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Abstract

The multilevel and poststratification approach is commonly used to draw valid infer-
ence from (non-probabilistic) surveys. This Bayesian approach includes varying regression
coefficients for which prior distributions of their variance parameter must be specified. The
choice of the distribution is far from being trivial and many contradicting recommenda-
tions exist in the literature. The prior choice may be even more challenging when data
results from a highly selective inclusion mechanism, such as applied by volunteer panels.
We conduct a Monte Carlo simulation study to evaluate the effect of different distribution
choices on bias in the estimation of a proportion based on a sample that is subject to a
highly selective inclusion mechanism.

Keywords: Bayesian MRP, prior for the variance parameter, self-selection, selective data,
simulation study.

1. Introduction

Most surveys are affected by selectivity in the sampling and/or the response process. For
probability surveys that do not suffer from sample-selection error, varying willingness be-
tween population subgroups to participate in the survey can introduce severe self-selection
or nonresponse bias. Non-probability surveys (for theory on non-probability samples see, for
example, Little, West, Boonstra, and Hu (2019)) are likely to suffer from sample-selection bias
due to non-random sampling and self-selection bias due to selective participation that usually
can not be distinguished in practice. The extend of bias differs largely between surveys, while
non-probability online surveys have been found to be more selective than probability ones
(Cornesse, Blom, Dutwin, Krosnick, De Leeuw, Legleye, Pasek, Pennay, Phillips, Sakshaug,
Struminskaya, and Wenz 2020).

In the recent decades, online panels have become a prominent tool to survey the general
population. However, due to budget constraints, the recruitment of such panels is often not
based on random sampling procedures. Very common examples of non-probabilistic online
panels are volunteer panels for which advertisements are fielded over websites, and everybody
who comes across the advertisement is invited to participate. The problem hereby is that
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different units of the population have different and unknown propensities to see the advertise-
ment and certain units do not have the chance to see the advertisement at all, for examples
persons who do not use the Internet or do not have Internet access. In addition, it is very
likely for such panels that some population groups are more likely to respond than others.
Because the sampling mechanism is unknown, inclusion probabilities are not known in many
applications in practice as well and design weights cannot be computed. In addition to the
selectivity in the initial recruitment, panel nonresponse and drop-out throughout the panel
waves might introduce further selectivity to the respondent sample and therefore severely bias
survey estimation.

In order to achieve valid inference based on highly selective samples like those generated by
volunteer panels, researchers commonly use weighting procedures to account for selectivity,
e.g., by raking the sample such that distributions of the sample match the population distri-
butions known from official statistics. For very selective respondent samples, however, it is
very likely that some population groups are very scarce in the sample or even non-existent.
This leads to sparse or empty weighting cells that standard weighting procedures can not
deal with. During the last decade, more complex weighting and estimation procedures have
been developed and applied by social researchers, the most famous being the multilevel re-
gression and poststratification (MRP) approach by Gelman and colleagues (see, for example,
Gelman and Little (1997) and Wang, Rothschild, Goel, and Gelman (2015)). This Bayesian
approach can successfully be used to stabilize estimation when the sample is highly selective
and weighting cells are sparse or empty by borrowing strength from other cells. The weighting
and estimation approach includes varying regression coefficients for which prior distributions
and, more specifically, the variance parameter of these distributions need to be specified. The
choice of the prior distribution of the variance parameters is of great importance and there
are contradicting recommendations in the literature. The inconclusive recommendations for
the prior distributions make it very hard for practitioners to decide which prior to use in
their applications. This is even more challenging when the data stem from a highly selective
inclusion mechanism. In this paper, we aim at giving practical advise to inform the choice of
the prior distribution for highly selective data. We conduct a Monte Carlo simulation study
to evaluate the effect of the choice of the prior distribution of the variance parameter on the
estimation in two (highly) selective samples. We thereby use several different distributions
that are commonly used in the literature.

In the next section, we give an overview of the MRP approach including a review of the
recommendations for the choice of the distribution of the variance of the regression coefficients.
Section 3 describes the simulation study. Results are shown in Section 4. We end with a
conclusion and discussion in Section 5.

2. Multilevel and poststratification approach

2.1. Notation

We assume that a sample S of size n is drawn from the population P of size N . The final
participants set of respondents is described by R. We assume this sample to be very selective,
for example, by highly systematic response processes or by highly systematic sampling. These
samples lead to a sample composition that differs strongly from the target population and
that is often associated with so-called volunteer panels. Thus, the distributions of the relevant
variables in the sample might strongly differ from their distributions in the population.

To perform weighting procedures, we assume that weighting variables x1 . . . xd . . . xD are
available in the survey and the population, where D is the number of weighting variables.
Each weighting variable d consists of Cd categories or groups. The cross-classification of these
variables form the weighting cells, whereby a certain cell is indicated by l. For highly selective
inclusion processes many sparse or empty cells may appear.
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The number of sample elements in a weighting cell l is indicated by nl, the corresponding
number of elements in the population is denoted by Nl.

The variable of interest, for which the estimation is to be performed, is described by y with
sample realizations yl[1] . . . yl[i] . . . yl[n]. In this paper, we assume we have four weighting vari-
ables x1, x2, x3, x4 and a binary variable y that takes values one and zero. We aim to estimate
the proportion p for y = 1 in the population based on the sample data. In a typical appli-
cation, the weighting variables would be socio-demographics like age (in categories), gender,
education, household size and marital status which are available for the general population
from official statistics.

In the next section, we will present the estimation and weighting procedure that is applied in
this paper in more detail.

2.2. Multilevel regression and poststratification approach

Whenever cell population sizes Nl are available, e.g., from official statistics, a poststratifica-
tion weighting procedure can be applied. In practice, the poststratification procedure bears
some challenges when it is applied on survey data that suffer from a selective self-selection
process. For example, in case of many weighting cells, the estimation may be highly variable
and unstable (Kalton and Flores-Cervantes 2003), particularly when having a lot of sparse or
empty weighting cells. In addition to the estimation in sparse cells, also the overall estima-
tion can be deteriorated when many cells with only low numbers of sample elements exist.
For weighting cells without elements in the sample, an ordinary poststratification cannot be
applied, even when population sizes for this cell are available. In practice, the problem of
empty cells is often solved by combining weighting cells resulting in information loss.

One possibility to deal with the problem of sparse and empty sample cells is to use the multi-
level logistic and poststratification (MRP) approach, as described by Gelman and colleagues
(see, for example, Gelman and Little (1997) and Wang et al. (2015)). The MRP procedure
can be described as follows (see for the following explanations Wang et al. (2015)):

1. First, a Bayesian multilevel logistic regression model is defined by :

P (yi = 1) = logit−1(α+ βx1l[i] + βx2l[i] + βx3l[i] + βx4l[i] + . . .)

βvarl[i] ∼ N(0, σ2
var);σ

2
var ∼ Ψ(. . .)

where βvarl[i] equals βx1l[i] to βx4l[i] which are the varying coefficients of the weighting vari-

ables x1 to x4 and σ2
var are the corresponding variance parameters. The Bayesian part

of the model is related to the varying coefficients for which prior distributions need to
be specified. These prior distributions are given by normal distributions with a mean
of zero and variance parameters σ2

var. The choice of the prior distribution Ψ(. . .) of the
variance parameters σ2

var is not as straightforward as for the varying coefficients and
for the variance parameters various recommendations exist in the literature. Because
the parameters σ2

var may have a strong influence on the posterior draws of the varying
coefficient and thus on its estimation and its variability, the choice of their prior distri-
butions can have a strong influence on the overall estimation, and thus the priors have
to be selected very carefully.

2. In the next step, cell probabilities p̂l are estimated by using the estimated parameters
α̂, σ̂2

var and β̂varl[i] from the multilevel logistic regression model.
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3. Afterwards, the overall proportion p is estimated by:

p̂ =

L∑
l=1

Nl · p̂l

L∑
l=1

Nl

. (1)

Beside the estimated propensities from the multilevel logistic regression model, the population
sizes Nl in each cell l are required, but the sample sizes nl in each cell l are not a part of the
equation.

The advantage of MRP compared to an ordinary poststratification is the stabilization of
the estimation by including the multilevel logistic regression model. The estimation in sparse
weighting cells is improved by using information of weighting cells with many units. This pro-
cedure is called borrowing strength, a common procedure applied in small area statistics. By
improving the estimation in sparse cell, the overall estimation can be improved. Furthermore,
it is even possible to obtain estimations for cells without sample elements.

Choosing an appropriate prior distribution for the variance parameters σ2
var can have a large

impact on the estimation. We discuss different prior distributions for these parameters in the
next section.

2.3. Prior distributions for the variance parameter

In Bayesian statistics, the parameters of interest, such as the variance parameter, are not fixed
but underlie some kind of uncertainty. Parameters are drawn from posterior distributions that
result from the selected prior distribution and the likelihood that describes the sample data.
Priors can be chosen so that the data have a larger or a small influence on the posterior
distribution. In general, one can choose between informative and non-informative priors.
Non-informative priors have little influence on the posterior distribution as compared to the
dominating contribution of the data. Using non-informative priors let’s ”‘the data speak for
themselves”’ (Gelman, Carlin, Stern, Dunson, Vehtari, and Rubin 2013). Using informative
priors increases the impact of the prior information on the posterior distribution.

Numerous proposals exist in the literature on which prior distributions should be used for
the variance parameters σ2

var. In particular, many non-informative priors are proposed in the
literature (Gelman 2006). Depending on the distribution that is used or on the implementation
of the distribution in the statistical software (for example rstan (Stan Development Team
2018)), the prior is either applied to the variance parameters σ2

var or σvar (see, for example,
Gelman (2006)). In this study, we use several priors proposed by Gelman (2006), Gelman
et al. (2013) or Gelman (2020).

A first important distribution suggested for the prior of the variance parameter is the inverse
gamma distribution. For example, Spiegelhalter, Thomas, Best, Gilks, and Lunn (2003) apply
an inverse gamma distribution IG(0.001, 0.001) for their hierarchical model (see also Gelman
(2006)). The aim of choosing such small values for the parameter η of the inverse gamma
distribution is to obtain a non-informative prior as the distribution becomes more flat and
diffuse. However, as mention in Gelman (2006), the inverse gamma distribution may result in
an improper posterior density for such parameter values. Inferences are sensitive to the choice
of η and the prior distribution may become not non-informative. Gelman (2006) illustrates
this using an example with educational testing and experimental school data for which the
inverse gamma IG(1, 1) prior distribution strongly constrains the posterior inferences. This
constraint was even stronger when using an inverse gamma distribution IG(0.001, 0.001) as
prior distribution which was peaked strongly close to zero.

Another distribution that is used as prior distribution for the variance parameter is the scaled
inverse chi-squared distribution Scale-Inv- χ(ν, σ̂2

var) which is for example applied or discussed
in Wang et al. (2015), Gelman et al. (2013) and Browne and Draper (2006). The parameter
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ν denotes the degrees of freedom and σ̂2
var is a prior estimate of σ2

var. The scale inverse
chi-square distribution can be expressed by the inverse gamma distribution IG(ν2 ,

ν
2 σ̂

2
var)

(Browne and Draper 2006). For the scale-inverse chi-squared distribution, the choice of the
degrees of freedom has a strong influence on whether the prior is informative or rather non-
informative. Higher numbers of degrees of freedom lead to more tight and thus informative
prior distributions.

Also, the uniform distribution U(a1, a2) is often used as an non-informative prior distribution
Ψ(. . .) for the variance parameter σvar (see for example Gelman (2006), Gelman et al. (2013)
or Park, Gelman, and Bafumi (2004)). However, using the uniform distribution as prior
distribution has some disadvantages: first, as mentioned in Woodward (2011), an upper limit
has to be defined and values that are higher than the upper limit have a probability density
of zero. Gelman (2020) recommends to apply the uniform distribution only in cases when
the bounds are the actual constraints. Second, according to Gelman (2006), the uniform
distribution U(0, a2) shows some problems with respect to miscalibration when the number
of groups of a variable is small (lower than 3) and when a2 → ∞ due to the infinite prior
mass σvar →∞.

However, also for three, four or five groups, the right tail of the posterior may be too heavy
which may lead to an overestimation of σvar. Gelman (2006) shows this in a school example
for a variable with three groups and proposes to use prior distributions that are more suited
to constrain the posterior distribution with respect to unrealistic values. In his three-group
school example Gelman therefore also applied a Half-Cauchy distribution (for a discussion on
the use of the Half-Cauchy distribution see also Gelman (2020)) with scale parameter set to
25, which he describes as weakly informative. The value of the scale parameter was chosen
to ensure that σvar is constrained only weakly. By applying this prior, unrealistic high values
of σvar could be avoided in this study (Gelman 2006).

Even though the Half-Cauchy distribution performs well in the example above, Gelman (2020)
argued that using such a prior might be too weak for many other applications. This is ex-
plained again for situations in which the number of groups is small and the data does not
contain much information about group-level variance. In such situations, the Half-Cauchy dis-
tribution may be too broad and Gelman (2020) recommends to apply stronger priors with not
too large scale parameters, such as a Half-normal distribution N(0, 1) or a StudentT (4, 0, 1)
distribution in the case that large values of σvar are not plausible. Both a Half-normal dis-
tribution with a small variance parameter and the Half-t distribution with higher degrees of
freedom lead to a more tight and concentrated distribution.

For highly selective inclusion mechanism, the distribution of the sample data might greatly
differ from the population distribution and might have many sparse or empty cells. This
selectivity also challenges the choice of the prior for the variance parameter. Having in mind
that the posterior distribution of the variance parameter and the varying coefficients result
from the combination of the selected prior distribution and the likelihood, using a prior that
lets the highly selective data dominate the posterior inference may lead to invalid or unreliable
posterior inferences and estimations. For the variance parameter this means that too little or
too large variability might occur in posterior inferences of the varying coefficients.

To overcome this problem it may be reasonable to use prior distributions that constrain
both the influence of the highly selective data and the posterior inferences of the variance
parameters of the varying coefficients in a way that the overall estimation can be stabilized.

Such a procedure, however, might constrain posterior inferences too much, so that important
ranges of the parameter space are excluded. This may also have a negative effect on the
variability. According to Gelman (2020), hard constraints should only be used when the
bounds are actual constraints. For that reason, it may be a thin line between these two
extremes (too less or too much variability when letting the data dominate or when excluding
ranges of the parameter space) when applying the multilevel regression and poststratification
approach on a sample that results from the highly selective inclusion mechanism.
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In the next section, we describe the Monte Carlo simulation that was conducted to evaluate
the effects of different prior distributions of the variance parameter on the point estimation
of y in two different scenarios with differently selective inclusion mechanisms.

3. Simulation study

For our simulation, we build on the simulation study presented in Bruch and Felderer (2021).
The simulation study is implemented in R (R Core Team 2018).

We use two sampling scenarios: In the first scenario, the inclusion mechanism is selective
but to a moderate degree. This scenario serves as a benchmark scenario to which the second
scenario is compared to. In the second scenario, the selectivity is further increased. This
scenario mimics volunteer panel sampling in which the inclusion mechanism is highly selective,
i.e., highly correlated with the covariates leading to sample distributions that are very different
from population distributions. In this scenario, many sparse or empty cells challenge the
weighting procedures.

In the simulation study, we simulate four weighting variables x1 . . . x4 and one dependent
variable of interest y.

To generate the weighting variables, we generate a synthetic population by drawing first
four continuous latent variables xU1cont

, xU2cont
, xU3cont

and xU4cont
from a multivariate normal

distribution with ζ = (xU1cont
, xU2cont

, xU3cont
, xU4cont

) and parameters

ζ ∼ N(µ,Σ),

where the vector of expectations µ and the covariance matrix Σ are defined by

µ = (200, 50, 80, 0.1)

and

Σ =


1, 000 170 35 10
170 100 5 10
35 5 75 10
10 10 10 10

 .

To draw the four variables from a multivariate normal distribution, we use the R-Package
mvtnorm (Genz, Bretz, Miwa, Mi, Leisch, Scheipl, and Hothorn 2019). In a next step, the
continuous variables are categorized to mimic more realistic data sets usually available for
social sciences which often contain many categorical variables. For the first variable xU1 the
underlying continuous variable xU1cont

is split into five categories (the categorization of the
continuous variables can be found in Table 6 in Appendix A). The second variable xU2 is
generated by building five categories using the continuous xU2cont

variable’s 0.25, 0.5, 0.75 and
0.9 quantiles. Similarly, the third variable xU3 results from the quartiles of the variable xU3cont

.
The fourth variable xU4 is based on xU4cont

following the same categorization scheme as variable
xU2cont

.

We simulate a binary survey variable of interest yU to be depending on the weighting vari-
ables. The variable yU is drawn form a Bernoulli-distribution yi ∼ B(py,i) using the R-package
LaplacesDemon (Statisticat and LLC. 2018). Each sample element’s propensity pUy,i for ele-

ment i to choose category yi = 1 depending on the characteristics xU1 . . . x
U
4 is modeled by
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using a logistic model that is the same for both simulation scenarios (the model parameters
can be found in Table 10 in Appendix A.):

pUy,i =
exp(δ + γ

xU1
j[i] + γ

xU2
k[i] + γ

xU3
o[i] + γ

xU4
v[i])

1 + exp(δ + γ
xU1
j[i] + γ

xU2
k[i] + γ

xU3
o[i] + γ

xU4
v[i])

. (2)

The vectors γx
U
1 . . . γx

U
4 encompasses values for each variable category and δ is the intercept.

These parameters determine how strong the relationships between the weighting variables
and the outcome of interest are.

Simulated this way, all joint distributions of weighting variables in the population are set and
known for the entire population as well as the benchmark information of the survey variable
of interest.

The inclusion mechanism is simulated using the following procedure (the modeling of yU and
the inclusion mechanism to create the volunteer sample is done on the basis of the procedure
to model the nonresponse mechanism in the simulation study of Enderle, Münnich, and Bruch
(2013)):

At first, we model the propensity ωUi to be included in the survey to be depending on xU1 . . . x
U
4 .

This means that respondents with certain characteristics are more likely to participate than
others. The inclusion process is modeled using a logistic model:

ωUi =
exp(λ+ ξ

xU1
j[i] + ξ

xU2
k[i] + ξ

xU3
o[i] + ξ

xU4
v[i])

1 + exp(λ+ ξ
xU1
j[i] + ξ

xU2
k[i] + ξ

xU3
o[i] + ξ

xU4
v[i])

. (3)

The vectors ξx
U
1 . . . ξx

U
4 encompasses values for each variable category, where the value of

each reference category is set to zero and λ is the intercept. Different parameters are chosen
for the two simulation scenarios depending on the desired correlation between the inclusion
mechanism and the weighting variables. The higher the correlations are, the more selective
the inclusion process is. Inclusion propensities are in practical applications not known. Thus,
in the simulation, they are only used to model the inclusion process but not included in the
subsequent weighting and estimation.

In order to create a participation indicator that is either 0 or 1 from the inclusion probability
ωUi , we draw random numbers from a uniform distribution. A unit participates in the survey
if ωUi > ui and refuses to participate if ωUi < ui. We simulate non-probability samples of size
n = 1,000.

However, the Monte Carlo simulation study consists of random procedures which can be
repeated a certain number of times. For example, when applying a design-based Monte Carlo
simulation study, probability samples are drawn repeatedly from the population of interest
by using a certain sampling design. In case of non-probability samples, the inclusion process
consists of (mainly) non-random elements. This prevents a meaningful application of a Monte
Carlo simulation study with respect to a repeated drawing of samples from the population.
Thus, we rather propose to repeat the variable generation process in each simulation run
which starts with draws from the multivariate normal distribution. This is often done in
so-called (pure) model-based Monte Carlo simulation studies (for an explanation of a model-
based or a pure model-based simulation study see Burgard (2015)). As a result, the generation
process of the variables y, x1, x2, x3 and x4 is repeated in each simulation run by applying
the non-probabilistic sampling scheme on each generated data set with variables yU , xU1 , xU2 ,
xU3 and xU4 . In doing so, we obtain non-probability samples for each simulation run for which
the weighting and complex estimation strategies are applied. In total, we generated 1,000
non-probability samples for each scenario.

In the simulation study, we consider a highly selective and moderately selective scenario
varying the concrete numbers for the parameters in the inclusion model. The values for the
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parameters can be found in Table 9 in Appendix A. We use rstan (Stan Development Team
2018) to implement the Bayesian approach, to fit the model and to draw the parameters from
the posterior distribution. In detail, we use 2000 iteration, 4 chains and 500 warmups for each
estimator and in each simulation run. In total, we use 1,000 simulations runs.

Both inclusion models result in sample distributions of the weighting variables that differ from
the population benchmark (see Table 6 in Appendix A. Tables 7 and 8 (Appendix A) show
the correlation structure of all variables in the realized sample after applying the inclusion
mechanism in both scenarios). The difference is larger for scenario 2 with the highly selective
inclusion mechanism than for the more moderate scenario 1.

We consider prior distributions for the variance parameter using several parameter constel-
lations that are proposed in the literature as well as prior distributions that are constructed
to examine and to improve the performance of the estimation on high selective data. The
priors included in the simulation study are presented in the next section. Like Wang et al.
(2015), we do not consider a fully Bayesian framework in our research and solely draw the
main parameters of interest from a posterior distribution, i.e., the parameters of the multilevel
approach.

To study how our findings are affected by the sample size and covariance structure, parts of
the analysis are repeated using samples with reduced sample size and reduced covariances
(see Appendix B).

3.1. Priors used in the simulation study

In the simulation study, we compare several prior distributions for the variance parameter (see
2.3). These are the inverse gamma distribution, the uniform distribution, the scale inverse
chi-squared distribution, the Half-Cauchy distribution, the Half-normal distribution and the
Half-t-distribution. For most of the distributions, we apply the prior on the standard deviation
σvar rather that σ2

var except for the inverse gamma distribution for which the prior is applied
on σ2

var. This corresponds to the procedure described in Gelman (2006).

We apply four different strategies to select the scale parameter values for the different prior
distributions.

Priors that lead to data-driven posterior inferences First, we use strategies that we call
priors that lead to data-driven posterior inferences. These strategies include priors that lead
to posterior distributions in which the data have a strong influence.

The strategies include the nonproper and non-informative uniform distribution U(0,∞) that
is also applied in Gelman (2006) and that is the default in rstan (Stan Development Team
2018). Because the uniform distribution U(0,∞) may suffer from an additional overestimation
when the number of groups is small (see the explanations in Gelman (2006) and Section 2.3)
we further include prior distributions that take the estimated variance parameter for the scale
parameter. We include the Half-Student-t distribution and the Half-normal distribution that
are, for example, described in Gelman (2020) and Woodward (2011). For these distributions
we use the estimated variances from the sample as scale parameters. The variance parameters
σ̂var are estimated using the glmer function of the lme4 package (Bates, Mächler, Bolker, and
Walker 2015). We also apply the estimated variance parameter for the scale parameter of the
scaled inverse chi-square distribution as described in Browne and Draper (2006) and applied
in Wang et al. (2015) (see Table 1 for the concrete parameter constellations in the prior
distributions we use in this simulation study).

Selection of scale parameters strongly constraining posterior inferences In a second strategy,
we include different priors that constrain the posterior inferences. In this case, the choice of
scale parameters is not data-driven but parameters are chosen in a way to limit the influence
of the (selective) data. To constrain the variability of the posterior inferences, we use priors
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for which a high proportion of their probability mass is shifted to an area close to a variance
parameter of zero, for example, the Half-Student-t distribution StudentT (4, 0, 1) and Half-
normal distribution N(0, 1) proposed by Gelman (2020) for variables x1 and x2. Also for the
scaled inverse chi-square distribution we set rather small values for the scale parameter and
lower upper bounds of the uniform distribution.

Selection of parameters weakly constraining posterior inferences As a third strategy, the
posterior inference of the different variables is constrained to different degrees based on expec-
tations about the variance parameters for the different variables. Comparing the findings from
this strategy to those from the second strategy, we analyze the effect of different constraints
on the estimation, e.g., whether a weak constraint performs better than a strong constraint
that might restrict the estimation too much.

Mixed strategy As a fourth strategy, we use a combination of the data-driven strategy
and the strong constraints strategy. The idea is that researchers can put constraints on the
posterior inference of certain variables based on their experience from prior research while not
using constraints for other variables. Using this strategy, parameters to constrain posterior
inferences are only used for variables for which the estimated variance parameters from the
sample strongly differ from the range that is usually found for these variables.

Other priors commonly suggested in the literature For the sake of completeness and for
comparison reasons, we consider the priors described in Section 2.3 that are further proposed
in the literature by Gelman (2006), Gelman (2006) and Spiegelhalter et al. (2003):

• Inv −Gamma(0.001, 0.001) (iv.gam.001)

• Inv −Gamma(1, 1). (iv.gam.1)

• Cauchy(0, 5) (cau.5)

• Cauchy(0, 25) (cau.25)

Table 1: Distributions used in the four strategies

strategy variables prior distributions
uniform Half-Student-t Half-normal Scale-Inv-χ2

strategy 1

(data-driven)

x1, x2 U(0, inf) StudentT (4, 0, σ̂var) N(0, σ̂var) Scale-Inv.-χ2(100, σ̂var)
x3, x4 U(0, inf) StudentT (4, 0, σ̂var) N(0, σ̂var) Scale-Inv.-χ2(100, σ̂var)

(uni.S) (stu.S) (norm.S) (sc.iv.chi.sq.S)

strategy 2

(strong constraint)

x1, x2 U(0, 1) StudentT (4, 0, 1) N(0, 1) Scale-Inv.-χ2(100, 0.001)
x3, x4 U(0, 1) StudentT (4, 0, 0.1) N(0, 0.1) Scale-Inv.-χ2(100, 0.001)

(uni.strong) (stu.strong) (norm.strong) (sc.iv.chi.sq.strong)

strategy 3

(weak constraint)

x1, x2 U(0, 10) StudentT (4, 0, 5) N(0, 5) Scale-Inv.-χ2(100, 5)
x3, x4 U(0, 1) StudentT (4, 0, 0.1) N(0, 0.1) Scale-Inv.-χ2(100, 0.001)

(uni.weak) (stu.weak) (norm.weak) (sc.iv.chi.sq.weak)

strategy 4

(mixed)

x1, x2 U(0, inf) StudentT (4, 0, σ̂var) N(0, σ̂var) Scale-Inv.-χ2(100, σ̂var)
x3, x4 U(0, 1) StudentT (4, 0, 0.1) N(0, 0.1) Scale-Inv.-χ2(100, 0.001)

(uni.mix) (stu.mix) (norm.mix) (sc.iv.chi.sq.mix)

3.2. Estimated variance parameters in both scenarios

To have a first impression of the effect of the sample selectivity on the variance parameters,
we estimate the variance parameters σ̂var applying a simple maximum likelihood estimation
using the glmer function of the lme4 package (Bates et al. 2015). We use a multilevel logis-
tic regression with y as dependent variable and x1, x2, x3 and x4 as independent variables.
Summary statistics of the variance parameter estimations for the variables x1, x2, x3 and x4

over all samples of the simulation study for both scenarios can be found in Table 2. In a
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real data application, the information in this table can be seen as the collected knowledge
a researcher has on the variables under study based on his prior research. The estimated
variance parameters σ̂var in each sample are used as prior information in the Half-Student-t
distribution, the Half-normal distribution and the the scaled inverse chi-square distribution
within the first strategy that leads to data driven posterior inferences.

The estimations of the variance parameters for scenario 2 are higher on average (means and
medians) than for scenario 1. Looking at the distribution of the variance parameters more
closely, we find large differences for the two scenarios that are caused by the different selectivity
of the sampling process: scenario 2 shows much larger outliers than scenario 1 which can be
seen by comparing the maximum values for each x-Variable for the two scenarios and by
comparing the maximum value to the third quartile (which is given by the ratio in the last
column). The outliers are specifically strong for variables x3 and x4 in scenario 2 where they
are completely out of the range of the simulation study’s sample estimations of the variance
parameters described by the means and medians. The estimations of the variance parameter
for variables x1 and x2 also have some large outliers in scenario 2. However, these outliers
are not out of the range of the sample estimations to the same extend as those for variables
x3 and x4.

For the samples that contain very large outliers, choosing priors for x3 and x4 that lead to
data driven posterior inferences - our first strategy - will likely result in a large variability
in the posterior inference and may destabilize the overall estimation of y. It might thus be
beneficial to use priors that constrain the effect of the selective data on the posterior inference.
We use priors that strongly constrain the estimation for all variables in our second strategy
by using priors for which a high proportion of their probability mass is shifted to an area close
to a variance parameter of zero. Note that the estimation of the variance parameter for the
variables x3 and x4 is close to zero on average. Thus, the constraints have a much stronger
impact on variables x1 and x2, which can be seen by the higher average of their respective
estimations of the variance parameter. Putting the same constrains on all variables might
not be well suited as well. For the third strategy we thus use the priors for which a high
proportion of their probability mass is shifted to an area close to a variance parameter of zero
for variables x3 and x4, since they have means and medians closer to zero and since they have
outliers that are more out of the range compared to x1 and x2. Variables x1 and x2 have
weaker outliers but higher means and medians and thus, using priors with a probability mass
close to zero may constrain posterior inferences too much. We thus apply weaker constraints
to x1 and x2. The constraints are chosen to be close to the medians of the estimated variance
parameters in Table 2 and we set the scale parameter of the Half-normal, half t- student and
the scale inverse chi square distribution on 5 and the upper bound of the uniform distribution
on 10. For the mixed strategy, we put the same constraints as for strategy 2 on variables
x3 and x4 that show very large outliers in the variance parameter estimation and use the
data-driven priors from strategy one for x1 and x2 that show weaker outliers. Strategy 2,
3 and 4 only differ in their prior distributions for variables x1 and x2 while the same prior
distributions are used for variables x3 and x4.

Table 2: Distribution of the estimated variance parameters σ̂var

scenario Variable Min. first Quartile Median Mean third Quartile Max.
Max.

thirdQuartile

scenario 1

x1 3.16 4.24 4.73 4.73 5.08 6.38 1.26
x2 2.99 4.11 4.50 4.64 4.91 7.04 1.43
x3 0.33 0.76 0.88 0.89 0.97 1.48 1.52
x4 0.00 0.00 0.00 0.17 0.17 0.87 5.19

scenario 2

x1 3.06 4.64 5.37 5.76 6.21 18.46 2.97
x2 3.12 4.86 5.78 6.47 7.06 24.56 3.48
x3 0.00 0.64 0.98 1.39 1.34 21.40 15.96
x4 0.00 0.00 0.00 1.79 0.00 14.68 inf
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4. Results

The results for the two scenarios are presented separately. The several tables show the distri-
bution (minimum, first quartile, median, mean third quartile and maximum) of the different
estimators across all samples of the simulation study. The last column informs on the pre-
cision of the estimation in terms of the Monte Carlo variance (MCVar) that describes the
variance of the point estimation of an estimator across the simulation rounds.

Scenario 1 The results for scenario 1 (moderately selective inclusion mechanism) can be
found in Table 3. Most estimations are close to the benchmark of 0.5 and most Monte Carlo
variances are about 0.0001. The estimators perform equally well and the results do not depend
on the choice of the prior distribution or on the chosen scale parameters. Exceptions are the
half-normal distribution within the data-driven strategy (norm.S) that has some large outliers
indicating that the estimation is less stable for the half-normal prior than for other priors of
the data-driven strategy.

Table 3: Results of the simulation study: estimated p for the different prior distribution of
scenario 1. The true value equals p = 0.5.

strategy prior Min. 1st.Qu. Median Mean 3rd.Qu. Max. NA.s MCVar

strategy 1

(data-driven)

uni.S 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
stu.S 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
norm.S 0.26 0.49 0.50 0.50 0.51 0.75 0.00 0.0003
sc.iv.chi.sq.S 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001

strategy 2

(strong constraint)

uni.strong 0.45 0.48 0.49 0.49 0.50 0.53 0.00 0.0001
stu.strong 0.46 0.49 0.50 0.50 0.51 0.54 0.00 0.0001
norm.strong 0.45 0.49 0.50 0.50 0.50 0.54 0.00 0.0001
sc.iv.chi.sq.strong 0.23 0.26 0.27 0.27 0.28 0.31 0.00 0.0002

strategy 3

(weak constraint)

uni.weak 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
stu.weak 0.46 0.49 0.50 0.50 0.51 0.54 0.00 0.0001
norm.weak 0.46 0.49 0.50 0.50 0.51 0.54 0.00 0.0001
sc.iv.chi.sq.weak 0.45 0.49 0.50 0.50 0.50 0.54 0.00 0.0001

strategy 4

(mixed)

uni.mix 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
stu.mix 0.46 0.49 0.50 0.50 0.51 0.54 0.00 0.0001
norm.mix 0.46 0.49 0.50 0.50 0.51 0.54 0.00 0.0001
sc.iv.chi.sq.mix 0.45 0.49 0.50 0.50 0.50 0.54 0.00 0.0001

other commonly

used prior

iv.gam.001 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
iv.gam.1 0.45 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
cau.5 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001
cau.25 0.46 0.49 0.50 0.50 0.51 0.55 0.00 0.0001

Within the constraining priors, the inverse chi-squared prior (sc.iv.chi.sq.strong) is found to
produce strongly biased estimation, leading to an underestimation of the proportion of y in
every simulation round. This means that the posterior inference is restricted too much in
this case, particularly for the variance parameters of variables x1 and x2. For the uniform
distribution uni.strong, the initialization failed for seven samples, for which we have to repeat
the estimation process. The mixed strategies and the priors of strategy 4 perform equally
well.

In the case of a moderate inclusion mechanism and moderately selective data, almost all
considered prior distributions for the variance parameter lead to acceptable results.

Scenario 2 Table 4 shows the results for scenario 2 in which the selectivity of the inclusion
mechanism is higher than for scenario 1. In scenario 2, the estimated variances show higher
variation and larger outliers than in scenario 1 as described in Section 3.2. For all considered
distributions larger Monte Carlo biases of the overall estimation of p is found for scenario
2 than for scenario 1. Also, the estimation is much less stable in scenario 2 due to the
highly selective inclusion mechanism and highly selective data. The proportion could not
be computed for some simulation runs for the uniform distribution (uni.S) in the data-driven
strategies, for the uniform distribution (uni.mix) in the mixed strategy and the inverse gamma
distribution (iv.gam.1) leads to missing information (see last column of Table 4). As in
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Table 4: Results of the simulation study: estimated p for the different prior distribution of
scenario 2. The true value equals p = 0.5.

strategy prior Min. 1st.Qu. Median Mean 3rd.Qu. Max. NA.s MCVar

strategy 1

(data-driven)

uni.S 0.03 0.11 0.19 0.23 0.32 0.66 112 0.0209
stu.S 0.03 0.36 0.43 0.42 0.49 0.64 0.00 0.0126
norm.S 0.06 0.36 0.43 0.42 0.49 0.64 0.00 0.0115
sc.iv.chi.sq.S 0.08 0.36 0.43 0.42 0.49 0.63 0.00 0.0106

strategy 2

(strong constraint)

uni.strong 0.13 0.25 0.27 0.27 0.30 0.39 0.00 0.0017
stu.strong 0.19 0.37 0.42 0.42 0.47 0.62 0.00 0.0056
norm.strong 0.19 0.36 0.40 0.40 0.44 0.58 0.00 0.0033
sc.iv.chi.sq.strong 0.02 0.03 0.03 0.03 0.04 0.05 0.00 0.0000

strategy 3

(weak constraint)

uni.weak 0.21 0.37 0.44 0.44 0.50 0.63 0.00 0.0086
stu.weak 0.20 0.37 0.44 0.44 0.50 0.64 0.00 0.0091
norm.weak 0.21 0.38 0.44 0.44 0.50 0.63 0.00 0.0081
sc.iv.chi.sq.weak 0.25 0.38 0.44 0.44 0.50 0.63 0.00 0.0068

strategy 4

(mixed)

uni.mix 0.19 0.35 0.42 0.42 0.52 0.64 4.00 0.0150
stu.mix 0.20 0.37 0.44 0.43 0.50 0.64 0.00 0.0103
norm.mix 0.20 0.38 0.44 0.44 0.50 0.64 0.00 0.0094
sc.iv.chi.sq.mix 0.20 0.38 0.44 0.44 0.50 0.64 0.00 0.0086

other commonly

used prior

iv.gam.001 0.03 0.22 0.37 0.35 0.46 0.64 1.00 0.0218
iv.gam.1 0.15 0.33 0.39 0.39 0.45 0.62 0.00 0.0083
cau.5 0.03 0.26 0.36 0.35 0.44 0.63 0.00 0.0172
cau.25 0.03 0.19 0.29 0.30 0.41 0.64 0.00 0.0208

scenario 1, the initialization failed for eight samples of the uniform distribution (uni.strong)
for which we have to repeat the estimation process. The data-driven strategy does not perform
well which can be seen by some very low estimations for p that are close to zero. The high
variability of some samples caused by the variance parameters that is completely out of
the range of the simulation study (particularly for variables x3 and x4) affect the varying
coefficients and the overall estimation, leading to such low estimates. The estimators of
this strategy also show higher Monte Carlo variances (and thus smaller precision) than the
estimators of strategies 2 to 4. In comparison to the data-driven strategy, using strong
constrains (strategy 2) leads to less very low estimates except for sc.iv.chi.sq.strong that
again constrains posterior inferences too much. On average, the estimation is more biased
for strategy 2 than for strategy 1 for each prior distribution except for the non-informative
and non-proper uniform distribution uni.S (the problems of this distribution are described in
Gelman (2006) and Section 2.3). Thus, posterior inferences may be restricted too much, in
particular, for variables x1 and x2. Monte Carlo variances, however, are rather low for this
strategy.

Strategies 3 and 4 perform about equally well, being less biased than strategies 1 and 2 and
showing less very low outliers close to zero. Monte Carlo variances for strategy 3 are slightly
lower than for strategy 4. Other priors, that are commonly suggested in the literature do
not perform well: they show comparatively large Monte Carlo bias and very small minimum
values.

Applying constraining priors for the variance parameters of variable x3 and x4 and priors
that lead to data-driven posterior inferences for the variance parameters of variable x1 and
x2 in strategy 4 leads to very good results. Monte Carlo bias is smaller than for estimators
of strategy 2. Unrealistic small values below 0.1 can also be avoided.

The constraining priors of strategy 3 lead to good results as well. Applying the scale inverse
chi-square distribution results in the largest minimum value in comparison to the other priors
and other strategies. At the same time, using the scale inverse chi-square distribution in
strategy 3 leads to a lower Monte Carlo bias in comparison to other estimators. In comparison
to the strategy 2 that only differs from scenario 3 for the scale parameters for the prior
distributions of variables x1 and x2, our findings show again that constraining the influence
of highly selective data may be helpful to improve the estimation but constraining posterior
inferences too much may have an opposite effect. To study this effect, we vary the scale
parameters of the scale inverse chi-square distribution for variables x1 and x2 starting from
parameter constellation of the scale inverse chi-square distribution in strategy 3 that lead to
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good estimation results. The results are shown in Table 5.

Comparing the minimum values, we find that decreasing the scale parameters leads to larger
minimum values, i.e., unrealistic small values, up to a certain point. After that, the minimum
value decreases. In our case, this point is reached when choosing a scale parameter of approx-
imately 3 for variables x1 and x2, a value that is out of the range of the estimated variance
(Table 2) for both variables. The Monte Carlo bias is highest for Scale− inv − χ2(2, 2) and
lowest for Scale−inv−χ2(7, 7) and Scale−inv−χ2(6, 6). An opposite effect can be observed
for the Monte Carlo variances. These are lowest for the estimator Scale− inv − χ2(2, 2) and
highest for the estimator Scale− inv − χ2(7, 7).

Table 5: Different choices of scale parameters for the scale inverse chi-square distribution for
variables x1 and x2. The prior for variables x3 and x4 is Scale− inv−χ2(100, 0.001) for each
alternative.

Prior Min. first Qu. Median Mean third Qu. Max. NAs MCVar

sc.iv.chi.sq.7.7 0.22 0.39 0.45 0.45 0.52 0.64 0.00 0.0086
sc.iv.chi.sq.6.6 0.23 0.39 0.45 0.45 0.51 0.64 0.00 0.0077
sc.iv.chi.sq.5.5 0.25 0.38 0.44 0.44 0.50 0.63 0.00 0.0068
sc.iv.chi.sq.4.4 0.27 0.38 0.43 0.43 0.49 0.62 0.00 0.0056
sc.iv.chi.sq.3.3 0.26 0.37 0.42 0.42 0.46 0.60 0.00 0.0042
sc.iv.chi.sq.2.2 0.23 0.36 0.39 0.40 0.43 0.55 0.00 0.0026

5. Summary and conclusion

In this paper, we compare different prior distributions for the variance parameters of the
varying coefficients in the multilevel regression and poststratification approach with respect
to their ability to stabilize the estimation that is based on highly selective survey data that
result from a highly selective inclusion mechanism. Under the conditions of our simulation
study, we find two strategies to perform very well: a strategy combining priors that leads to
data-driven posterior inferences and priors that constrain posterior inferences and a strategy
applying priors that constrain posterior inferences not too much. Particularly, using the scale
inverse chi-square distribution that does not constrain posterior inferences too much leads to
the best results.

In scenario 1, in which the inclusion mechanism was less selective than in scenario 2, most of
the priors perform well. Notably, strategies that lead to a data-driven posterior inferences,
particularly the non-proper and non-informative uniform prior, perform well. In scenario 2,
as a result of the highly selective inclusion mechanism and the highly selective data, a large
variability arises through the variance parameter for some variables in some samples. The
simulation study shows that using priors that result in data-driven posterior inferences in
such cases leads to an inefficient estimation and in some samples leads to estimations that are
by far too small. Using priors that constrain the influence of the highly selective data may be
useful. However, attention should be paid to posterior inferences being not constrained too
much. At a certain point, the restriction can lead to an opposite effect and the biases may
increase.

The choice of the prior for the variance parameter of the variable’s varying coefficient in
general depends on the reliability of the prior information and sample information. For each
application, the analyst needs to decide which kind of prior strategy to take. In case the
analyst does not have prior information, an intuitive choice could be to apply priors that lead
to data-driven posterior inferences, particularly, to use non-informative priors. However, our
simulation study shows that this strategy is very problematic if the data is heavily selective
due to a very selective inclusion mechanism. In such cases, it is preferable to use priors
that somehow constrain the influence of the highly selective data and the posterior inference.
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The choice of the constraint might be informed by previous surveys or applications or the
expert knowledge of the analyst. The analyst may also evaluate the posterior inferences of
the variance parameter or the maximum likelihood estimation of the parameter with respect
to their plausibility, particularly, when the data result from a highly selective inclusion mech-
anism. For example, the distributions of posterior simulations of the variance parameter can
be evaluated graphically, as for example done in (Gelman 2006). Unrealistically high values
may be detected by comparing the variance parameters of different variables or in comparison
to previous surveys or comparable applications. Comparing the weighting variables’ distri-
bution in the sample with external benchmarks (e.g., from official statistics) can serve as a
first evaluation of the sample’s selectivity (see, for example, Felderer, Kirchner, and Kreuter
(2019)) and inform the decision on which prior strategy to use. In addition, measures such
as described in Little et al. (2019) might be applied.

The Monte Carlo simulation study shows that the Bayesian multilevel regression and post-
stratification approach needs to be carefully applied when using data that result from a selec-
tive inclusion mechanism. Up to a certain point of selectivity (in scenario 1), we still receive
good estimations for many prior choices. For very selective inclusion mechanisms, however,
reliable estimations cannot be ensured as seen for scenario 2. This is even more important in
practical applications, when the nonresponse mechanism cannot be compensated completely
via a weighting procedure and no perfect prior information is available. Thus, more research
is needed for estimation procedures that can be applied on highly selective data, particularly,
when this procedures are based on a Bayesian framework.

Our findings are limited to the chosen prior distributions and scale parameters. For example,
for the Half-Student-t distribution and the scaled inverse chi-square distribution the degrees of
freedom can further be varied. Also, one could think of applying different prior distributions
for different variables. We compare a moderately skewed sample to a heavily skewed sample
and find the choice of prior only to strongly affect the estimation for the heavily skewed
sample. More research is needed on the degree of selectivity for which the choice of the
prior is crucial for the outcome and for which arbitrary choices are possible. The simulation
study focuses on the usefulness of different prior strategies for samples with different degrees
of selectivity. Although selectivity is arguable one of the main problems when conducting
surveys, there are other issues that might affect the performance of the different strategies
and are thus worth to be studied. For example, further research is needed to evaluate the
effect of (non-) coverage on the performance of the strategies. The results of the simulation
study are further limited to the parameter constellations and the data sets of the simulation
study. As a single Monte Carlo simulation study can only be conducted manipulating certain
parameter constellations and data sets, further research should be conducted to simulate
different parameter constellations.
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A. Variables generated in the simulation study

The following tables are taken from or based on Bruch and Felderer (2021), in which the
simulation study used for this article is introduced.

Table 6: Distribution of the weighting variables in the population (benchmark) and the
samples of the simulation scenarios

benchmark scenario 1 scenario 2

x1

0.215 0.408 0.574
0.161 0.155 0.165
0.124 0.096 0.094
0.236 0.256 0.150
0.264 0.085 0.016

x2

0.250 0.482 0.854
0.250 0.216 0.062
0.250 0.175 0.025
0.150 0.084 0.047
0.100 0.042 0.012

x3

0.250 0.266 0.318
0.250 0.289 0.269
0.250 0.246 0.230
0.250 0.199 0.183

x4

0.250 0.412 0.520
0.250 0.229 0.220
0.250 0.200 0.168
0.150 0.129 0.081
0.100 0.031 0.011

Table 7: Correlation structure (Spearman correlation; averaged over all simulation runs) in
the realized sample in scenario 1

y x1 x2 x3 x4

y 1.00 0.59 0.58 0.02 0.08
x1 0.59 1.00 0.41 0.09 0.02
x2 0.58 0.41 1.00 0.03 0.21
x3 0.02 0.09 0.03 1.00 0.30
x4 0.08 0.02 0.21 0.30 1.00

Table 8: Correlation structure (Spearman correlation; averaged over all simulation runs) in
the realized sample in scenario 2

y x1 x2 x3 x4

y 1.00 0.25 0.36 -0.07 -0.15
x1 0.25 1.00 -0.10 0.06 -0.15
x2 0.36 -0.10 1.00 -0.14 -0.24
x3 -0.07 0.06 -0.14 1.00 0.30
x4 -0.15 -0.15 -0.24 0.30 1.00
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Table 9: Values for the parameters in the inclusion model generating the inclusion propensities
ω depending on the weighting variables xU1 . . . x

U
4 including the numbers of resulting weighting

cells and amount of empty weighting cells averaged over all simulation rounds

Parameter category scenario 1 scenario 2
λ -1 1e-07

ξ
xU
1

j[i]

j = 1 1 50
j = 2 0 0
j = 3 -0.2 -0.2
j = 4 0.4 0.4
j = 5 -1 -50

ξ
xU
2

k[i]

k = 1 0 0
k = 2 -1 -55
k = 3 -1 -55
k = 4 -1 -50
k = 5 -1 -50

ξ
xU
3

o[i]

o = 1 0 0
o = 2 0.4 0.4
o = 3 0.3 0.3
o = 4 0.2 0.2

ξ
xU
4

v[i]

v = 1 1 50
v = 2 0.1 0.1
v = 3 0 0
v = 4 0.2 0.2
v = 5 -1 -50

weighting cells 500 500
empty cells 217.82 390.97

(43.6 %) (78.2 %)

B. Varying further dimensions of the simulation study

In the simulation study, we mainly focus on the usefulness of the different prior strategies
on samples with different degrees of selectivity. In an additional analysis, we repeat some of
the analysis varying two more dimensions: the sample size and the correlation between the
weighting and dependent variables. Both aspects are analyzed separately due to computa-
tional constraints. Since the simulation study is computationally very intensive as result of
the Bayesian components of the different estimators, we need to further restrict the additional
analysis. Since our main study showed that the differences between the different prior distri-
butions within a certain strategy are lower than the differences between the four strategies, we
chose to only use one prior distribution for each strategy. We use the scale inverse chi-squared
distribution for all strategies because it showed very good results throughout the strategies.

B.1. Sample size variation

In the first additional analysis, we reduce the sample size from n = 1, 000 to n = 500.

As can be seen in Tables 11 and 12, the variability of most of the estimators is increased and
the precision reduced (as compared to Tables 3 and 4).

For the bias analysis we find - like for the main study with n = 1, 000 - bias to be smaller for
the moderately selective inclusion mechanism than for the highly skewed inclusion mechanism.
Results for the moderately selective inclusion mechanism are very similar for the reduced and
larger sample sizes: the estimators sc.iv.chi.sq.S, sc.iv.chi.sq.weak and sc.iv.chi.sq.mix lead to
similar results that are closed to the benchmark. The prior of estimator sc.iv.chi.sq.strong
constraints the posterior inference too much and leads to strong underestimations.

For the highly skewed inclusion mechanism, we find bias to be larger for the estimators
in the case of n = 500 than for a sample size of n = 1, 000. We find that the relative
performance of the estimators is the same for the larger and smaller sample size but the
differences are not as strong for the smaller than for the larger sample size. Looking at bias,
we find that the estimator sc.iv.chi.sq.strong leads to estimations that are very different from
the benchmark. The sc.iv.chi.sq.weak is comparable to estimator sc.iv.chi.sq.mix on average.
Both estimators perform slightly better than sc.iv.chi.sq.S. Among these three estimators
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Table 10: Values for the parameters in the model that generates the survey variable of interest
py depending on the weighting variables xU1 . . . x

U
4

Parameter category value
δ -0.5

γ
xU
1

j[i]

j = 1 -7
j = 2 0
j = 3 -0.2
j = 4 0.4
j = 5 7

γ
xU
2

k[i]

k = 1 -7
k = 2 0.4
k = 3 0
k = 4 -0.2
k = 5 7

γ
xU
3

o[i]

o = 1 1.5
o = 2 -0.4
o = 3 0
o = 4 0.9

γ
xU
4

v[i]

v = 1 0.1
v = 2 0.1
v = 3 0.1
v = 4 0
v = 5 0.1

that show similar biases, the estimator sc.iv.chi.sq.weak leads to the best results in terms of
Monte Carlo variance. The results show that for the highly skewed selection mechanism, the
performance of all estimators is worse on the smaller than the larger sample size in terms of
bias and Monte Carlo variance.

Table 11: Results of the simulation study for estimated p for a reduced sample size of n = 500
compared to scenario 1. The true value equals p = 0.5.

Prior Min. firstQu. Median Mean thirdQu. Max. NAs MCVar

sc.iv.chi.sq.S 0.45 0.49 0.50 0.50 0.51 0.55 0.00 0.0002
sc.iv.chi.sq.strong 0.21 0.25 0.26 0.26 0.28 0.33 0.00 0.0004
sc.iv.chi.sq.weak 0.44 0.48 0.49 0.49 0.51 0.55 0.00 0.0003
sc.iv.chi.sq.mix 0.44 0.48 0.49 0.49 0.51 0.55 0.00 0.0003

Table 12: Results of the simulation study for estimated p for a reduced sample size of 500
compared to scenario 2. The true value equals p = 0.5.

Prior Min. first Qu. Median Mean third Qu. Max. NAs MCVar

sc.iv.chi.sq.S 0.05 0.32 0.38 0.38 0.45 0.64 0.00 0.0105
sc.iv.chi.sq.strong 0.01 0.03 0.03 0.03 0.04 0.06 0.00 0.0001
sc.iv.chi.sq.weak 0.07 0.33 0.40 0.40 0.46 0.62 0.00 0.0070
sc.iv.chi.sq.mix 0.07 0.32 0.40 0.40 0.47 0.65 0.00 0.0092

B.2. Covariance and correlation structure variation

In the second additional analysis, we reduce the covariances and correlations between the
variables. The following population covariance matrix is used:

Σ =


1, 000 50 25 5

50 100 1 5
25 1 75 5
5 5 5 10


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Table 13 shows the resulting correlation structures in the sample after the inclusion mechanism
of scenario 1 is applied (for comparison with the main study see tables 7).

Table 13: Sample correlation structure (Spearman correlation; averaged over all simulation
runs) for scenario 1 with reduced covariances

y x1 x2 x3 x4

y 1.00 0.51 0.46 0.02 0.02
x1 0.51 1.00 0.09 0.07 -0.01
x2 0.46 0.09 1.00 0.00 0.09
x3 0.02 0.07 0.00 1.00 0.15
x4 0.02 -0.01 0.09 0.15 1.00

Table 14: Results of the simulation study for estimated p for a reduced covariance structure
compared to scenario 1. The true value equals p = 0.49.

Prior Min. first Qu. Median Mean third Qu. Max. NAs MCVar

sc.iv.chi.sq.S 0.46 0.48 0.49 0.49 0.50 0.52 0.00 0.00
sc.iv.chi.sq.strong 0.24 0.27 0.28 0.28 0.29 0.33 0.00 0.00
sc.iv.chi.sq.weak 0.45 0.48 0.48 0.48 0.49 0.51 0.00 0.00
sc.iv.chi.sq.mix 0.45 0.48 0.48 0.48 0.49 0.52 0.00 0.00

The results are very similar to the results of scenario 1 in the main study. Estimator
sc.iv.chi.sq.strong restricts the posterior inferences too much while the estimators sc.iv.chi.sq.S,
sc.iv.chi.sq.weak and sc.iv.chi.sq.mix lead to similar results with estimations close to the
benchmark.
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