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ARTICLE

Group mixing drives inequality in face-to-face
gatherings
Marcos Oliveira 1,2✉, Fariba Karimi3✉, Maria Zens1, Johann Schaible1,4, Mathieu Génois5 &

Markus Strohmaier1,3,6

Uncovering how inequality emerges from human interaction is imperative for just societies.

Here we show that the way social groups interact in face-to-face situations can enable the

emergence of disparities in the visibility of social groups. These disparities translate into

members of specific social groups having fewer social ties than the average (i.e., degree

inequality). We characterize group degree inequality in sensor-based data sets and present a

mechanism that explains these disparities as the result of group mixing and group-size

imbalance. We investigate how group sizes affect this inequality, thereby uncovering the

critical size and mixing conditions in which a critical minority group emerges. If a minority

group is larger than this critical size, it can be a well-connected, cohesive group; if it is

smaller, minority cohesion widens inequality. Finally, we expose group under-representation

in degree rankings due to mixing dynamics and propose a way to reduce such biases.
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Face-to-face interaction is a fundamental human behavior,
shaping how people build and maintain social groups by
segregating themselves from others1–4. This segregation can

generate or exacerbate intergroup inequality in networks, pro-
ducing unequal opportunities in different aspects of people’s lives,
such as education, employment, and health5–9, especially when
individuals tend to interact with similar others10. Though crucial
to a just society, however, our understanding of the interplay
between group dynamics and the emergence of inequalities in
social gatherings remains limited and quantitatively unexplored.

With deep roots in sociology and anthropology1–3, the study of
face-to-face interaction has advanced considerably in recent
years, mainly because of new tracking devices providing fine-
grained data on human interaction11–15. This data has enabled
researchers to uncover several properties in the way people
interact with others16–21. For example, in a social gathering,
individuals tend to interact with an average number of indivi-
duals, a quantity that depends on the social occasion21. Though
this number exhibits a trend across individuals in a gathering, the
duration of each interaction lacks a central tendency—it might
last from a few seconds to a couple of hours17–19. These two
properties have been found universally in many distinct social
situations, such as schools and workplaces, indicating the exis-
tence of fundamental mechanisms underlying face-to-face
interaction.

Simple social mechanisms can explain these properties as a
result of local-level decisions based on individuals’ attributes22–25.
One crucial attribute in face-to-face situations is the so-called
attractiveness. People with high attractiveness are more likely to
stimulate interaction with others. This principle, together with
individuals’ social activity, constitutes a mechanism that explains
well the properties found in empirical data23 and has been
extended to describe other features in face-to-face interaction,
such as people’s tendency to engage in recurrent interaction22,25.
However, focusing solely on individuals’ attractiveness neglects
the crucial role of pairwise interactions and social groups. For
example, an attractive individual might feel unwelcome in a
community if this person is an outsider of that particular
social group.

How social groups interact can define the position of indivi-
duals in networks, particularly when groups have unequal sizes.
For instance, the smallest group (i.e., the minority group) in a
network can have a systemic disadvantage of being less connected
than larger groups, depending on the group mixing26. Having a
lower number of connections poses several disadvantages to
individuals, such as low social capital27, health issues28, and
perception biases29. Yet, the mechanisms underlying group
dynamics and their relation to degree inequality in social gath-
erings are still unexplored.

Here we show numerically, empirically, and analytically that
degree inequality in face-to-face situations can emerge from
group imbalance and mixing. We present a mechanism—the

attractiveness–mixing model—that integrates mixing dynamics
(i.e., pairwise preferences) with individual preferences, expanding
the established attractiveness paradigm. While attractiveness is an
intrinsic quality of the individual, mixing dynamics manifest
between pairs of individuals; together, they form what we call
social attractiveness. The mechanism reproduces the intergroup
degree inequality found in six distinct data sets of face-to-face
gatherings. With the analytical derivation of our model, we fur-
ther demonstrate the impact of group imbalance on degree
inequality, finding a critical minority group size that changes the
system qualitatively. When the minority group is smaller than
this critical value, higher cohesion among its members leads to
higher inequality. Finally, we expose the under-representation of
minorities in degree rankings and propose a straightforward
method to reduce bias in rankings.

Results
We study the dynamics of social gatherings using six different
data sets30, four from schools11,19,31 and two from academic
conferences14. Each data set consists of the individuals’ interac-
tions captured via close-range proximity directional sensors that
individuals wore during each gathering. With these data sets, we
construct the social network of each gathering, where a node is an
individual and an edge exists if two individuals have been in
contact (i.e., face-to-face interaction) at least once during the
study (Table 1). In these networks, the degree distributions
exhibit a single peak at the center (see Supplementary Note 1).
The data further contain gender information on individuals,
which allows us to define two groups in each network; we refer to
social groups as a group of people who share similar social
traits32. In this paper, a social group refers to individuals who
share the same gender. In all considered data sets, there are fewer
female participants than male participants. We refer to the
smallest group as the minority group, and we denote 0 as the label
for the minority group and 1 for the majority. In our manuscript,
we define group mixing as the systematic preference of group
members to interact with individuals from specific social groups
(including their same group).

Degree inequality and mixing in face-to-face interaction. To
characterize the connectivity of the groups in the networks, we
measure the average degree of individuals in each group, finding a
systematic degree inequality among groups (Fig. 1a). The min-
ority group exhibits a lower average degree than the majority
group in School 1, School 2, and School 3, whereas the opposite
occurs in Conference 2 and School 4, and both groups have the
same average degree in Conference 1. Though this degree
inequality arises in face-to-face situations, an intrinsic-
attractiveness model of face-to-face interaction23 fails to explain
the group differences (dashed line in Fig. 1a) because it ignores
group mixing in social gatherings.

To understand how groups mix in the networks, we examine
the inter- and intragroup ties by comparing them with the
configuration model (see “Methods”). We find that individuals
were more likely to interact with individuals from the same
group, indicating that homophily33 plays a significant role in face-
to-face situations. In most of the networks, our results show that
intragroup ties are more frequent than what one would expect by
chance (Fig. 1b).

However, this group mixing cannot emerge in the intrinsic-
attractiveness paradigm because it lacks relational attributes. In
this paradigm, systematic variations in individuals’ attributes can
lead to group differences, but they fail to form mixing patterns as
observed in data. For example, consider a social gathering in
which the members of the minority group have lower intrinsic

Table 1 The social networks from six different studies.

Data set N f0 E 〈k0〉 〈k1〉 〈k〉

School 1 242 0.46 8317 64.85 72.08 68.74
School 2 126 0.33 1710 24.71 28.32 27.14
School 3 180 0.27 2220 23.46 25.11 24.67
School 4 327 0.44 5818 36.48 34.87 35.58
Conference 1 115 0.43 5508 95.35 96.12 95.79
Conference 2 202 0.30 11,412 118.61 110.56 112.99

The number of nodes N, the minority fraction f0, the number of edges E, and the average degree
of the minority 〈k0〉, majority 〈k1〉, and overall 〈k〉.
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attractiveness than the majority group. In this scenario, according
to the intrinsic-attractiveness paradigm, the minority group
would tend to interact with the majority group, boosting the
majority group average degree. This setting would explain group
degree inequality. However, in this same setting, the members of
the minority group would be less prone to interact with their own
group—the opposite of what occurs in the data, where intragroup
mixing is significant (Fig. 1b; see also Supplementary Note 2). In
other words, variations in individuals’ attractiveness are insuffi-
cient to explain the degree inequality and group mixing observed
in the data. To uncover the underlying mechanism of these social
dynamics, we need to disentangle the individuals’ intrinsic
attractiveness and the relational attributes in face-to-face
interaction.

Modeling mixing in social interaction. We present the
attractiveness–mixing model that incorporates (i) intrinsic attrac-
tiveness of individuals and (ii) relational attributes between groups.
We show that these ingredients are sufficient to explain the degree
inequality observed in social dynamics with minority groups. In the
model, each individual has an intrinsic attractiveness and belongs
to a group. The members of a group share the same mixing ten-
dency, which regulates the pairwise interactions. In general, indi-
viduals move across space and form social ties depending on their
group membership and the composition of their surroundings (see
Fig. 2a, b). In the attractiveness–mixing model, an individual i has
three attributes: a group label bi∈ [0, B− 1], where B is the number
of groups; an intrinsic attractiveness ηi∈ [0, 1]; and an activation
probability ri∈ [0, 1]. The mixing patterns in this system are
encoded in the B × B mixing matrix H. Each row of H can be seen
as a probability mass function that weighs the likelihood of group
interaction. In this model, N individuals perform random walks in

a two-dimensional L × L periodic space and move based on the
composition of their vicinity. We define N iðtÞ as the set of indi-
viduals who are within radius d of individual i at time t. We denote
nb as the size of a group b and fb= nb/N as the group fraction. The
individuals move only probabilistically. At each time step t, each
individual i moves with probability

αiðtÞ ¼ 1� max
j2N iðtÞ

fηjg ð1Þ
and a step of constant length v along a random direction of angle
ξ∈ (0, 2π]. With the complementary probability, individual i does
not move and has the chance to interact with individuals in the
vicinity depending on the group mixing likelihood. Precisely,
individual i interacts with their neighbors of highest mixing like-
lihood with probability

βiðtÞ ¼ max
j2N iðtÞ

fhbibjg; ð2Þ
where hbibj is an element of H and denotes the mixing probability

between bi and bj (see Supplementary Note 3 for pseudocode).
Overall, an individual interacts with other individuals depending
on their intrinsic attractiveness and social group mixing; together
these two ingredients form the social attractiveness. Finally, indi-
viduals can be active or inactive; they only move and interact with
others if they are active. An inactive individual i becomes active
with probability ri, whereas an active but isolated individual i
becomes inactive with probability 1− ri. In this study, we assume
that the intrinsic attractiveness ηi and the activation probability ri
come from a continuous uniform distribution in [0, 1].

The mixing matrix H and the group sizes have a significant
impact on the model dynamics, affecting the connectivity of
individuals, especially when groups have different sizes. For
example, in a system having two groups, a minority group with
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Fig. 1 Face-to-face interaction: degree inequality and group mixing. a The average degree of the minority and majority groups in six empirical data sets of
face-to-face interaction. Systematically, some groups have a higher average degree than others. An intrinsic-attractiveness model (dashed lines) is unable
to explain these differences. The error bars are the standard error of the mean. b The intra- and intergroup interaction in these social gatherings. The z
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likely to interact with individuals from the same group. c The estimated mixing matrix H from the data sets. The matrix describes the likelihood of groups
connecting among themselves. With the estimated mixing matrix, we simulate the attractiveness–mixing model and (a) show that the model (symbols
with black outline) reproduces the degree inequality observed in the data.
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proportional size f0= 0.2 and a majority group with f1= 0.8, the
mixing dynamics lead the system to different regimes that affect
the groups’ average degree (Fig. 2c). When intragroup interaction
is less likely than intergroup interaction (i.e., h < 0.5), the system
is in a heterophilic regime, and the minority group has a higher
degree than the majority. This degree disparity arises because of
the majority group favoring interaction with a small number of
people (i.e., the minority group), thereby reducing the majority
group connectivity. The opposite occurs in a homophilic regime,
where intragroup interaction is more likely than intergroup
interaction (i.e., h > 0.5), which results in the minority having a
low average degree.

To investigate group degree inequality, we derive the model
analytically to uncover the impact of mixing dynamics and group
sizes on inter- and intragroup edges. Without loss of generality,
we focus on the case of two groups, B= 2, finding the closed-
form expressions for the normalized group edge matrix, ers= Ers/
E, and the mixing matrix H (see “Methods” for details). The
normalized intragroup edges are given by

e00 ¼
f 20ð1� h201Þ

f 20ð1� h201Þ þ 2f 0f 1ð1� h00h11Þ þ f 21ð1� h210Þ
ð3Þ

and

e11 ¼
f 21ð1� h210Þ

f 20ð1� h201Þ þ 2f 0f 1ð1� h00h11Þ þ f 21ð1� h210Þ
; ð4Þ

and similar expressions exist for the intergroup edges (see
“Methods”). With these expressions, not only can one study the

model dynamics, but one can also estimate the mixing matrix
from empirical networks and assess the model’s ability to
explain data.

Estimating the mixing matrix from data. To compare the
attractiveness–mixing model with the empirical data, we
simulate the model with the parameters as estimated from the
data. Our results show that the model reproduces the average
degree inequality observed in the networks (Fig. 1a). We use
Eq. (3) and Eq. (4) to estimate the mixing matrix H from the
data (Fig. 1c; see “Methods”). This matrix tells us the tendency
of groups to interact among themselves in each face-to-face
opportunity. With the estimated matrices, we simulate the
model using the same number of nodes and group sizes in each
data set. We show that mixing dynamics and group imbalance
enable the emergence of the group disparities observed in the
data by using Kolmogorov–Smirnov test (see Supplementary
Note 5). In addition, the model reproduces other properties
found in face-to-face gatherings such as the distributions of
interaction duration, inter-interaction time, and weight dis-
tribution (see Supplementary Note 6).

We highlight that the degree inequality can favor the minority
or majority group. For example, in the School 4 and Conference 2
data sets, the smallest group tends to have more connections than
the largest group. The model exhibits the same tendency. From a
model perspective, this phenomenon can occur because of the
asymmetry in the group mixing. To understand such cases better,
we delve into the model and its regimes.
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nodes). b In this illustrative example, the probability of same-group mixing is h= 0.8, and the nodes’ labels are their intrinsic attractiveness. At this time
step t, individual k moves with probability αk(t)= 0.6 because of their vicinity of radius d, as defined by Eq. (1); with the complementary probability, this
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probability αj(t)= 0.2; otherwise this individual stays and interacts with probability βj(t)= 0.2. c Two examples of the model's macro-level behavior. When
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distribution. High same-group mixing probability (h= 0.8) leads minority members to attract individuals from the minority group. In this case, majority
members have a higher degree centrality than the minority group.
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Mixing dynamics, asymmetry, and minority size. To uncover
the regimes and scenarios of group inequality in the model, we
characterize the impact of mixing and group sizes on average
group degree. First, we study the trivial symmetrical mixing
when h00= h11= hrr, and then we examine the impact of
mixing asymmetry (i.e., h00 ≠ h11) on the social dynamics. In
the asymmetrical case, we define the intergroup mixing as the
complementary probabilities h01= 1− h00 and h10= 1− h11.

In the symmetrical case, we find that homophily and
heterophily manifest themselves as two distinct regimes deter-
mining the position of the minority group in the network. We
analyze the average degree of the groups given different values of
group mixing hrr and minority fraction f0. First, we simulate the
model and measure the average degree of the minority 〈k0〉 and
majority 〈k1〉 groups (see “Methods”). Then, we separately
compare 〈k0〉 and 〈k1〉 to the average degree 〈k〉 of the whole
network using their z scores (Fig. 3a). Our results show that the
members of the minority group have an advantage or
disadvantage depending on the model parameters.

Homophily (i.e., hrr > 0.5) leads the minority group to be
decoupled from a substantial part of the network. In this case,
minority group members have a lower average degree
compared to the average. In the heterophilic regime (i.e.,
hrr < 0.5), the minority group has high visibility, which leads its
members to have a higher degree than average. The existence of
these two contrasting regimes implies that the very interpreta-
tion of a minority group depends on the group mixing in the

network. When studying a minority group, one has to account
for inter- and intragroup dynamics to understand its position in
a network.

To characterize the impact of asymmetrical mixing on
degree inequality, we examine the whole parameter space of
the mixing matrix H numerically. We find that the majority
mixing h11 substantially contributes to degree inequality. First,
we estimate the average minority degree for different values of
h00 and h11, given specific minority fraction values f0. Then, we
measure the distance of the minority group degree to the
overall average degree using z scores, denoted k0− 〈k〉 (see
Fig. 3b). Our results show that the majority mixing h11 explains
much of the variance of k0− 〈k〉. While adjusting h11 can
change the position of the minorities from advantage to
disadvantage, modifying h00 can attenuate this inequality only
slightly.

Strategies for minority groups to alleviate degree inequality. To
uncover the ways the minority group can attenuate inequality, we
investigate how k0− 〈k〉 varies with changes in the minority
mixing h00. We find that the size of the minority group modifies
the system qualitatively, revealing that changes in the minority
mixing can have opposite impacts on degree inequality. For
instance, given a constant value of h11= 0.5, increasing h00 can
reduce or accentuate degree inequality, depending on the min-
ority fraction f0 (see Fig. 3c). To characterize this transition, we
examine the derivative of k0− 〈k〉 with respect to h00 as a
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function of f0 (Fig. 3d). Precisely, we are interested in the zero of
this function, which tells us the critical minority fraction f �0 at
which the qualitative transition occurs. We find that this transi-
tion depends on the mixing dynamics of the system; its analytical
form is given in Supplementary Note 7. Because the exact ana-
lytical form is too intricate, we approximate it by assuming that
the values of h00 and h11 are not at their extremes, finding that:

f �0 ¼
h11

2ðh01 þ h11Þ
: ð5Þ

This equation demonstrates the control of the majority mixing
over the minority group. The critical minority fraction f �0
delineates two regimes where k0 may either increase or decrease
with a raise of h00, given a fixed h11 (see Fig. 3e).

These regimes translate into two strategies to increase the
minority average degree, which depends on the minority group
size. First, when the minority group corresponds to more than f �0
of the network, increasing h00 leads to an increase in the average
minority degree. In this scenario, a more cohesive minority group
is beneficial to its average degree. Second, in the case of a smaller
minority group, increasing h00 decreases its degree; a more
cohesive minority comes with the cost of a less connected
minority. In this case, decreasing h00 helps in increasing the
average degree of the minority group.

To find when increasing minority homophily is always
beneficial to the minority group, we characterize the upper limit
of f �0 . This upper limit, denoted as f �0 , represents the smallest
minority size in which the minority group can increase its
homophily without detriment to its average degree, regardless of
the majority mixing. We note that f �0 is equivalent to the critical
size f �0 when h11= 1 (see Fig. 3e), so its exact analytical form is:

f �0 ¼
1

2� h00 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2 ðh00 � 2Þh00

p : ð6Þ

For example, in the case of h00= 0.5, when the minority
represents more than 36.7% of the population, the group
increases its average degree by being more homophilic, regardless
of how the majority group mixes.

Emergence of ranking misrepresentation. From the model’s
viewpoint, mixing dynamics can inflate individuals’ degrees
because these dynamics tune individuals’ intrinsic attributes. We
show that group mixing can also lead social groups to be mis-
represented in degree ranking. This misrepresentation is evident
when we compare individuals’ degrees with their intrinsic

attractiveness in heterophilic, neutral, and homophilic symme-
trical regimes (see Fig. 4). Systematically, degree centrality dis-
guises intrinsic attractiveness in nonneutral regimes. In a
heterophilic scenario, minority members with low intrinsic
attractiveness tend to have a higher degree than members of the
majority group. In a homophilic situation, highly attractive
minority members tend to have a lower degree than their
majority counterparts. Because intrinsic attractiveness is hidden
behind degree centrality, group members can be misrepresented
in degree rankings.

To characterize minority representation in rankings, we
compare degree-based rankings against rankings based on
intrinsic attractiveness. We show that minority members are
underrepresented in homophilic regimes, whereas they are
overrepresented in heterophilic regimes. First, we rank indivi-
duals separately by degree and intrinsic attractiveness, and then
we measure the minority percentage in each ranking as we
increase the rank length (i.e., the top-k rank; see Fig. 5a for a
homophilic network). In the case of intrinsic attractiveness, we
expect that the number of minority members in the top-k rank is
proportional to the minority size, since intrinsic attractiveness is
uniformly distributed. This ranking displays this exact behavior
(Fig. 5a). In the case of the degree ranking, however, the minority
group has a substantially lower chance of appearing in the top
ranks than what we expect from their attractiveness. These results
indicate that degree ranking incorporates the mixing dynamics of
the system (see Supplementary Note 8 for a heterophilic case).
This effect raises the question of how to decrease ranking
misrepresentation. This type of ranking adjustment would be
valuable, for example, when algorithms are used to rank and
recommend individuals; the minority’s visibility could be
penalized in rankings despite their potential high intrinsic
attractiveness.

Decreasing ranking misrepresentation. To adjust the degree
ranking, we need to account for the group sizes and mixing.
Given that group mixing affects groups’ average degree, we must
compare only the degrees of individuals of the same group,
thereby excluding the influence of group mixing. We show that
this approach can balance degree rankings to contain a repre-
sentative number of group members. First, we calculate the z
score degree of each individual with respect to their average group
degree; then, we rank all individuals based on their z score. Our
results reveal that the adjusted degree ranking better represents
the minority group, similar to what we would expect in the
attractiveness ranking (Fig. 5a). Furthermore, the adjusted
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Fig. 4 Same intrinsic attractiveness but different degree centrality. The intrinsic attractiveness of individuals versus their degree in different symmetrical
regimes (i.e., h00= h11= hrr). In the neutral case (hrr= 0.5), individuals with higher intrinsic attractiveness have a higher degree regardless of their group
membership. In nonneutral regimes, however, degree centrality disguises intrinsic attractiveness. In a heterophilic regime (hrr= 0.2), minority members
have a higher degree compared to their majority counterparts with the same intrinsic attractiveness. In a homophilic regime (hrr= 0.8), highly attractive
minority members do not have similar degree centrality to that of their majority counterparts.
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ranking also helps expose misrepresentation in degree rankings in
different regimes. To that end, we compare individuals’ positions
in each ranking (Fig. 5b). As expected, heterophily promotes
minority members to higher positions in the degree ranking,
whereas homophily pushes the minority down. To characterize
this misrepresentation, we analyze the correlation between the
intrinsic attractiveness and the adjusted and degree rankings. We
measure the Spearman correlation between the rankings and
intrinsic attractiveness of nodes in different regimes (Fig. 5c). We
find that the adjusted ranking tends to agree with attractiveness
except in the extreme cases of hrr= 0 and hrr= 1. With the
adjusted degree ranking, we decrease the misrepresentation bias
in rankings.

Discussion
Face-to-face interaction is arguably a primary mechanism for the
transmission and affirmation of culture3. When people interact
with others, they construct a social world and participate in
shaping the identity of social groups. In this work, we show that
systemic degree inequality emerges in social gatherings from the
way group members interact in imbalanced scenarios. Previous
research has overlooked this inequality, suggesting that mainly
the individuals’ intrinsic attractiveness governs their connectivity.
Our results indicate, however, that group dynamics modulate
individuals’ intrinsic attractiveness, forming what we have called
social attractiveness in face-to-face situations.

In social gatherings, social attractiveness entangles with
space and time variables, which restricts opportunities for face-
to-face interaction, leading to systemic degree inequality. To
interact, individuals must have opportunity availability (i.e.,
available place and time) and space–time convergence (i.e.,

individuals must agree on where and when to interact). In
confined situations, such as conferences and workplaces, spa-
tiotemporal constraints are critical to interaction opportu-
nities. For example, there exists a limited number of
opportunities for interaction at conferences (e.g., coffee
breaks). When an individual uses an opportunity to interact
with someone, fewer opportunities remain for interacting with
other individuals. In imbalanced scenarios, when a majority
member interacts with someone from the majority, fewer
opportunities remain for this individual to interact with
minorities, thereby decreasing minority connectivity. Such a
decrease means that in the majority group position, creating
homophilic ties comes at the cost of promoting inequality in
group connectivity.

From a group-level perspective, mitigating this inequality
depends primarily on the mixing of the majority group and its
size—the minority group can only slightly reduce inequality,
exhibiting a qualitative transition in the strategy for this reduc-
tion. Our results show that the majority group mixing explains
most of the variance in connectivity inequality. To attenuate
inequality, the minority group needs to follow a strategy that
depends on its size. When the minority size is below a critical
proportion of the network, homophilic minority interaction
decreases minority connectivity. However, if the minority group
size is sufficiently large, homophilic minority interaction helps in
increasing minority connectivity. In this case, the minority group
has proportionally enough individuals to interact with and
decrease the disparity between groups. This critical mass allows
the minority group to be a strong, tightly connected group;
without this critical mass, a stronger minority implies higher
inequality. This result is somewhat related to the critical mass for
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social change, as recently shown34, in which committed groups
with size higher than 25% are sufficient to change social
conventions.

To summarize, we have investigated numerically, empiri-
cally, and analytically the emergence of group inequality in
social gatherings. In contrast to previous works, our mechan-
istic model captures the properties of face-to-face dynamics
while reproducing degree inequalities found in empirical data.
The model is distinct from network models, such as stochastic
block models or Barabási–Albert model, in that we consider
the spatiotemporal constraints in social gatherings, which leads
to the emergence of fundamental properties in face-to-face
interaction. Our approach creates research opportunities to
understand face-to-face situations. For example, the model can
be used to explore how group mixing affects dynamic processes
in social gatherings. Further research will help clarify dynamic
aspects of group inequality as well as latent groups in data.
Likewise, the spatial aspect of social gatherings will be better
understood when richer data containing spatial information is
available. Moreover, though we have focused on a binary
attribute, our model can also be used to investigate multiple
and continuous-valued attributes. In the future, it would also
be interesting to empirically estimate the model parameters,
such as the activation probability and intrinsic attractiveness,
which would enable researchers to understand the role of these
individual-level properties in social gatherings.

In this article, we understand the concept of minority quanti-
tatively: A minority group is the smallest group in a social
gathering. Nevertheless, in the social sciences, the concept is often
associated with the critique of inequality, deprivation, sub-
ordination, marginalization, and limited access to power and
resources35. Performing a quantitative analysis of the structural
mechanisms of mixing, exclusion, and interaction by no means
implies ignorance about these issues. This work sheds light on
how inequality can emerge from social interaction, building
computational opportunities to understand and alleviate dis-
parities in our society.

Methods
Group mixing analysis. To characterize how groups mix, we compare the inter-
and intragroup edges in data with the configuration model. This approach
enables us to assess whether the mixing patterns found in data would occur just
by chance. With the configuration model, we generate random networks that
preserve the degree of each node in a given network and reshuffle the links,
which we can use to compare against the actual data36. For each data set, first,
we generate 500 random instances of the network and count the number of
edges E0

rs between groups r and s in each instance; then, we count the actual
number of edges Ers in the data; finally, we compare Ers to E0

rs via z scores,
defined as zsr ¼ ðEsr � E

0
srÞ=s ½E0

sr �, where E
0
sr and s ½E0

sr � are, respectively, the
mean and standard deviation of E0

sr over the 500 instances. The z score zsr
reveals the number of standard deviations by which Ers differs from the random
case (see also Supplementary Note 1).

Model and simulation analysis. To analyze the symmetrical case of the
attractiveness–mixing model, we first simulate the model with different values of
hrr and f0 and then measure the average degree of the whole network 〈k〉 and the
average group degree of the minority, denoted as 〈k0〉, and majority, 〈k1〉. We
compare each group r with the whole network using z scores, defined as (〈kr〉−
〈k〉)/s[k], where s[k] is the standard deviation of k. In the simulations, we used the
following parameters: L= 100, d= 1, v= 1, and N= 200. In the case of the
simulations using the data estimates, we run the model until the total number of
edges is the same as the number of edges in the data. In all analyses, we average the
results over 50 different simulations of our model.

Analytic derivation of the model. Here we derive the attractiveness–mixing
model analytically for the case of two groups, B= 2, denoted as group 0 and
group 1. We show that we can calculate the normalized group edge matrix
analytically. To simplify the derivation, we assume a situation of low spatial
density of agents; thus, almost all situations of potential interaction involve only

two individuals, and non-pairwise interactions are negligible (i.e., dilute system
hypothesis). Due to the activation process, the average number of active nodes
at one time t is Na ¼ <ri>N , since we do not expect a correlation between ri and
the presence of isolated individuals. Therefore, the number of active nodes in
each group is N0= f0Na and N1= f1Na. We note that the attractiveness–mixing
model generates a temporal network in which nodes are the individuals and
interactions between them are edges that are created and destroyed as time
passes. Let E be the number of edges created during a time step Δt. Since the
interaction mechanism is time-independent, the total number of edges in the
network after a time T is given by ET= E × T/Δt.

To express the number of new edges created at time t in each component, first,
we focus on edges between two individuals from group 0. The probability p0 to find
an individual j from group 0 in the vicinity of individual i relates to the surface of
the vicinity and the density ρ0 of individuals from group 0 on the field, expressed
by:

p0 ¼ ρ0S ¼
N0

L2
πd2 ¼ f 0Na

L2
πd2 ¼ f 0ρaπd

2; ð7Þ

where ρa is the density of active individuals. To have an interaction, both
individuals must be available and not move away. In our case, the probability for
one individual to be available is the attractiveness of the other individual; thus, the
probability of having both is the product ηiηj, whose average value is a constant
γ ¼ <ηiηj>. We note that three situations can lead to the creation of an edge
between an individual i and an individual j: (1) only individual i initiates the
creation, (2) only individual j initiates the creation, or (3) both individuals initiate
the creation. Therefore, the probability for the edge to appear is thus:

pij ¼ pi!j þ pj!i þ pi$j: ð8Þ
In the case of two individuals from the group 0, this probability is on average:

p ij;00 ¼ f 0ρaπd
2 ´ γ ´ h00ð1� h00Þ þ ð1� h00Þh00 þ h200

� �

¼ f 0ρaπd
2γ 1� h201
� �

:
ð9Þ

Thus, the number of intragroup edges created during one time step for group
0 is:

E00 ¼
N2

aπd
2

2L2
γf 20 1� h201

� �
; ð10Þ

where the 1/2 factor takes into account double counting. With a similar approach,
we find that

E11 ¼
N2

aπd
2

2L2
γf 21 1� h210

� �
: ð11Þ

Furthermore, this procedure also enables us to find that

E10 ¼
N2

aπd
2

L2
γf 1f 0 1� h00h11

� � ð12Þ

and

E01 ¼
N2

aπd
2

L2
γf 0f 1 1� h00h11

� �
; ð13Þ

where the 1/2 factor is not required in these cases because they do not have double-
counting. Finally, since E= E00+ E01+ E10+ E11 by definition, the share of
intragroup edges for group 0 is given by:

e00 ¼
E00

E
¼ f 20 1� h201

� �

f 20 1� h201
� �þ 2f 0f 1 1� h00h11

� �þ f 21 1� h210
� � : ð14Þ

By following analogous procedure, we can find e11 as written in Eq. (4). In
addition, e01 and e10 can be written as

e10 ¼ e01 ¼
f 0f 1 1� h00h11

� �

f 20 1� h201
� �þ 2f 0f 1 1� h00h11

� �þ f 21 1� h210
� � : ð15Þ

We verify that these equations predict the model behavior well by comparing
them with simulations (see Supplementary Note 4). In order to assess group mixing
in empirical data, we use Eq. (4), Eq. (3), and Eq. (15) to estimate h00 and h11 from
data via numerical optimization. First, we calculate the empirical share of intra-
and intergroup edges in the networks, then we use an optimization algorithm to
find the corresponding values for h00 and h11.

Data availability
The sources of all empirical data used in our analyses are described in Supplementary
Note 1.

Code availability
All relevant code used in this study is available at https://github.com/macoj/face_to_face_
minority_dynamics and its respective Zenodo repository37.
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