hemoglobin and diastolic blood pres-
sure. Figure 7 shows that patients with longer duration of
diabetes are more homogeneous (sharing higher risk) than
patients with lower values of diabetes duration.

Predictive performance

Finally, we compared the prediction accuracy of the tree-
structured model to a single CTREE (Hothorn et al. 2006)
in the three applications. For this, we repeatedly (100
replications) fitted the two models on subsamples without
replacement containing 2/3 of the original dataset and com-
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puted the ranked probability score from the remaining test
datasets (i.e., from 1/3 of the original data). The ranked prob-
ability score is particularly appropriate for the evaluation of
probability forecasts of ordinal variables (Murphy 1970).

For the confidence data we observed the values (mean
(range)), 3.144 (3.095-3.196) when fitting the tree-structured
model and 3.147 (3.101-3.198) when fitting a CTREE. For
the biochemists data we observed the values 0.881 (0.845-
0.910) and 0.882 (0.853-0.921) including all five covariates,
and for the retinopathy data we obtained 1.484 (1.417-
1.541) and 1.488 (1.384—1.581).

The results indicate that there is only minor improvement
in prediction when using the tree-structured model, which fits
the location-scale model, compared to a single tree. Our pro-
posed method mainly serves as an explanatory tool showing
which variables influence the location, and which variables
influence the variance of the ordinal responses. If the objec-
tive is the best prediction, it is advisable to use random forest
methods as proposed, for example, by Janitza et al. (2016)
and Hornung (2020).

6 Summary and concluding remarks

Let us summarize the strengths of the proposed tree method.

— One obtains two trees: one for the location and one for
the variance. Thus, it is clearly seen which variables have
an impact on which component.

— The obtained trees have a simple interpretation showing
which combinations of variables determine the prefer-
ence of categories, and which sub-populations form more
homogeneous or heterogeneous groups.

— By fitting a scale (or variance) component the method
avoids misleading effects that may occur if one ignores
potential variance heterogeneity.

— As in all tree-based methods interactions are explicitly
modeled and there is a built-in variable selection proce-
dure.

The presented algorithm is constructed such that only vari-
ables for which a significant effect can be detected are
included. By controlling for the overall significance level the
inclusion of irrelevant variables is avoided. These properties
of the procedure are demonstrated in the simulation study. It
has the effect that the procedure tends to include relatively
few variables, in particular if many variables are available.
However, the method can also be used in an exploratory way.
If one uses a significance level distinctly larger than .05, one
obtains much larger trees, which might hint at further possi-
ble interaction effects. Nevertheless, we think it is essential
to control for the significance level, which gets lost in many

procedures, especially if one first fits trees and then starts
pruning as in conventional trees.

An R implementation of the proposed tree-structured
model including an auxiliary function to plot the trees, as
well as exemplary code to reproduce the illustrative exam-
ple, is available from GitHub (https://github.com/jmober/
LocationScaleTree).
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