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Abstract
In this paper, we propose a method that estimates the variance of an imputed estimator
in a multistage sampling design. The method is based on the rescaling bootstrap for
multistage sampling introduced by Preston (Surv Methodol 35(2):227–234, 2009). In
his original version, this resampling method requires that the dataset includes only
complete cases and no missing values. Thus, we propose two modifications for apply-
ing this method to nonresponse and imputation. These modifications are compared to
other modifications in a Monte Carlo simulation study. The results of our simulation
study show that our two proposed approaches are superior to the other modifications
of the rescaling bootstrap and, in many situations, produce valid estimators for the
variance of the imputed estimator in multistage sampling designs.

Keywords Rescaling bootstrap · Variance estimation · Nonresponse · Imputation ·
Multistage sampling designs · Monte Carlo simulation study

1 Introduction

The estimation of standard errors is an important topic for social surveys and official
statistics. Standard errors are used to evaluate the quality of point or parameter estima-
tions, for example, in confidence intervals or hypothesis testing. The basis of a valid
standard error estimation is an accurate variance estimation. This estimation may be
highly challenging to achieve, for example, due to a complex sampling design, such
as a multistage sampling, the occurrence of nonresponse, and the use of imputation
methods to compensate for nonresponse. In practice, it may be very difficult or even
impossible to consider all these influences in the variance estimation. Thus, frequently,
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1462 C. Bruch

not all stages of the sampling design are considered, or the variance estimator for sim-
ple random sampling is used even when another sampling design has been applied.
Furthermore, imputed values often are treated as observed, and the nonresponse as
well as the imputation process are ignored in the variance estimation. Such procedures
may lead to a heavily biased variance estimation that results in a biased standard error
estimation. Hence, conclusions, e.g., from hypothesis testing and confidence intervals
may be wrong. Thus, the aim of this paper is to present an approach to a variance esti-
mation that includes all stages of a sampling design and that considers the imputation
process.

1.1 Previous studies and research

There exists some previous studies in the literature that cover the variance estimation
under imputation or the variance estimation in a multistage sampling design. Some of
the studies also cover both issues.

Frequently, for both issues so called resampling methods (see, for example, Shao
and Tu 1995) are applied, particularly, bootstrap procedures (Efron 1979). A good
overview of bootstrap procedures is given in Mashreghi et al. (2016), in which proce-
dures for multistage sampling or imputation methods are also described.

The basics for considering the imputation process in the bootstrap procedures are
presented in Shao (2002), Shao and Sitter (1996) and Efron (1994). Further propos-
als of a bootstrap under imputation are, for example, presented in Mashreghi et al.
(2014) or Saigo et al. (2001). Additional explanations of the application of bootstrap
procedures under imputation are given in Haziza (2009, 2010). Moya et al. (2020)
examine a rescaled bootstrap for confidence intervals in the presence of spikes in the
distribution that may also be a result of certain imputation procedures. In this paper, we
focus on single imputation procedures. In case of multiple imputation, two bayesian
bootstrap procedures for multistage sampling designs are, for example, proposed in
Zhou et al. (2016).

A bootstrap procedure for multistage sampling designs for complete observations
that does not cover imputation is proposed in Rao et al. (1992) and that is an extension
of the bootstrap procedure proposed in Rao and Wu (1988). Also, Saigo (2010) com-
pares four different bootstrap procedures for stratifiedmultistage sampling designs and
complete data sets in a simulation study. Particularly, he considers the Bernoulli boot-
strap for stratified multistage designs of Funaoka et al. (2006) and extensions of the
bootstrap procedures described in Rao et al. (1992), Sitter (1992a) and Sitter (1992b).
Further proposals of bootstrap procedures for multistage designs are presented in Haz-
iza (2009), Wolter (2007) and Preston (2009). The latter one is the resampling method
of interest in this paper.

To estimate the variance of an imputed estimator in amultistage design, we combine
the rescaling bootstrap for multistage design of Preston (2009) with procedures that
allows for a consideration of the imputation procedure in the resampling method. We
choose the rescaling bootstrap of Preston (2009), since it allows for the inclusion of all
stages of the sampling design in the variance estimation. Furthermore, the rescaling
bootstrap considers finite population corrections in the weight adjustment that needs
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to be included in the variance estimation for the important case of without replace-
ment random sampling (at the different stages of the sampling design). Thus, in this
paper, we propose modifications of the rescaling bootstrap for multistage design of
Preston (2009) to obtain a valid variance estimator in amultistagewithout replacement
sampling design and under single imputation.1 We present the rescaling bootstrap of
Preston (2009) in the next section.

1.2 Rescaling bootstrap for a three-stage sampling design and complete response

In multitstage sampling designs in practice, the variance estimators often consider
only the first stage, since the first stage variance estimator covers more than the actual
variance of the point estimator at stage one (Särndal et al. 1992; Lohr 1999; Bruch et al.
2011; Bruch 2016). Under some parameter constellations, such as a small sampling
fraction at the first stage or a homogeneous composition of sampling elements within
the units of the first stage (primary sampling units; PSUs)2 it is even possible to cover
(almost) the entire variance by using only the variance estimator of the first stage.
However, as shown by Särndal et al. (1992), Lohr (1999), Bruch et al. (2011); Bruch
(2016), the variance may be heavily underestimated when only the variance estimator
of the first stage is applied under parameter constellations, such as an increasing sam-
pling fraction at the first stage or a heterogeneous composition of sampling elements
within the PSU. Using such a variance estimate, for example, as a basis to compute
a standard error estimate for hypothesis testing or confidence intervals, may lead to
false conclusions. Thus, in some situations, it is important that the variance estima-
tor includes all stages of the sampling design. A resampling method that takes all
the sampling stages into account in the variance estimation is the multistage rescaling
bootstrap proposed by Preston (2009), which is an extension of the rescaling bootstrap
of Chipperfield and Preston (2007) for multistage sampling designs.3 For this resam-
pling method, subsamples are drawn independently without replacement at each stage
of the sampling design. The rescaling bootstrap is applied in the case of a three-stage
sampling design as follows [for the following explanations see Preston (2009)].

First, a subsample of size l∗ = �l/2� is drawn from the l PSUs in the sample at the
first stage. The indicator variable δd takes the value 1 if PSU d is in the subsample,
and zero if not. Afterwards, new design weights w∗

1d for the original design weights
w1d = L/l (L is the number of PSUs in the population) are computed at the first stage
by:

w∗
1d =

(
1 − λ + λ · l

l∗
· δd

)
· w1d , where λ =

√
l∗ · (1 − f1)

(l − l∗)
, (1)

1 In the following we use the term imputation for single imputation since multiple imputation procedures
are not covered in this study.
2 When the sampling elements in the PSU are similar with respect to the variable of interest y, a large
part of the variance of the point estimator results from the first-stage sampling. In contrast, when sampling
elements are very different regarding y in the PSUs, most of the variance results from the sampling at
subsequent stages.
3 For simplification, we use the term rescaling bootstrap for both variance estimators independent of the
sampling design.
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where f1 is the sampling fraction at the first stage.
A subsample of sizem∗

d = �md/2� is drawn from themd secondary sampling units
(SSUs) within each PSU in the original sample at the second stage. The indicator
variable δdq takes the value 1 if SSU q in PSU d is in the subsample, and zero if not.
Afterwards, new design weightsw∗

2dq for the original design weightsw2dq = Md/md

(Md is the number of SSUs in the PSU d in the population) are computed at the second
stage by:

w∗
2dq = w2dq · w1d

w∗
1d

· (1 − λ + λ · l

l∗
· δd − λd ·

√
l

l∗
· δd

+ λd ·
√

l

l∗
· δd · md

m∗
d

· δdq), where λd =
√
m∗

d · f1 · (1 − f2d)(
md − m∗

d

) , (2)

where f2d is the sampling fraction in a PSU at the second stage.
A subsample of size n∗

dq = �ndq/2� is drawn from the ndq ultimate sampling units
(USUs)within each SSU in the original sample at the third stage. The indicator variable
δdqi takes the value 1 ifUSU i in SSU q is in the subsample, and zero if not. Afterwards,
new design weights w∗

3dqi for the original design weights w3dqi = Ndq/ndq (Ndq is
the number of USUs in SSU q in PSU d in the population) are computed at the third
stage by:

w∗
3dqi = w3dqi · w1d

w∗
1d

· w2dq

w∗
2dq

· (1 − λ + λ · l

l∗
· δd

− λd ·
√

l

l∗
· δd + λd ·

√
l

l∗
· δd · md

m∗
d

· δdq

− λdq ·
√

l

l∗
· δd ·

√
md

m∗
d

· δdq

+ λdq ·
√

l

l∗
· δd ·

√
md

m∗
d

· δdq · ndq
n∗
dq

· δdqi ),

where λdq =
√√√√n∗

dq · f1 · f2d ·
(
1 − f3dq

)
(
ndq − n∗

dq

) , (3)

where f3dq is the sampling fraction in a SSU at the third stage.
After computing the adjusted design weights at each stage, the overall adjusted

design weights w∗
dqi are computed by

w∗
dqi = w∗

1d · w∗
2dq · w∗

3dqi , (4)
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combined to vector w∗. The point estimator of the rescaling bootstrap in each simula-
tion run b is computed by:

θ̂∗ = T (ys,w
∗), (5)

where T is the function to compute the statistic of interest and ys is the vector with
sample realisations.

The process beginning with the subsampling is repeated B times and the point
estimator of the rescaling bootstrap is computed in each run b. Thus, it results the
estimators θ̂∗

1 . . . θ̂∗
b . . . θ̂∗

B , and the variance estimate is obtained by:

V̂resc

(
θ̂
)

= 1

B − 1
·

B∑
b=1

(
θ̂∗
b − 1

B
·

B∑
v=1

θ̂∗
v

)2

. (6)

The procedure shows that the rescaling bootstrap considers all elements of the
original sample in the computation of the rescaling point estimator. This procedure is
hugely different from classical resampling methods, in which only elements drawn for
the subsample are considered in the computation of the point estimator of the resam-
pling method. However, weight adjustments for the rescaling bootstrap are performed
with respect to the underlying subsample. Hence, it can be seen if USUs as well as
their superordinate units are drawn for the subsample, the influence of these USUs
on the variance estimation increases due to the weight adjustments compared to the
elements that are not drawn.

Nonetheless, elements not drawn for the subsample can also have an influence on
the variance estimation. This finding is, for example, shown in the simulation study
by Bruch (2019) with respect to a single-stage design whereby elements not drawn for
the subsample have a larger influence in the scenarios with larger sampling fractions
than in the scenarios with smaller sampling fractions.

For the rescaling bootstrap in a multistage sampling design, influences of elements
not drawn for the subsample on the variance estimation can also be larger or smaller,
depending on the sampling fractions at the several sampling stages. However, this
relationship is not as straightforward as for the single stage design. Elements can
be drawn or not drawn at several stages and more parameters, such as the sampling
fractions at a higher stage, also have an effect on the adjusted weights at certain stages
in a multistage design as illustrated in (1), (2), and (3). The influence of elements
drawn for the subsample and not drawn for the subsample on the variance estimation
using the rescaling bootstrap is an important point. Thus, we examine this influence
in more detail in the Appendix A.1 and the simulation study.

Due to subsampling at each stage of the sampling design and adjusting the corre-
sponding weights, the rescaling bootstrap of Preston (2009) considers all stages of the
sampling design in the variance estimation. However, the rescaling bootstrap of Pre-
ston (2009) is based on complete observations. Thus, the method has to be modified
when the dataset consists of missing values, and imputation is applied as compen-
sation. In the next section, we describe the variance decomposition of an imputed
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1466 C. Bruch

estimator and its implication for a multistage design that builds the starting point to
include the imputation process in the rescaling bootstrap of Preston (2009).

1.3 Variance under imputation and nonresponse

For reasons of clarity, we first assume a deterministic imputation procedure to illustrate
the proposed modifications in their fundamental form.4 In general, in the presence of
nonresponse and when a deterministic imputation procedure is applied as compensa-
tion for the nonresponse, the variance of an imputed estimator θ̂I can be decomposed
as follows [Mashreghi et al. (2014), see also the reversed framework of Fay (1991)
and Shao and Steel (1999)]:

V (θ̂I ) = EηVs(θ̂I |z)︸ ︷︷ ︸
V1

+ VηEs(θ̂I |z)︸ ︷︷ ︸
V2

. (7)

The expected value and the variance according to the nonresponse mechanism are
indicated by the subscript η. The expected value and the variance with respect to the
sampling are indicated by the subscript s.

Thus, the variance component V1 includes Vs(θ̂I |z), which is the sampling variance
of the imputed estimator θ̂I , given the response vector z. According to Haziza (2010),
calculating Vs(θ̂I |z) is enough to estimate the component V1. Variance component
V2 results from the treatment of the nonresponse mechanism as a random process.
The variance component arises in a simulation study when a new response vector is
generated in each simulation run (which we call in the following sections a varying
response vector) by using a random model to reproduce the nonresponse mechanism.
The variance component does not arise when the same response vector is used in each
simulation run. Such a response vector may be called fixed (Mashreghi et al. 2014;
Bruch 2019).

Referring to Mashreghi et al. (2014), the variance component V2 is only significant
if the overall sampling fraction f is large. If the overall sampling fraction is negligible,
the variance component V2 also is negligible, and it is sufficient to estimate the variance
component V1 to cover the whole variance of the imputed estimator.

When applying amultistage sampling design, the variance component V2 oftenmay
be small or negligible. High survey costs and low survey budgets prevent a large overall
sample size in relation to the population size. Multistage sampling designs are often
usedwith respect to population surveys, for example, when the ultimate sampling units
such as households or persons cannot drawn directly (i.e. when lists such as central
population registers are not available, see Lynn et al. 2007; Häder 2004), when other
constraints of the sampling frames such as the assignment of interviewers (European
Social Survey 2018) are presented or due to geographic decisions with regard to cost-
effectiveness are made (comparatively lower costs of sampling superordinate units,
Lohr 1999; European Social Survey 2018). Thus, a comparatively small sample of
USUs is faced with a large population. As a result, the overall sample fraction f may

4 However, in the second part of the simulation study, the proposed modifications are also evaluated with
respect to a stochastic imputation procedure since such imputation methods are often applied in practice.
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be rather small whereas this does not preclude that the sampling fraction is not large
at a particular sampling stage. The sampling fractions at the different stages have an
important influence on the variance estimation via the rescaling of Preston (2009), as
seen in the previous section.

However, since the overall fractionmay often be rather small inmultistage sampling
designs in practice, itmay therefore often be enough to derive a valid variance estimator
of V1 to obtain a valid variance estimator for the whole variance V (θ̂I ). As a result,
this component is of central interest in this paper. However, in the simulation study
in Sect. 4, we also examine to what extent it is sufficient to estimate V1 to cover the
whole variance or whether any parameter constellations exist that additionally require
the estimation of V2.

1.3.1 Reimputation of imputed values

With respect to the explanations of the previous section, deriving a variance estimator
for imputed estimator θ̂I in a multistage sampling design especially requires a valid
variance estimator for variance component V1 and it is enough to estimate Vs(θ̂I |z) to
cover variance component V1 (Mashreghi et al. 2014; Haziza 2010). Thus, we intend
to find a variance estimator that considers the sampling variability of the imputed esti-
mator, given the response vector z. By doing so, we receive a valid variance estimator
for the first term V1 in (7) (Mashreghi et al. 2014).

With respect toMashreghi et al. (2014), one possibility for deriving a valid variance
estimator for term Vs(θ̂I |z) is to apply bootstrap procedures by taking paired subsam-
ples from the elements in yI and their corresponding response status z of the original
sample to which the so-called reimputation (Shao 2002; Shao and Sitter 1996; Rao and
Shao 1992) is applied. This approach considers the imputation process in a resampling
method by reimputing the imputed values that are drawn for the subsample on the basis
of the subsample’s observed values using the same imputation procedure—especially
the same imputation model—as in the original sample. The reimputation of imputed
values is appropriate for deterministic imputation procedures. However, it may lead to
an overestimation of the variance if the imputation procedure includes random com-
ponents, and if the subsample size is not the same size as the original sample (Shao
2002). In such cases, rather the adjustment of imputed values as described in Shao
(2002) should be applied but this procedure requires a metric variable to be imputed.5

For other imputation methods that do not allow the application of the reimputation
or the adjustment of imputed values, other adjustments may be applied. However,
in the following, we assume that an imputation method is applied that allows for a
consideration of the imputation process in the rescaling bootstrap via reimputation or
the adjustment of imputed values.

It is also possible to use the rescaling bootstrap of Chipperfield and Preston (2007)
with the extension to multistage sampling designs proposed by Preston (2009) and
to make use of subsampling process of the rescaling bootstrap to derive a variance
estimator for Vs(θ̂I |z). The important concern is how to apply the reimputation for
the rescaling bootstrap. Usually, studies using the reimputation of imputed values,

5 The computation of differences has to be possible.
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1468 C. Bruch

such as Shao and Sitter (1996), focus on classical resampling methods, in which
only elements drawn for the subsample are considered in the computation of the
point estimator of the resampling method. However, as described in the Sect. 1.2, the
rescaling bootstrap includes all elements of the original sample in the computation
of its point estimators. This is an important point, particularly, when elements not
drawn for the subsample affect the variance estimation due to their influence on the
rescaling bootstrap point estimators. Thus, all elements of the original sample need
to be considered in the reimputation process (Bruch 2016, 2019). In the next section,
we describe a modification of the rescaling bootstrap that includes the reimputation
process for a single stage design and that can be used as a basis to modify the rescaling
bootstrap in a multistage sampling with respect to imputation.

1.3.2 Rescaling bootstrap in a single-stage sampling design and imputed values

Amodification of the rescaling bootstrap with respect to imputed values for the single-
stage sampling design simple random sample is proposed by Bruch (2016, 2019). To
derive this modification, different possibilities to apply the reimputation are evaluated
that result in different requirements that have to be met.

One possibility is to conduct the reimputation regarding all the imputed values of
the whole sample, without distinguishing between the imputed values drawn for the
subsample and the imputed values not drawn for the subsample. By doing so, all the
elements of the original sample will be considered in the reimputation process. How-
ever, in the case of a deterministic imputation procedure and when the reimputation
is applied on the basis of the whole sample, the reimputed values are identical to
the imputed values of the original sample. Thus, no variation can occur due to the
reimputation process when computing the variance over all rescaling bootstrap point
estimators (Bruch 2016). In this case, the estimator matches the variance estimator that
treats the imputed values as actually observed. With respect to Shao and Sitter (1996),
since this estimator does not consider the effect of missing values and imputation, the
variance may be heavily underestimated (Bruch 2019).

Thus, Bruch (2016, 2019) rather proposes to reimpute the imputed values of the
original sample drawn for the subsample and the imputed values of the original sample
not drawn for the subsample separately. The necessity for such a procedure results from
the comparison with the rescaling bootstrap for which the reimputation is done only
for the imputed values drawn for the subsample and not for the imputed values not
drawn for the subsample. Bruch (2016, 2019) shows that neglecting the reimputation
of the imputed values not drawn for the subsample leads to an unintentional variance
component, which results in the overestimation of the variance. The unintentional
variance only occurs for increasing sampling fractions in a single-stage sampling
design, since elements not drawn for the subsample only have a small impact when
sampling fractions are small. We give a more detailed explanation for the appearance
of this component in Appendix A.2.

However, the procedure of reimputing separately imputed values drawn and not
drawn for the subsample only pertains to a single-stage sampling design. The question
is how to apply the method in a multistage sampling design, when more stages of the
sampling design must be considered. Thus, in the next section, we propose two mod-
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ifications of the rescaling bootstrap to estimate the variance of an imputetd estimator
in a multistage design. We evaluate these modifications in a Monte Carlo simulation
study. We describe this study in Sect. 3, and present the results in Sect. 4. We discuss
and summarize the results in Sect. 5 and provide an outlook for future research.

2 Rescaling bootstrap under nonresponse and imputation

The fundamentals of these approaches and this research are developed in the PhD
thesis of Bruch (2016) with respect to a two-stage sampling design. However, in
practice, multistage sampling designs often include more than two stages. Thus, in
this paper, we apply the modifications in more realistic situations with more stages.
The proposed methods are basically described for three-stage sampling designs, but
they can be modified for sampling designs with more than three stages.

In the next section, we describe the sampling design and the estimator to derive
the proposed modification and that build the basis for the Monte Carlo simulation
study. Afterwards, we derive the proposed modifications as a combination of the
rescaling bootstrap of Preston (2009) and variance estimation methods that consider
the imputation. A further derivation and explanation of our proposed modifications
to be a valid variance estimator, particularly under which conditions, is given in the
Appendix A.3. Our modifications aim to estimate the variance component Vs(θ̂I |z)
and thus aim to cover variance component V1 in (7). As written in Sect. 1.3, it may
often be enough to estimate only variance component V1 in practice when multistage
sampling designs are applied. However, in Sect. 2.3 we discuss shortly the case when
V2 has a strong contribution.

2.1 Imputed estimation for amultistage sampling design

To derive our modifications of the rescaling bootstrap and for their evaluation in the
simulation study, we assume that a sample is drawn from the population U using
a multistage sampling design with three stages. We use the notation introduced in
Sect. 1. The sample sizes at the different stages are described by l, md and ndq .
The corresponding population sizes are indicated by L , Md and Ndq . Overall, the
population consists of N elements, and the complete sample S is size n.

The complete design weights wdqi are computed by:

wdqi = w1d · w2dq · w3dqi = L

l
· Md

md
· Ndq

ndq
, (8)

which are combined to the vector w.
The sampling fraction f1 at the first stage, the sampling fraction f2d in a PSU at the

second stage, and the sampling fraction f3dq in a SSU at the third stage are defined
by f1 = l/L , f2d = md/Md and f3dq = ndq/Ndq . For simplicity, in the first part of
the simulation study in Sect. 3.1.1, we assume that the sampling fraction f2d is equal
in each PSU with f2d = f2, and the sampling fraction f3dq is equal in each SSU
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1470 C. Bruch

with f3dq = f3. Thus, we can use f2 and f3 to indicate unambiguously the sampling
fraction at the corresponding stage and to define unambiguously the scenarios in the
first part of the simulation study. However, with respect to the proposed methods, it is
not necessary that the sampling fractions f2d in each PSU and f3dq in each SSU are
all equal. Thus, the proposed methods can be applied in the same way for different
sampling fractions f2d in the PSUs and different sampling fractions f3dq in the SSUs.
In the second part of the simulation study in Sect. 3.2, the sampling fractions f2d and
f3dq are not equal.
The variable of interest is described by y with sample realisation yi for element i

with i = 1 . . . n and that are combined to vector ys .
We assume that this variable consists of missing values that only appear at the last

stage with respect to certain USUs. The missing values divide the sample S into a
subset of elements with observed values i ∈ R and a subset of elements with missing
values defined by i ∈ G with S = R ∪̇G. The size of R is r , and the size of G
is g, where n = r + g. We assume that the dataset contains a response indicator z,
which takes the value 1 if an element responds and 0 if not. We use a certain single
imputation method to impute missing values, and our imputation model includes two
auxiliary variables x1 and x2 with realisations x1i and x2i for element i . We assume
that the auxiliary variables have no missing values. After the imputation of sample
nonresponse, it results the vector yI with respect to the variable of interest y that
contains imputed as well as observed values. In detail, the values yI ,i of yI have the
following manifestations:

yI ,i :=
{
yi , if i ∈ R,

ỹi , if i ∈ G,

where ỹi is the imputed value for a missing value ∀i ∈ G.
The statistic of interest is indicated by θ . This quantity is estimated by using the

estimator θ̂I on the basis of imputed vector yI and including the design weights wdqi

from (8) with vector w:

θ̂I = T (yI ,w),

where T is the function for the computation of the statistic of interest.
In this paper, we focus on the total value θ = τ . The total value τ is estimated on

the basis of the imputed data and under the multistage sampling design by:

τ̂I =
∑
i∈S

wdqi · yI ,i . (9)

2.2 Rescaling bootstrap under imputations for a multistage design

When applying the rescaling bootstrap in a multistage design under imputations, three
requirements have to be met. The first two requirements are a result of the single stage
application described in Sect. 1.3.2, while the third requirement is essential for the
adjustment to a multistage design.
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Table 1 Categorization of USUs with respect to the subsampling process

Category First stage: δd Second stage: δdq Third stage: δdqi

C1 0 0 0

C2 1 0 0

C3 0 1 0

C4 1 1 0

C5 0 0 1

C6 1 0 1

C7 0 1 1

C8 1 1 1

1. Not just a subset of the original sample, but all of the imputed values have to be
reimputed to avoid the unintentional variance component described in Sect. 1.3.2.
This variance component arises when not reimputed imputed values have an influ-
ence on the variance estimation.

2. For the reimputation of imputed values, elements drawn and not drawn have to
be separated. Otherwise, in case of deterministic imputation procedures, the reim-
puted values are the same as the imputed values of the original sample. Hence, the
imputation process is not considered in the variance estimation.

3. The variance estimator should capture Vs(θ̂I |z), the sampling variance of the
imputed estimator, given the response vector z. As described in Sect. 1.2, to cap-
ture the variance of an estimator in a multistage sampling design, all stages of
the sampling design have to be considered in the variance estimation (at least
when the parameter constellations does not allow to consider only the first stage).
To ensure the correct estimation of the sampling variance in the multistage design
with the rescaling bootstrap, subsampling from the original sample is applied inde-
pendently at each stage of the sampling design. However, Vs(θ̂I |z) concerns the
sampling variance of the imputed estimator. Even when the imputations are done
only with respect to the missing values at the last stage, the imputations affect
the variance of the imputed estimator at all stages of the sampling design. This is
a consequence of the imputed values being included in the computation of total
values or mean values of the PSUs and the SSUs, which determine the variance at
the corresponding stage. Thus, to capture Vs(θ̂I |z), the reimputation of imputed
values has to consider all stages of the sampling design and has to be conducted
with respect to the subsampling process of the rescaling bootstrap.

To derive a modification of the rescaling bootstrap that takes the three requirements
into account, we present the subsampling process of the rescaling bootstrap that is
described in Sect. 1.2 in another form as illustrated in Table 1.

The table shows the possible combinations for categorizing USUs with respect to
the subsample process. A value of 1 in the last column indicates that the category
includes the USUs that are drawn for the subsample, and a value of 0 means that the
category includes the USUs that are not drawn for the subsample. A value of 1 in the
third column indicates that the category includes the USUs whose superordinate SSU
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is drawn for the subsample, and a value of 0means that the category includes the USUs
whose superordinate SSU is not drawn for the subsample. A value of 1 in the second
column specifies that the category consists of the USUs whose superordinate PSU
is drawn for the subsample, and a value of 0 means that the category consists of the
USUs whose superordinate PSU is not drawn for the subsample. The category C2, for
example, includes the USUswhose superordinate PSU is drawn for the subsample, but
these USUs and their superordinate SSUs are not drawn for the subsample. In contrast,
category C8 includes all the USUs that are drawn for the subsample, as well as their
corresponding PSU and SSU. By doing so, all the USUs of the original sample can be
divided with respect to these eight categories of subsampling process. The categories
are mutually exclusive, and each USU can be assigned only to one of the categories.

This division can be used as a basis for the reimputation to take all three require-
ments into account: The reimputation of all imputed values, the differentiation between
elements drawn for the subsample and elements not drawn for the subsample, as well
as to consider the different stages of the sampling design and the subsampling process
respectively.We propose two differentmodifications of the rescaling bootstrap that use
this division as a basis for the reimputation. In the firstmodification, the reimputation is
done separately in all eight categories (with corresponding estimator Resc_Mod1, see
Table 2), whereas the secondmodification (with corresponding estimator Resc_Mod2,
see Table 2) combines categories with the same weight adjustments of the original
design weights with respect to the formulas (1), (2), and (3). For example, the cate-
gories C3, C5, and C7 lead to same weight adjustments6 as category C1, since even
if the USUs or the SSUs are drawn for the subsample, their corresponding PSU is not
drawn for the subsample.7 In this case, δd in (1), (2), and (3) takes the value 0 that
results in same weight adjustments. Furthermore, the USUs in the categories C2 and
C6 have the same weight adjustments, but these weight adjustments are different in
comparison to the weight adjustments in the categories C1, C3, C5, and C7.

Both procedures have their advantages. When a reimputation is done separately in
all eight categories, they are more equal in size, which may make the variance esti-
mation more stable. Furthermore, this procedure makes more use of the subsampling
process of the rescaling bootstrap. The second procedure, in which categories with
the same weight adjustment are combined, has the advantage that it makes more use
of the weight adjustment process of the rescaling bootstrap.

As a consequence, the two proposed modifications are described as follows, where
they differ in Step 2:

1. First, subsamples of size l∗ = �l/2�,m∗
d = �md/2�, and n∗

dq = �ndq/2� are
drawn independently at each stage of the sampling design in each run b. This
procedure corresponds to the rescaling bootstrap of Preston (2009) that is based
on complete observations.

2. To conduct the reimputation, all USUs are assigned to categories that are formed in
each run b. For modification 1, the eight categories in Table 1 are built to include

6 In this case, weight adjustment refers to the technical adjustment of the original weights via the formulas
(1), (2), and (3). However, the adjusted weights of different elements can be different, for example, due to
different sample sizes and subsample sizes or different original weights.
7 Such combinations are possible, since the rescaling bootstrap is applied independently at each stage of
the sampling design, as described in Sect. 1.2.
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all possibilities to categorize the USUs with respect to the elements drawn for
the subsample and the elements not drawn for the subsample at each stage of
the sample design. For modification 2, the categories in Table 1 with the same
weight adjustments are combined to one category. As explained, this concerns
categories C1, C3, C5, and C7 as well as C2 and C6. Four categories remain—the
two combined categories and the categories C4 and C8. For both modifications,
the categories are formed again in each run b.

3. The reimputation is conducted separately in each category c. In each run b, the
imputedvalues of the original sample in each category cwith i ∈ Gbc are reimputed
on the basis of the observed values in each category c with i ∈ Rbc, which results
in the vector y∗

reimp that contains reimputed imputed values as well as observed

values.8

4. The design weights w∗
dqi are computed in each run b with respect to (4) on the

basis of the adjusted weights at each stage regarding (1), (2), (3), and as described
by Preston (2009). The adjusted weights are combined to the vector w∗.

5. The point estimator of the rescaling bootstrap is calculated in each run b by

θ̂∗
I = T (y∗

reimp,w
∗).

6. The steps 1 until 5 are repeated B times. Thus, the estimators θ̂∗
I ,1 . . . θ̂∗

I ,b . . . θ̂∗
I ,B

result and the variance is estimated with respect to (6) by

V̂resc

(
θ̂I

)
= 1

B − 1
·

B∑
b=1

(
θ̂∗
I ,b − 1

B
·

B∑
v=1

θ̂∗
I ,v

)2

. (10)

We include both modifications in the simulation study because of their differ-
ent advantages and to evaluate their performance. The described procedure can be
extended easily to sampling designs with more than three stages. In this case, the
number of categories in Table 1 increases to 2φ , where φ is the number of stages of
the sampling design. Weight adjustments also can be extended easily to more stages
by using the formula in Preston (2009, p. 229).

2.3 Procedures when V2 has a strong contribution

Assuming a deterministic imputation procedure and a variance decomposition as
shown by (7), both modifications cover the variance component V1 and are valid
variance estimators for the overall variance, if component V2 is negligible. Variance
component V2 cannot be covered because this component includes the variance result-
ing from the treatment of the response mechanism as a random process and, thus, is
based on the variance component related to a varying response vector. However, the
rescaling bootstrap treats the response vector as fixed (for treatment of response vec-

8 The adjustment of imputed values with respect to Shao (2002) must be applied for stochastic imputation
procedures instead of the reimputation at this step, since the subsample size of the rescaling bootstrap differs
from the size of the original sample at the different stages.
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tors in resampling methods, see Mashreghi et al. 2014). This issue is due to the fact
that the response vector, and thus nonresponse, is not generated in each run b of the
rescaling bootstrap. The same response vector is used, and respondents and nonre-
spondents maintain their response status in each run b (Mashreghi et al. 2014). If the
variance component V2 makes a significant contribution to the overall variance, an
estimator is required that additionally covers this variance component. In this case,
the two proposed modifications of the rescaling bootstrap may be extended by the
procedures described in Mashreghi et al. (2014). For example, a new response vector
can be generated for each run b by using a binomial distribution. As for the resampling
methods described in Mashreghi et al. (2014), this procedure also may require adjust-
ments of the weighting formulas in (1), (2), and (3) of the Preston’s rescaling bootstrap
(Preston 2009). Another procedure for considering the variance component V2 is the
usage of correction factors as described in Mashreghi et al. (2014) but modifications
of these correction factors regarding multistage sampling designs may be necessary.

However, as described previously, in many situations, the overall sampling fraction
f in multistage sampling designs may not be large enough in order for V2 to have
a strong influence on the overall variance. Thus, the focus in the simulation study
in Sect. 4 is more on the examination under which parameter constellations, partic-
ularly, the overall sampling fraction, the variance component V2 makes a significant
contribution to the overall variance.

3 Design of the simulation study

We use a Monte Carlo simulation study to evaluate the quality of the proposed mod-
ifications of the rescaling bootstrap. According to Enderle et al. (2013), comparisons
that are made on the basis of Monte Carlo simulation studies ensures an evaluation
of such methods with respect to their actual application. This is a major point of this
paper, because we aim to compare the proposed methods with variance estimation
methods in which important components of the practical application such as the sam-
pling process, the subsampling process or the imputation process are not considered.
The effects of the non-consideration of such important components can be examined
directly by using the corresponding distributions of the estimators. Furthermore, the
Monte Carlo simulation study ensures an analysis of the effects of different parameter
constellations. Within the scope of this paper, this is, for example, important with
respect to the examination of possible effects of the variance component V2 on the
variance estimation dependent on the overall sampling fraction.

We implement the simulation study by using the statistical software R (R Core
Team 2021), and we describe this study in the following sections.

The simulation study consists of two parts. To evaluate the modifications in their
basics, we draw a population from a multivariate normal distribution in the first part.
This population is described in Sect. 3.1.1. In the second part of the simulation study
in Sect. 3.2, we consider a more realistic dataset, to analyse the modifications under
more complex conditions.
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3.1 Multivariate normal distribution

3.1.1 Population, sampling design, and scenarios

The population generation process is similar to the population generation process used
by Bruch (2016, 2019). In contrast to these studies, the population generation process
in the simulation study of this paper is not related to a one or two stage sampling
design but to a three-stage random sampling design.

First, we create the structure of the population with a size of N = 10,000,000
by dividing the population in 500 PSUs, 80 SSUs per PSU, and 250 USUs per SSU.
This was done by a simple replication of the corresponding IDs of PSUs and SSUs
according to their respective sizes.

Given this predefined structure, we draw the variable of interest y and auxiliary
variables x1 and x2 from a multivariate normal distribution described by

ζ ∼ N (μ,	),

where parameters μ and 	 are defined by

μ = (200, 50, 80)

and

	 =
⎛
⎝1000 170 35

170 100 5
35 5 75

⎞
⎠ .

We apply the function rmvnorm from the R package mvtnorm (Genz et al. 2014;
Genz and Bretz 2009) to draw the universe from the multivariate normal distribution.
As a result of this randomdrawing process to generate y, x1 and x2 given the predefined
structure of PSUs and SSUs, these units are heterogeneous in this scenario.

We use the multivariate normal distribution for two reasons. First, the main aim
of the paper is to propose the application of variance estimation methods when data
is collected using multistage sampling designs and that in this collected data missing
values appear that are compensated by using imputation. The proposed resampling
method should be examined with regard to this main aim in this part of the simu-
lation study, and the influences resulting, for example, from highly skewed variable
distributions should be kept at a minimum. Second, the use of a multivariate normal
distribution guarantees that a large proportion of the variance of the estimator appear
at the last stage of the sampling design. In Särndal et al. (1992), Lohr (1999), Bruch
et al. (2011), Bruch (2016) and in Sect. 1.2 it is described that with variance estima-
tion procedures that only include the first stage of the sampling design, more than
the variance of the estimator at the first stage is covered. In case the PSUs and SSUs
are homogeneous, it may occur that most of the overall variance could be covered
with the first stage’s variance estimator. However, in the simulation study, we aim to
analyse, if the proposed modifications are able to estimate the variance correctly when
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also a large proportion of the variance occurs at the last stage and thus all stages of
the sampling design may have to be considered. Thus, the PSUs and SSUs should
be heterogeneous in this part of the simulation study. However, the PSU and SSU in
the first part of the simulation study may be too heterogeneous for some applications.
Thus, in the second part of the simulation study, we also consider a population with a
less heterogeneous structure that may be more realistic for practical applications.

The simulation study includes different scenarios that differ with respect to the
sampling fractions and the generation process of the response vector. We use the
same response vector in each simulation run in the first two scenarios. The variance
component V2 of (7) does not appear in this case. The aim is to show the extent the
modifications of the rescaling bootstrap are able to estimate variance component V1.
In Sect. 1.3, we described that this component may determine the whole variance of
an imputed estimator in multistage sampling designs in many situations. Thus, it is
of particular interest to find a valid variance estimator for this variance component,
which is accomplished by comparing the two scenarios in the simulation study with
different sampling fractions.

Sampling fractions are small in the first scenario, and 50 PSUs are drawn at the
first stage ( f1 = 0.1); 8 SSUs in each drawn PSU are selected at the second stage
( f2 = 0.1) and 10USUs in each drawn SSU are selected at the third stage ( f3 = 0.04).
The overall sample size is n = 4000 ( f = 0.0004).

We examine the impact of large sampling fractions in the second scenario, partic-
ularly, the impact of missing reimputation of certain elements by which the influence
increases with increasing sampling fractions. Thus, 300 PSUs are drawn at the first
stage ( f1 = 0.6), 40 SSUs in each drawn PSU at the second stage ( f2 = 0.5), and
125 USUs in each drawn SSU at the third stage ( f3 = 0.5). The overall sample size
is n = 1,500,000 ( f = 0.15).

A new response vector is generated in each simulation run in Scenario 3. Thus,
variance component V2 also may occur. In this scenario, the aim is to examine under
which conditions this component has to be considered in a multistage sampling design
and up to which point the proposed methods may still be a valid instrument to estimate
the whole variance. As mentioned previously, we assume that the variance component
V2 may be negligible in multistage sampling designs in many situations. However,
the component is not negligible in the case of a large overall sampling fraction f .
Thus, in this scenario, we choose sampling fractions that are rather high with f1 =
0.25, f2 = 0.25, and f3 ≈ 0.25 to obtain a rather high overall sampling fraction
f . Hence, 125 PSUs are drawn at the first stage, 20 SSUs in each drawn PSU are
selected at the second stage, and 63 USUs in each drawn SSU are selected at the third
stage. The overall sample size is n = 157,500. Also, the overall sampling fraction
f ≈ 0.016 may be rather high compared to population surveys that use multistage
sampling designs in practice but may not large enough for variance component V2
to have a large influence. Hence, to examine from which sampling fraction onwards
the variance component V2 has an influence on the overall variance, we increase the
sampling fractions up to f1 = 0.6, f2 = 0.5, and f3 = 0.5 with overall sampling
fraction f = 0.15.
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3.1.2 Nonresponse generation

Nonresponse is generated in the population before sampling (see, for example, Fay
1991 or Shao and Steel 1999) and only for the USUs in our simulation study. The
nonresponse is implemented by the procedure described and used in Enderle et al.
(2013).9 Following this procedure, the response vector is generated by using a logistic
model and depends on the auxiliary variables x1 and x2. Thus, the missing mechanism
is missing at random.

First, the response propensities pi for each element in the population i ∈ U are
computed by

pi = exp(α̃ + β̃ · x1i + γ̃ · x2i )
1 + exp(α̃ + β̃ · x1i + γ̃ · x2i )

, (11)

where α̃, β̃, and γ̃ are model parameters that determine the response mechanism.
Second, random numbers ui are selected from a uniform distributionU (0, 1) for each
element i . The response vector z for an element i takes the value 1 if pi ≥ ui , which
indicates that element i has an observed value regarding y. The response vector z takes
the value 0 for an element i if pi < ui , which indicates a missing value regarding y.

However, the main aim of this paper is to analyse the modifications of the rescaling
bootstrap under nonresponse and imputation. Thus, the nonresponse rate has to be
large enough. Also, the correlation of the auxiliary variables to the response vector
should not be too small to ensure a missing-at-random mechanism. Thus, we set the
parameters to generate the response vector to α̃ = −20, β̃ = 0.3, and γ̃ = 0.07,
which leads to a nonresponse rate of about 43% for each scenario. The correlation
of x1 to the response vector z is approximately 0.68, and the correlation of x2 to the
response vector is approximately 0.17.

We apply deterministic regression imputation to compensate formissing values.We
apply a regressionmodel in the linear form. The independent variables are the auxiliary
variables x1 and x2 and the variable to be imputed y is the dependent variable. The
regression imputation is conducted unweighted and all observed units are weighted
equally when training the regressionmodel. As a result of the population and sampling
design, the ultimate sampling units have the same design weights so that it is not
necessary to include them. The corresponding R-Code for the regression imputation
is based on the R-code used by Davison and Sardy (2004).

3.2 AMELIA

The proposed procedures should also be evaluated under more realistic conditions.
Thus, in a second part, we conduct the simulation study on the synthetic dataset
AMELIA (Burgard et al. 2017, 2020; Kolb 2012; Alfons et al. 2011) that is based on
the EU-SILC dataset from 2005. Also, the previously mentioned studies with respect
to the rescaling bootstrap of Bruch (2016, 2019) used this dataset in their simulation
studies.

9 The procedure is also applied in Bruch (2019).
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The analyses are done at the person level and the population includes 10,012,600
persons. The variable of interest is the variable INC of the AMELIA dataset, that is the
sum of all income components of a person. As a result, the variable is highly skewed
and poses further challenges to the variance estimation. From this population, we draw
samples with a size of 30,000 persons using a multistage sampling design. As PSUs
we use the districts (variable DIS) whereby we assign districts 1 and 2 to district 3 due
to their small population size. The total dataset therefore contains 38 PSUs in total.
As SSUs, we use the cities and communities respectively (variable CIT). We assign
small communities to larger communities when their population size is below 500.

To realize a sample size of 30,000, we select 10 PSUs, 10 SSUs in each PSU
drawn, and 300 USUs in each SSU drawn. To generated nonresponse, we apply again
the procedure described in Enderle et al. (2013). To model the imputation process,
we use the variables BAS that describe the work status and the variable HHS that
indicates the household size. We categorize the latter so that both variables consist of
four categories. Since both variables are categorical, instead of (11), the propensities
are computed by

pi = exp(α̃ + β̃BAS,ν[i] + γ̃C IT ,o[i])
1 + exp(α̃ + β̃BAS,ν[i] + γ̃C IT ,o[i])

, (12)

where the parameters β̃BAS,ν[i] and γ̃C IT ,o[i] depend on the category ν of variable
BAS and on the category o of variable CIT to which an element i belongs. β̃BAS,ν[i]
results in a value of −3 for ν = 1, 1 for ν = 2, 1 for ν = 3 and 0 for ν = 4. γ̃C IT ,o[i]
has the values −3 for o = 1, 1 for o = 2, 0 for o = 3 and −2 for o = 4.The parameter
α̃ is 2.5 in this scenario. The following steps to generate nonresponse are the same
as for the previous scenarios. The nonresponse rate is also comparable with previous
scenarios with a value of 43%. In this part of the simulation study, we use a varying
response vector.

In practice, often a stochastic imputation procedure is used. Thus, in this scenario,
we examine the proposed variance estimation procedures for a stochastic imputation
procedure, and we apply hot-deck-random imputation.10 First, we construct imputa-
tion classes over the cross classification of variable BAS and CIT. Imputation classes
that are too small are assigned to larger classes. Afterwards, for each missing value in
an imputation class, a donor is drawn randomly from the observed value of the same
imputation class. As a result of the stochastic imputation procedure, we apply the
adjustment of imputed values as described in Shao (2002) instead of the reimputation.
Due to the small overall sampling fraction, we do not consider any of the corrections
described in Mashreghi et al. (2014) in this scenario.

10 We apply an unweighted hot-deck-random imputation since in our case the resulting point estimator
was nearly Monte Carlo unbiased. However, with respect to Haziza (2009) in other applications it may
be necessary to apply a weighted hot-deck-random imputation, particularly, when the sampling weight is
highly correlated with the variable of interest y.
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Table 2 Resampling methods
considered in the simulation
study

Variance estimator Description

Resc_obs Rescaling bootstrap that treats the
imputed values as actually
observed without reimputation

Resc_whole Rescaling bootstrap that conducts the
reimputation of the imputed values
on the basis of the whole sample,
without distinction between the
elements drawn and not drawn for
the subsample

Resc_only_Sub Rescaling bootstrap that does not
reimpute the imputed values in the
categories C1, C3, C5, and C7

Resc_stage1 Rescaling bootstrap in which the
reimputation is conducted
separately for the imputed values
whose corresponding PSU is drawn
for the subsample and for the
imputed values whose
corresponding PSU is not drawn
for the subsample

Resc_stage2 Rescaling bootstrap in which the
reimputation is conducted
separately for the imputed values
whose corresponding SSU is drawn
for the subsample and for the
imputed values whose
corresponding SSU is not drawn
for the subsample

Resc_stage3 Rescaling bootstrap in which the
reimputation is done separately
with respect to the imputed values
drawn at the third stage and the
imputed values not drawn at the
third stage

Resc_Mod1 Rescaling bootstrap in which the
reimputation of imputed values is
done separately in all categories
from C1 to C8

Resc_Mod2 Rescaling bootstrap in which
categories with the same weight
adjustments are combined, and
reimputation is done in the
remaining categories

3.3 Included estimator and benchmark

As shown inTable 2,we consider the followingmodifications of the rescaling bootstrap
in the simulation study.
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The modifications of the rescaling bootstrap Resc_Mod1 and Resc_Mod2 are the
proposedmethods of this paper. These are the onlymodifications that consider the three
requirements to modify the rescaling bootstrap in the multistage design with respect
to imputation that are described in Sect. 2.2. The other modifications of the rescaling
bootstrap that are included in the simulation study do neglect at least one of the
requirements. The aim of including these modifications of the rescaling bootstraps is
to show the effect of important components not being considered or applied adequately,
and that it is important to take all three requirements into account when applying the
rescaling bootstrap in a multistage sampling design.

As a result, we include the estimator Resc_whole that applies the reimputation on
the basis of the whole sample without distinction between the elements drawn and
not drawn for the subsample and thus does not consider, for example, the second
requirement. In case of a deterministic imputation method, this estimator should lead
to the same results as the estimator that treats imputed values as actually observed.
This issue is examined by including the estimator Resc_obs. Both estimators do not
consider the imputation process adequately.

The estimators Resc_stage1, Resc_stage2, and Resc_stage3 do not consider certain
stages of the sampling design and the subsampling process of the rescaling bootstrap
in the reimputation process and thus the third requirement. The reimputation of these
estimators only considers one stage of the sampling design. For example, the reimputa-
tion in the estimator Resc_stage1 is done separately only for the imputed values whose
corresponding PSU is drawn for the subsample (δd = 1) and for the imputed values
whose corresponding PSU is not drawn for the subsample (δd = 0). Stages 2 and 3
of the sampling design are neglected. The reimputation for the estimator Resc_stage2
is done separately only for the imputed values whose corresponding SSU is drawn
for the subsample (δdq = 1) and for the imputed values whose corresponding SSU is
not drawn for subsample (δdq = 0). Thus, stages 1 and 3 of the sampling design are
neglected. The estimator Resc_stage3 does not consider the stages 1 and 2, and the
reimputation is done separately only with respect to the imputed values drawn at the
third stage (δdqi = 1) and the imputed values not drawn at the third stage (δdqi = 0).
Instead of the eight categories in Table 1, we only have two categories in which the
reimputation is applied within each estimator.

Similar to study of Bruch (2019) with respect to a single stage design, we also
examine the need to reimpute the imputed values in a multistage design to avoid
the unintentional variance component dependent on the sampling fractions, and the
influence of not reimputed imputed missing values. This issue is related to the first
requirement in Sect. 2.2 and is examined by including the estimator Resc_only_Sub. In
contrast to the single stage design, statements regarding the need to reimpute imputed
values dependent on the sampling fractions are not straightforward. That is due to
more parameters having an impact on the weight adjustment, while the classification
of elements being drawn (or not drawn) concerns the different stages.

With respect to the first point, we can only consider a limited number of param-
eter constellations in the simulation study, particularly, a scenario with small and a
scenario with large sampling fractions. Thus, the statements focus mainly on these
constellations. Regarding the second point, the classification of elements, we examine
the effect of a missing reimputation dependent on the sampling fractions with respect
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to certain categories of Table 1 rather than with respect to a classification of elements
drawn and not drawn for the subsample. Thus, for the estimator Resc_only_Sub, we do
not reimpute the imputed values in the categories C1, C3, C5, and C7. We chose these
categories because their elements receive same weight adjustments as described in
Sect. 2.2. Thus, the effect of smaller and larger sampling fractions should be the same
with respect to the influence of the elements of the categories C1, C3, C5, and C7 on
the variance estimation. Particularly, the influence of the elements of these categories
is very small when sampling fractions are small and larger when sampling fractions
are large. This is shown in the Appendix A.1 and in Table 4, in which we compute the
relative influence of USUs of a certain category c. The relative influence of categories
C1, C3, C5, and C7 is altogether 4% in the scenario with small sampling fractions
and 20% in the scenario with large sampling fractions. As a consequence, we expect
a larger unintentional variance component and thus overestimation of the variance in
the scenario with larger sampling fractions with estimator Resc_only_Sub.

In the first part of the simulation study, all estimators presented in Table 2 are con-
sidered. In this part of the simulation study, those estimators should perform well that
fulfil the basic requirements for a variance estimation under imputation in a multistage
sampling design, particularly, the three requirements defined in Sect. 2.2. As described
in Sect. 3.1.1 using a multivariate normal distribution to create the population ensures,
that all stages of the sampling design may have to considered and that other influ-
ences (such as the skewed variable of interest) that confound the effects that should
be analysed are avoided. As a result, this scenario allows to focus on the analysis of
the basic requirements of the variance estimation under imputation and is rather sim-
ple with respect to other influences. Thus, estimators that do not perform well in this
scenario do not fulfil the requirements (as used in this study) to obtain a valid variance
estimation under imputation in a multistage sampling design. For that reason, these
estimators are not considered any further in the second part of the simulation study.

As a benchmark, we use the Monte Carlo variance, which is computed on the basis
of the total value point estimators in (9) of 50,000 samples. This large number of
samples for the benchmark is necessary, since the simulation study applied by Bruch
(2016) shows that the Monte Carlo variance can be very unstable when the number of
samples is not large.However, the variance estimation that applies resamplingmethods
may converge much faster if the number of subsamples is large enough (Bruch 2019).
Thus, and as a result of computation reasons, in the scenarios, that are based on the
multinormal distributions, we computed the resampling methods on the basis of 125
subsamples and only for 1000 samples. In the scenario in which we use the AMELIA
dataset the convergence wasmuch slower due to the highly skewed variable of interest.
For that reason, we increase the number of samples to 20,000.

4 Results

We present the results of the simulation study by using the relative bias. The results
are visualized by boxplots that are produced by the R package lattice (Sarkar 2008).
The black point in each boxplot indicates the mean value of the estimations of the
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Fig. 1 Results of the scenario with small sampling fractions and a fixed response vector

different samples for a certain estimator. The red line across all boxplots indicates the
Monte Carlo variance, whose relative bias is zero due to it being the benchmark.

4.1 Multivariate normal distribution

4.1.1 Scenario 1: Small sampling fractions, fixed response vector

Figure 1 presents the results for the small sampling fractions at all stages of the
sampling design and a fixed response vector. As expected, the rescaling bootstrap that
conducts the reimputation of the imputed values on the basis of the whole sample
without distinction between the elements drawn and not drawn for the subsample
(Resc_whole) leads to the same results as the rescaling bootstrap that treats the imputed
value as actually observed (Resc_obs). Applying the reimputation of the imputed
values on the basis of thewhole samplewithout distinction between the elements drawn
and not drawn for the subsample leads to the same reimputed value as the imputed value
in the original sample when the imputation procedure is deterministic. In this case, this
approach matches the rescaling bootstrap that treats the imputed value of the original
sample as actually observed. Both estimators lead to a severe underestimation of the
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Fig. 2 Results of the scenario with large sampling fractions and a fixed response vector

variance because they do not consider the effect of missing values and imputation.
Particularly, it shows the need to meet requirement 2 in Sect. 2.2.

Furthermore, the figure shows that the three modifications of the rescaling boot-
strap that neglect certain stages of the sampling design in the reimputation process
(Resc_stage1, Resc_stage2 and Resc_stage3) underestimate the variance. These
results strengthen the importance to meet requirement 3 in Sect. 2.2. However, the
underestimation of the rescaling bootstrap that only considers the first stage in the
reimputation process is not as large as the underestimation of the other two estima-
tors.

As expected, the estimator that does not reimpute the imputed values in the cate-
gories C1, C3, C5, and C7 (Resc_only_Sub) leads only to a small overestimation of
the variance. Elements of these categories have a minimal influence if the sampling
fractions at the several stages are small as seen in Table 4 in the Appendix A.1. Thus,
the unintentional variance component is small that leads to a small overestimation of
the variance.

However, our two proposed modifications of the rescaling bootstrap—the one
that makes more use of the weight adjustment process of the rescaling bootstrap
(Resc_Mod2) and the other that separately does the reimputation in all the categories
(Resc_Mod1)—lead to very similar results. On average, the estimations of both meth-
ods are close to the benchmark.
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4.1.2 Scenario 2: Large sampling fractions, fixed response vector

These results of the previous scenario become more obvious when increasing the
sampling fractions at the several stages. The results for large sampling fractions are
presented in Fig. 2. Again, the estimators Resc_whole and Resc_obs lead to a huge
underestimation of the variance. These results further confirm the need tomeet require-
ment 2 in Sect. 2.2.

The modifications of the rescaling bootstrap that neglect certain stages of the sam-
pling design (Resc_stage1, Resc_stage2 and Resc_stage3) strongly underestimate the
variance, which is also the case for the rescaling bootstrap that only considers the
first stage in the reimputation process. All estimations are below the benchmark for
all three modifications. These results further show the need to meet requirement 3 in
Sect. 2.2.

As expected, the estimator that does not reimpute the imputed values in the cate-
gories C1, C3, C5, and C7 (Resc_only_Sub) leads to a larger overestimation in this
scenario than in the scenario with the small sampling fractions. This larger overesti-
mation is a result of the increasing influence of elements of categories C1, C3, C5,
and C7 with larger sampling fractions at the several stages as shown in Table 4 in
the Appendix A.1. Thus, the unintentional variance component also increases and the
overestimation is much larger. The results emphasise the need to meet requirement
1 in Sect. 2.2 and show the need to reimpute all imputed values of all (combined)
categories when elements of the category have an influence on the variance estima-
tion. Otherwise, the unintentional variance component can also appear in a multistage
sampling design.

The only estimators that lead to estimations close to benchmark are the twoproposed
modifications of the rescaling bootstrap Resc_Mod1 and Resc_Mod2. These are the
only estimators that meet all requirements in Sect. 2.2. The differences between these
two modifications are again rather small.

4.1.3 Scenario 3: Varying response vector

This section presents the results of the simulation study when generating a new
response vector in each simulation run. The results for sampling fractions f1 =
0.25, f2 = 0.25, and f3 = 0.25 are displayed by Fig. 3. In this case, the total variance
in (7)may also include the variance component V2. For a large sampling fraction f , the
proportion of V2 may be relevant. Under such conditions, the modifications described
in this paper may lead to an underestimation of the overall variance, since they do not
cover this variance component.

However, the results for the sampling fractions f1 = 0.25, f2 = 0.25, and f3 =
0.25 are very similar to the results of the previous section. The estimators Resc_whole,
Resc_obs, Resc_stage1, Resc_stage2, and Resc_stage3 result in an underestimation of
the variance, and the estimatorResc_only_Suboverestimates the variance.On average,
the estimations of the modifications Resc_Mod1 and Resc_Mod2 are close to the
benchmark. It seems that the variance component V2 only makes a small contribution
to the total variance, even if the sampling fractions are rather large compared to many
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Fig. 3 Results generating a new response vector in each simulation run

Table 3 Relative bias (RB) for the two proposed modifications, depending on the sampling fractions when
generating a new response vector in each simulation run

Sampling fractions at different stages

Variance estimator f1 = 0.25, f1 = 0.3, f1 = 0.4, f1 = 0.6,

f2 = 0.25, f2 = 0.3 f2 = 0.4, f2 = 0.5,

f3 = 0.25, f3 = 0.3, f3 = 0.4, f3 = 0.5,

f ≈ 0.016 f3 = 0.027, f = 0.064 f = 0.15

Resc_Mod1 RB = −0.004 RB = −0.009 RB = −0.035 RB = −0.069

Resc_Mod2 RB = −0.004 RB = −0.008 RB = −0.039 RB = −0.073

practical applications. The overall sampling fraction with f ≈ 0.016may be too small
for the component V2 to have an influence on the overall variance.

Thus, to examine this point inmore detail, we further increase the sampling fractions
in our simulation study. Table 3 presents the results for estimators Resc_Mod1 and
Resc_Mod2. As can be seen, only from sampling fractions f1 = 0.4, f2 = 0.4,
f3 = 0.4 and f = 0.064 onwards, some underestimations arise due to the non-
consideration of the variance component V2. The underestimations for f1 = 0.4, f2 =
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0.4, f3 = 0.4 and overall sampling fraction f = 0.064 are rather small, with relative
biases of −0.035 and −0.039. Even for the sampling fractions f1 = 0.6, f2 = 0.5,
and f3 = 0.5, with an overall sampling fraction f of 15%, the underestimations are
not much larger with relative biases of −0.069 and −0.073. Thus, with respect to the
conditions of our simulation study, it seems that the overall sampling fraction must be
considerably larger for the variance component V2 to have an influence on the overall
variance, and to be significant. However, as seen at the parameter constellations, such
large sampling fractions may not often achieve in practical application. Thus, the
modifications of the rescaling bootstrap described in Sect. 2.2 may ensure a valid
variance estimation for the overall variance in many situations. Nevertheless, if the
variance component V2 has an influence on the variance, the approaches described in
Mashreghi et al. (2014) may be used as described in Sect. 2.3.

4.2 Simulation study using the AMELIA dataset

The results of the variance estimation using both of the proposed modifications of
the rescaling bootstrap for the AMELIA dataset are presented by Fig. 4. Basically,
the proposed modifications perform well under these challenging circumstances. The
estimator Resc_Mod1 leads to a relative bias of−0.0246 on average and the estimator
Resc_Mod2 results in a relative bias of -0.02352 on average, which is small when
considering that the variable of interest INC is highly skewed. The overall sampling
fraction is very small with 0.3%. However, as can be seen, due to the highly skewed
variable of interest, the distributions of the variance estimations of both modifications
are highly skewed as well. Particularly, larger outliers make the variance estimation
less robust, a problem many variance estimations methods will be confronted with,
when applying on such skewed data.

4.3 Computational efficiency

To evaluate the computational efficiency of the proposed modifications and the other
included estimator, we evaluate the elapsed time of the different procedures for a
certain sample in Scenario 1 (Sect. 4.1.1) with n = 4000 using the R-command
system.time of the base-package (R Core Team 2021). The computational times can
only be evaluated with some stronger limitations, since it depends also on parameters
that are not related to the actual different estimators, such as the computer power or
the efficiency of the written R-Code of the different procedures.

Estimator Resc_Mod1 requires approximately 2.8 s per sample, Resc_Mod2 about
2.1 seconds and Resc_only_Sub 1.9 s. The estimators Resc_stage1, Resc_stage2 and
Resc_stage3 have an elapsed time of about 1.6 seconds.With 1.4 seconds and 1.3 s, the
estimators Resc_whole and Resc_obs are the fastest. The computational times show
that themore complex the reimputation process is applied in the different estimator, the
longer the computational time. Resc_Mod1 conducts the reimputation by considering
the most number of categories. Resc_obs does not apply the reimputation. Hence, this
may be one reason for the differences in computational time. The computational time
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Fig. 4 Results for the AMELIA dataset

can increase strongly with sample size in Scenario 2 (Sect. 4.1.2, n = 1,500,000). For
example, Resc_Mod1 needs about 562s and Resc_obs around 423s.

5 Discussion and conclusion

In practice, frequently, there will be a trade off between the aim to achieve good
variance estimates and the increase in complexity when using variance estimation
procedures that include the sampling design and the imputation such as it was done in
the proposed modifications. The theoretical part of Sects. 1 and 2 show the complexity
to include the sampling design, particularly, the different stages and the imputation
process that additionally concerns the implementation. As a result, the data analyst
may have to adjust these procedures for their particular application, since they may
be too specific for standard statistical software implementations. Moreover, the com-
putational time with the proposed modifications increases since more components of
the sampling design, particularly, more stages are taken into account as well as the
reimputation has to be conducted again for each subsample.

However, from a theoretical view, the variance of an estimator is derived with
respect to a certain sampling design that thus has to be considered in the variance
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estimation process. The imputation process also has an influence on the variance.
Thus, the sampling design as well as the imputation process have to be considered
adequately, otherwise, highly biased variance estimates may occur. This is confirmed
in our simulation study. Our results show the need to consider the imputation process
correctly in the variance estimation since our proposed modifications that include
the sampling design and the imputation process adequately outperforms the other
included estimators. Particularly, the subsampling process of the rescaling bootstrap
and thus the different stages of the sampling design has to be taken into account in
the reimputation process. As shown in the simulation study, the variance is heavily
underestimated when the imputation process is not included in the variance estimation
or the sampling design is not considered in the reimputation correctly. In case certain
imputed values are not reimputed, the variance is overestimated. Thus, the results
show that the consequences in the practical application may be severe since variance
estimates are used, for example, in hypothesis testing and confidence intervals. For the
estimators of the simulation study that do not consider the imputation process or the
sampling design correctly in the reimputation, hypothesis tests with respect to a certain
significance level may lead to falsely significant results since the variance estimate
is too low. Confidence intervals and thus the coverage probability may be too small
[see also the explanations in Haziza (2009)]. When using these variance estimates in
subsequent surveys, the sample size may be chosen too small.

Using the variance estimations of the estimator that do not reimpute certain imputed
values leads to opposite problems: hypothesis tests may be wrongly insignificant with
respect to a certain significance level, confidence intervals are too large and too large
sample sizes may be chosen in subsequent surveys.

The large extent of the bias produced by most of the considered estimators in
comparison to the proposed modifications shows the need to include adequately the
imputation and sampling design in the variance estimation and may overrule the dis-
advantage of a complex implementation and higher computational times. The extent
of the Monte Carlo bias of most of the variance estimation procedures that do not con-
sider the components correctly in our simulation study was so large that they cannot
be applied in practice.

Thus, it is important to receive a more valid variance estimation when applying
a complex sampling design, such as a multistage design, and imputation is applied.
This can be ensured by using the proposed modifications of the rescaling bootstrap
for multistage sampling designs of Preston (2009) that lead in our simulation study to
estimations that are on average close to the benchmark when the variance component
V2 is negligible.

Our simulation study did not detect any larger differences between the two proposed
modifications. The decision for one of the two proposed modifications may be done
based on the simplicity of implementation in a particular application.

However, our proposed modifications are limited to some degree, since they are
combinations of different procedure that themselves have some limitations.

In the paper, we assumed that an imputation procedure is applied that allows for an
inclusion of the imputation process in the rescaling bootstrap via the reimputation or
the adjustment of imputed values. This is especially a consequence of the derivation
of the proposed modifications to be an estimator for component Vs(θ̂I |z). However,
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there may be imputation procedures for which both procedures may not be applied
and thus the rescaling bootstrap may not be applied for these imputation procedures,
at least in the current version. The reimputation may lead to an overestimation of
the variance when the imputation procedure includes random components and the
subsample size is not of the original sample size. This circumstances is also the case
for the rescaling bootstrap. The adjustment of imputed values may be used instead
but that would require metric variables to be imputed. Thus, other adjustments may
be necessary for other imputation procedures. Such adjustments may also be included
in the rescaling bootstrap but an evaluation is necessary in order to examine how to
include these adjustments.

Additionally, for stochastic imputation procedures, for large sampling fractions,
the joint bootstrap distribution of the sampling and random component may be a poor
approximation of the corresponding joint distribution in the original sampling as result
of the rescaling [see Mashreghi et al. (2014) for further explanations]. Thus, further
corrections may be necessary in such a case. However, this limitation may be again
rather irrelevant in survey practice with generally small sampling fractions.

When the component V2 makes a significant contribution to the overall variance,
the proposed methods may be modified with respect to the approaches described in
Mashreghi et al. (2014). However, a larger contribution of the variance component V2
to the overall variance was detected only in our simulation study for high sampling
fractions, which are rather unrealistic in practice. As already described, a large overall
sampling fraction f , which is the main determinant of the variance component V2,
may be difficult to achieve in multistage sampling designs. Thus, in many situations,
the proposed modifications may be sufficient to estimate the variance of an imputed
estimator when multistage sampling designs are applied. However, due to the large
number of possible parameter constellations, our simulation study could only be con-
ducted for a few parameter constellations. In particular, the influence of the variance
component V2 should be examined in more detail in further simulation studies under
other conditions.

Furthermore, the simulation studybasedon theAMELIAdataset led to large outliers
with respect to the variance estimation that can be explained by the highly skewed
variable of interest. Thus, our modifications show potentials for improvements with
respect to the robustness.

Finally, in our simulation study, we can control all influences, particularly the
response mechanism, by setting the corresponding parameters and by considering the
variables that are responsible for the nonresponse. This requirement is important to
evaluate the proposed modifications. In practice, it is often not possible to receive
a lot of information with respect to the nonresponse mechanism, and a biased point
estimation cannot be avoided. This biased estimation also may affect the variance
estimation. Future research also may examine our proposed modification under such
circumstances in more detail. However, this goes beyond of the scope of this paper
in which the proposed methods were evaluated if they are basically an appropriate
instrument to estimate the variance of an imputed estimator in a multistage sampling
design.
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A Appendix

A.1 Relative influence

In this paper, we also aim to examine the effect of a missing reimputation with respect
to imputed values of categories C1, C3, C5, and C7 of Table 1 dependent on the
sampling fractions and their influence on the variance estimation. To evaluate the
influence of certain categories, we compute the relative influence of the USUs of a
certain category C by:

Rel.I n fC =
∑

i∈C w∗
dqi∑

i∈S w∗
dqi

. (13)

In detail, this measure shows the influence of the USUs of a certain category on the
rescaling point estimator and thus on the variance estimation. Table 4 shows the relative
influence of USUs for the categories C1, . . . , C8, according to the two scenarios in
Sects. 4.1.1 and 4.1.2 in which a fixed response vector is used.

With respect to small sampling fractions, the relative influence of USUs of category
C8 is very high. This category includes the USUs that are drawn for the subsample as
well as their PSUundSSU.Also, theUSUsof the categoriesC2,C4, andC6have a high
relative influence. These categories include the USUs for which at least their PSU is
drawn for the subsample but not their SSU or not theUSUs themselves or not both. The
relative influence of the USUs in categories C1, C3, C5 and C7 is very small. Together,
they have a relative influence of only 4%. In contrast, the relative influence of the
elements of these categories is much larger when the sampling fractions are large. The
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relative influence of each category C1, C3, C5, and C7 is 0.05, and together they have a
relative influence of 20%. Thus, the influence of the elements of these categories on the
variance estimation is much larger in the scenario with large sampling fractions than in
the scenario with small sampling fractions. This circumstance is particularly important
when analysing the effects of estimator Resc_only_Sub. As a result, with estimator
Resc_only_Sub, we can examine the effect of amissing reimputation dependent on the
variation of the relative influence of certain categories and dependent on the sampling
fraction. Particularly, we expect that in the scenario with larger sampling fractions and
a large influence of the not reimputed imputed value, a larger unintentional variance
component appears that leads to an overestimation of the variance.

A.2 The appearance of the unintentional variance component in a single stage
design in case of a large sampling fraction

In Sect. 1.3.2, we explained that it is necessary to reimpute also the imputed values not
drawn for the subsample in the rescaling bootstrap in a single stage design. This is a
results of the studies of Bruch (2016, 2019) that show that the reimputation done only
for the imputed values drawn for the subsample leads to an unintentional variance
component, which results in the overestimation of the variance. This unintentional
variance component is a result of the two different kinds of imputed values in the
rescaling point estimator when not reimputing the imputed values not drawn for the
subsample. In this case, if the missing value is drawn for the subsample, the reimputed
imputed value is used, whereas the imputed value of the original sample is used if the
missing value is not drawn for the subsample. Thus, the unintentional variance compo-
nent occurs when computing the variance over all rescaling bootstrap point estimators
and when—for the same missing value—some point estimators of the rescaling boot-
strap include the reimputed imputed value, whereas other point estimators include the
imputed value of the original sample. The variance component is called unintentional
because it is not related to the original imputation process that does not include two
different kinds of imputed values. The unintentional variance only occurs for increas-
ing sampling fractions in a single-stage sampling design, since elements not drawn for
the subsample only have a small impact when sampling fractions are small. Thus, in

Table 4 Relative influence of the USUs of the different categories in Scenario 1 and 2

Category Small sampling fraction Sect. 4.1.1 Large sampling fractions Sect. 4.1.2

C1 0.01 0.05

C2 0.19 0.11

C3 0.01 0.05

C4 0.27 0.21

C5 0.01 0.05

C6 0.19 0.11

C7 0.01 0.05

C8 0.32 0.40
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the case of large sampling fractions, the imputed values not drawn for the subsample
must be reimputed separately from the imputed values drawn for the subsample.

A.3 Derivation and explantions with respect to the proposedmodifications to be
a valid estimator

The derivation of the proposed modifications to be a valid estimator for variance
component Vs(θ̂I |z) follows from the explanations and derivations of Mashreghi et al.
(2014) in conjunction with Shao and Sitter (1996) and Preston (2009). Vs(θ̂I |z) is the
sampling variance of the imputed estimator, given the response vector z.

In the case without missing values, the rescaling bootstrap for a three stage design
of Preston (2009) is reduced to the standard variance estimator in a three stage sam-
pling design when the statistic of interest is linear. This is shown in the Appendix
of Preston (2009). Thus, the multistage bootstrap of Preston (2009) covers the three
stage sampling variance by the corresponding subsampling at each stage and cor-
responding weight adjusting. However, in case of the imputation being applied the
sampling variance do not pertain to the estimator that is based on complete estima-
tions but the imputed estimator θ̂I and thus the variance component Vs(θ̂I |z). With
respect to Mashreghi et al. (2014), this component can be estimated by using the so
called Shao and Sitter procedure (Shao and Sitter 1996). Thismeans paired subsamples
from the elements yI and their corresponding response status z of the original sample
are taken, applying any complete bootstrap method with respect to the sample design
(Mashreghi et al. (2014) show this for a one stage stratified design). Afterwards, in case
of a deterministic imputation procedure, the reimputation as described in Sect. 1.3.1
is applied to the bootstrap sample (Mashreghi et al. 2014). To transfer this procedure
to a multistage sampling design and to derive our modifications, we simply apply the
multistage rescaling bootstrap of Preston (2009) that describes a complete bootstrap
method with respect to the Shao and Sitter procedure. However, the reimputation has
to be conducted with respect to the subsampling process of the rescaling bootstrap
that leads to the division in elements drawn for the subsample and not drawn for the
subsample, as mentioned in Bruch (2019). Transferring this division to the rescaling
bootstrap in the multistage sampling (particularly, to the several stages) leads to the
both modifications described in Sect. 2.2. Thus, our modifications represent the Shao
Sitter principal with respect to the requirements of the rescaling bootstrap in a multi-
stage design. As a result, it estimates Vs(θ̂I |z) and thus V1. As a further consequence,
the procedure is not able to estimate V2 in (7). This is a limitation of the procedure.
However, this component is only significant in case of a large f . In our paper we
explain that it is often difficult in a multistage sampling design in practice, to achieve
such a large that overall sampling fraction that V2 makes a strong contribution. Thus,
for many situations in survey practice, our proposed modifications should be a valid
variance estimator.

For a stochastic imputation procedure, the reimputation may lead to an overestima-
tion of the variance when the imputation procedure includes random components and
the subsample size is not of the original sample size. This condition applies also for
the rescaling bootstrap. The adjustment of imputed values can be used instead when
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metric variables are imputed (Shao 2002). Furthermore, a further variance component
appears as a result of the variability of the random component of the imputation proce-
dure. The Shao Sitter procedure and thus our proposedmodifications also involves this
component (Mashreghi et al. 2014). However, with respect to Mashreghi et al. (2014)
for large sampling fractions, the joint bootstrap distribution of the sampling and ran-
dom component may be a poor approximation of the corresponding joint distribution
in the original sampling as result of the rescaling. Thus, further corrections may be
necessary in such a case. However, in practice, as said before, sampling fractions may
be rather small for multistage designs in practice.
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