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Using Double Machine Learning
to Understand Nonresponse in
the Recruitment of a
Mixed-Mode Online Panel

Barbara Felderer1, Jannis Kueck2, and Martin Spindler2

Abstract
Survey scientists increasingly face the problem of high-dimensionality in their research as digi-
tization makes it much easier to construct high-dimensional (or “big”) data sets through tools such
as online surveys and mobile applications. Machine learning methods are able to handle such data,
and they have been successfully applied to solve predictive problems. However, in many situ-
ations, survey statisticians want to learn about causal relationships to draw conclusions and be able
to transfer the findings of one survey to another. Standard machine learning methods provide
biased estimates of such relationships. We introduce into survey statistics the double machine
learning approach, which gives approximately unbiased estimators of parameters of interest, and
show how it can be used to analyze survey nonresponse in a high-dimensional panel setting. The
double machine learning approach here assumes unconfoundedness of variables as its identifi-
cation strategy. In high-dimensional settings, where the number of potential confounders to
include in the model is too large, the double machine learning approach secures valid inference by
selecting the relevant confounding variables.

Keywords
machine learning, causal inference, survey nonresponse, panel dropout, GESIS panel

Introduction

A key attribute of “big data” is the large volume of data that is collected or generated, often for the
purpose of statistical analysis (for further attributes see, for example, Japec et al., 2015). When a
large number of observed characteristics are available for only a limited number of observations,
however, the high-dimensionality of the data sets poses challenges. Moreover, big data comes in a
variety of forms, including many sorts of paradata (Kreuter, 2013b) such as call records, time
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stamps, or device-type and questionnaire-navigation data from online surveys (Callegaro, 2013),
as well as sensor data from mobile surveys (Struminskaya et al., 2020) and data from outside
sources that can augment survey data and be linked to persons or population groups by unique
personal or group identifiers. These outside data contain, for example, administrative records (cf.
Durrant & Steele, 2009, for nonresponse analysis), data from social media (an extensive dis-
cussion on the role of social media in public opinion research can be found in Murphy et al., 2014)
or regional information (e.g., Feddersen et al., 2016, study the impact of weather and climate on
self-reported life satisfaction). Increasingly, the field of survey analysis is facing the challenges
posed by high-dimensional data sets. Long-lasting panel surveys produce big data, for example,
by collecting large numbers of variables over many panel waves. Some frequently used methods
cannot be employed with big data sets that have comparatively few observations and numerous
variables. To deal with problems of high-dimensionality, machine learning methods have found
their way in survey research modeling (see, for example, Buskirk et al. (2018), Buskirk (2018),
Kirchner and Signorino (2018), Eck (2018) and Kern et al. (2019a) for introductions of the use of
machine learning techniques with survey methodological questions).

Generally speaking, there are two main kinds of statistical modeling: causal inference (also
known as explanatory analysis) and predictive modeling. Both have their own model-building
logic and evaluation tools (Breiman, 2001). As Shmueli (2010) states, high predictive power does
not necessarily imply high explanatory power, so different tools should be used to explain and to
predict. The aim of prediction models is to predict the dependent variable y for individuals who
were not among those used to build the model. The best model is found, for example, by
minimizing the out-of-sample mean squared error (MSE). Modern machine learning methods
have been highly successful at building predictive models. In contrast to predictive modeling,
causal inference entails learning the effect of a particular variable on the dependent variable y
while holding all other variables constant. Being able to draw ceteris paribus conclusions in this
manner, researchers can think about interventions (i.e., changing x will affect y in a known way)
and use this to design future studies. Applying modern machine learning methods to gain ex-
planatory insights, however, is more challenging than building predictive models because ma-
chine learning methods inevitably introduce some bias in the estimation (Belloni et al., 2014a) to
avoid overfitting. In recent years, progress has been made in applying machine learning to causal
inference, and tools for doing so, such as the double machine learning framework, have been
developed. The identification strategy employed by the double machine learning approach here
relies on the so-called unconfoundedness assumption or exogeneity assumption which is widely
adopted in social sciences (Imbens & Rubin, 2015) and implicitly assumed when performing
standard regression analysis. In this paper, we demonstrate how survey statistics can benefit from
these methods. We provide insights into dealing with high-dimensional survey data sets by
applying the double machine learning method to learn about nonresponse in the recruitment of the
GESIS panel, a probability-based, mixed-mode online and postal mail panel conducted bimonthly
by GESIS—Leibniz Institute for the Social Sciences in Germany.

Survey nonresponse is arguably one of the chief problems in survey research (Kreuter, 2013a) and
many decades of study have been invested in developing methods to explain and thereby prevent or
adjust for it (for recent examples, see Durrant & Steele, 2009; Roßmann & Gummer, 2016). With the
rise of big data and the increasing number of variables being considered, one of the more recent
methods is machine learning. Multiple studies have demonstrated its usefulness in this context: For
example, Kern et al. (2019a) show that regression trees can effectively be used to predict nonresponse
in the German Socio-Economic Panel; Phipps and Thoth (2012) use trees to analyze nonresponse in an
establishment panel and Buskirk and Kolenikov (2015) use random forest classification models and
random forest relative class frequency models to predict response propensities in a simulation study.
Other examples are Signorini and Kirchner (2018), who employ adaptive lasso to predict nonresponse
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in the National Health Interview Survey; Earp et al. (2014), who use an ensemble of classification trees
to predict nonresponse in an establishment survey’s subsequent wave; Kern et al., 2021, who apply
different machine learning methods to predict nonresponse using information from multiple waves of
the GESIS panel; and Zinn and Gnambs (2020), who use Bayesian additive regression trees to predict
temporary and permanent dropout in an event history analysis in the German National Educational
Panel Study. Finally, Liu (2020) compares the use of random forests, support vector machines and
lasso regression to predict response in the second interview of the Surveys of Consumers national
telephone survey.

As mentioned above, one must be careful when the results produced by machine learning
algorithms are interpreted beyond predictions. While nonresponse prediction can be seen as a goal
in its own right, one must be clear about its limitations: the effects of the variables cannot be
interpreted because machine learning algorithms—when applied directly—inevitably introduce
bias, and thus no understanding of any causal effects of explanatory variables on the dependent
variable of interest can be gained. Nonresponse prediction models help to identify individuals who
are most likely to drop out but do not allow us to understand the driving factors, which are,
however, key to identifying and developing prevention strategies (Lynn, 2017).

In this paper, we use machine learning methods not only to predict nonresponse, but to analyze
explanatory factors in a high-dimensional setting for survey statistics. Recently, double machine
learning techniques to deal with high dimensions and to deliver unbiased estimates have been de-
veloped (cf. Belloni et al., 2017; Chernozhukov et al., 2015; Chernozhukov et al., 2018). We give an
introduction to the double machine learning approach and show how double lasso can be applied to
explain nonresponse in the welcome survey of the GESIS panel. Our findings can help survey re-
searchers who design and implement panel surveys to develop targeted strategies to prevent
nonresponse.

The rest of the paper is structured as follows: In the (Double) Machine Learning section, we
introduce the basic principles of double machine learning, focusing on double selection for logistic
regression models. In the Application: Nonresponse Modeling for the GESIS Panel section, we
describe an application for nonresponse modeling in the GESIS panel. We conclude with a
discussion in the Discussion and Conclusion section.

(Double) Machine Learning

The term machine learning covers lots of data analysis techniques, for example, regression analysis
methods and variants that are frequently used in social sciences.Whenworkingwith high-dimensional
data, standard regression analysis using ordinary least squares (OLS) estimation is often not ap-
propriate because it can only include a limited number of variables. In addition, including many
covariates bears the risk of overfitting by including irrelevant variables that model the random noise in
the existing data. This leads to biased estimates of the coefficients of the variables of interest and poor
predictive performancewhen applying themodel to a new data set. To avoid the problem of overfitting,
machine learning procedures have been developed. One prominent method is the lasso that performs
model selection. While the lasso delivers great predictive performance, the resulting regression model
cannot be interpreted because lasso introduces a regularization bias which is inevitable to avoid
overfitting. The lasso can fail to select confounding variables that are strongly correlated with the
variables of interest but only weakly correlated with the dependent variable. While these confounders
do not harm the predictive performance of the lasso, they introduce omitted variable bias (Belloni et al.,
2014b), which biases the inference results. The intuition is that the effect of the omitted variable/the not
selected confounders is taken up by the coefficient of the target variable we are interested in because
they are strongly correlated. The problem of omitted confounders is inherent to all machine learning
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methods and leads to biased estimates of parameters and relationships and hence invalid post-selection
inference, despite their predictive power (Belloni et al., 2014a).

Often the machine learning algorithm is considered to be a black box that delivers ac-
ceptable prediction accuracy but in which the relationship between the variables is not
understood. In many situations, however, scientists and practitioners are interested in learning
the effect of certain variables, often called treatment variables, on one or more dependent
variables, holding all other factors constant. This is more challenging than building a pre-
dictive model because here the black box must be opened and the inner mechanism learned.

The double machine learning framework, which we present in more detail in the following section,
allows for such valid post-selection inference and hence learning about parameters and explanatory
variables in a high-dimensional setting. The key idea is that double machine learning techniques make
sure that all relevant confounders are included in the model and hence the parameter of interest can be
estimated without the problem of omitted variable bias due to unobserved confounders. The key
assumption behind double machine learning is that the model is selected in a way to include all
necessary confounders. We will explain how this is done in more detail in the next section.

Basic Setting and Idea behind Double Machine Learning

In this section, we introduce the basic ideas behind double machine learning. The goal is to
estimate the treatment effect α0 of a treatment variable D on the dependent variable Y in a high-
dimensional setting, namely

Y ¼ γþ α0Dþ gðX Þ þ ε, EðεjD, XÞ ¼ 0, (1)

where γ is the intercept and g(�) a function of the control variables. The set of control variables X =
(X1,…, Xp) might be high-dimensional. The most common case, which we will focus on here, is
a linear approximation g(X) = β1X1 +… βpXp. The function g, or in the linear case the vector of
coefficients β, is considered a nuisance parameter and is not part of the model interpretation. Our
goal is to perform valid inference on the treatment parameter α0 in a high-dimensional setting, that
is, the number of variables p might be larger than the number of observations n. For ease of
exposition, we consider the case of one treatment variable here, but several treatment variables can
just as easily be considered and the effects estimated at the same time. If the number of variables or
hypotheses to test becomes large, methods from simultaneous inference may be applied (for a
survey on recent developments, we refer to Bach et al., 2018b).

The unconfoundedness assumption or exogeneity assumption is given by

EðεjD, XÞ ¼ 0

which denotes the identification strategy. This means that we include all relevant confounders in
the model and no unobserved confounders bias the results. In a naive approach to estimating the
treatment effect in model (1), one might first select the relevant covariates by modern machine
learning methods, such as lasso, and then estimate the treatment effect by including only the
selected variables and continue with standard inference methods based on OLS. However, this
procedure, while often used in applied work, might fail to provide valid post-selection inference
due to the omitted variable bias. To correct for this problem, a de-biased lasso/double machine
learning approach was introduced by Chernozhukov et al. (2018). To understand this approach,
we introduce an auxiliary equation for the treatment variable, as follows

D ¼ γ1X1 þ…þ γpXp þ v, E vXð Þ ¼ 0 (2)
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For simplicity, we assume a linear relationship between D and X in this introductory example. For
details on the auxiliary regression and the implementation in practice, we refer to our discussion of
the model training in Nonresponse Model. The idea of double machine learning is now to run a
lasso regression of the auxiliary model (2) to identify which variables create the omitted variable
bias in the first step and subsequently include them in the final regression step. Hence, double
machine learning can effectively be used to select all relevant variables. It can be shown that this
approach leads to estimates of the target parameter that are asymptotically normally distributed
(allowing valid post-selection inference). Introducing this auxiliary regression step and including
omitted variables in the final regression implicitly creates a moment condition for the target
parameter that fulfills the so-called Neyman orthogonality property. This means that the derivative
with regard to the nuisance parameter of the corresponding score function is equal to zero at the
true parameter values. Intuitively, we can see that small errors in the estimation of the nuisance
parameter, as they occur under lasso, do not have a first-order effect on the treatment parameter,
meaning that our estimate of the target parameter is robust to model selection mistakes. Despite
selection errors in the confounders, valid results are achieved. In the naive approach, the cor-
responding moment condition does not fulfill this orthogonality property.

We demonstrate the different properties of the estimates received from the naive approach and
the double machine learning approach by a simple simulation study of the model above with n =
100 observations and p = 100 covariates. Figure 1 shows the empirical distribution of the es-
timation errors bα0 � α0 for both approaches based on 10,000 repetitions. The double machine
learning estimates are nearly unbiased (centered around zero) and can be approximated by a
normal distribution (see the density plot for comparison). The resulting distribution using the
naive approach is highly biased (not centered around zero) and not in line with a standard normal
distribution which leads to invalid post-selection inference.

In the following section, we show how double machine learning can be used in the context of
the logistic regression model. We use this approach in our application.

Double Selection for Logistic Models

In many survey applications, the dependent outcome variable is binary, and for binary outcome
variables, logistic regression is often the approach of choice. For logistic regression, the same
arguments as outlined above apply when modern machine learning methods such as lasso are used
to select variables and estimate the coefficients in high-dimensional linear regression models. To

Figure 1. Distribution of bα0 � α0 for the naive approach with non-orthogonal score (left) and the double
machine learning approach with orthogonal score (right).
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enable valid post-selection inference for the logistic regression, the double machine learning
approach has to be modified appropriately (cf. Belloni et al., 2013).

In the logistic regression, a binary dependent variable Y relates to a scalar treatment D of
interest and a p-dimensional control X through a link function G

E½Y jX , D� ¼ G
�
Dα0 þ X 0β0

�
:

For logistic regression, the link function is given by G(t) = exp(t)/{1 + exp(t)}. We aim to
perform statistical inference on the coefficient α0, which represents the impact of the treatment on
the dependent variable through the link function. Estimation is usually based on the (negative) log-
likelihood function associated with the logistic link function, as follows

Λiðα, βÞ ¼ log
�
1þ exp

�
Diαþ X 0

iβ
��� Yi

�
Diαþ X 0

iβ
�
:

For estimation in a high-dimensional setting, anl1-penalty term, kðα,βÞk1 ¼ jαj þPp
j¼1jβjj, is

added to the minimization problem. The lasso logistic regression estimator is given by

bα,bβ� �
2 argmin

α,β
En Λi α,βð Þ½ � þ λ

�
nk α,βð Þk1,

where λ is the penalty level and En denotes the empirical mean. As discussed in the section above,
inference on the treatment parameter α0 is challenging and requires a modified estimation method,
for example, the de-biasing lasso estimator, based on a modified moment condition. The algorithm
for the de-biased estimation of the treatment parameter α0 is presented in Algorithm 1 in Appendix
B.

Application: Nonresponse Modeling for the GESIS Panel

To illustrate the double machine learning lasso, we apply the technique to model nonresponse in
the 2013 recruitment to the GESIS panel.

Nonresponse in Panel Recruitment

Recruitment to a probability-based panel is arguably the most important and most expensive part
of the panel life-cycle. The recruited sample needs to represent the target population and the
sample size needs to be large enough to obtain precise estimates. The recruitment process usually
includes several steps: contacting sampled cases and inviting them to a first recruitment survey,
conducting this recruitment interview and, often during it, obtaining consent to proceed in the
panel. Consenting respondents are then invited to a welcome survey (or profile survey), and those
who complete it are considered to be panel members. The panel members are then surveyed on a
regular basis.

Even if the regular panel waves are conducted in a self-administered mode (e.g., by mail
questionnaire and/or online), it is common to approach sampled persons and conduct the re-
cruitment interview in an interviewer-administered (face-to-face or telephone) mode (Blom et al.,
2016). Respondents to the recruitment survey are then asked to proceed with the subsequent
survey using cost-saving self-administered modes. This, however, includes a switch in response
mode that may be subject to systematic nonresponse.

For our application, we choose nonresponse in the first interview after this switch of modes. We
consider this stage to be very important for several reasons: First, this is when a large number of
respondents to the recruitment survey are usually lost (for nonresponse rates in four large-scale
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scientific (mixed-mode) online surveys, see Blom et al. (2016)), and there is a need to understand
nonresponse in order to prevent it, that is, by tackling likely nonresponse through targeted in-
vitations (Lynn, 2020). Second, nonresponse among respondents to the face-to-face interview is
costly if we consider that they have completed the cost- and labour-intensive personal interview
but are no longer available to take part in the less expensive self-administered part of the panel. In
addition, refreshment samples are usually planned for panels once the number of respondents has
fallen below a certain minimum number. Starting with a smaller sample means that costly new
recruitment is needed sooner. Third, nonresponse can introduce bias to the panel. If the re-
spondents are not lost at random, analyses of panel data can be severely biased.

While a number of studies have been published on modeling panel attrition, for example,
nonresponse to individual panel waves or dropout from the panel, the literature about correlates of
nonresponse at the recruitment stages is surprisingly scarce. Comparing survey responses to
official benchmarks, Sakshaug et al. (2020) analyze total recruitment error, which they define as
error from initial nonresponse plus error from non-consent to be contacted again. In their
comparison of a self-administered (mail/web) and CAPI recruitment, they find, for both modes,
nonresponse bias to be larger than non-consent bias and total recruitment bias to be similar in both
groups: both recruited samples overrepresent older and more educated population groups, cur-
rently employed persons, and higher-wage groups. They underrepresent foreign-born persons. For
the GESIS recruitment panel which we also use in the present study, Bosnjak et al. (2018) compare
socio-demographics of respondents of the different recruitment stages to benchmarks from the
German Microcensus. They find age, citizenship, marital status, household size, place of birth,
education, and household income to be distributed differently among the sample of respondents
compared to the general population. The differences tend to be larger for the welcome survey than
for the recruitment survey. While univariate benchmark comparisons are very useful to get an
impression of bias in sample composition, they do not inform about the effect of the interplay
between the respondents’ characteristics on the response decision.

Models for nonresponse in the initial recruitment survey are usually limited to only a few
variables from the sample frame. The recruitment interview, however, usually generates a lot of
information on the respondent that can be used to study nonresponse in the welcome survey: In
addition to basic sociodemographic information, it usually also includes information on attitudes
and survey experience. In interviewer-administered surveys, the interviewers often provide in-
formation about the interview situation and their expectations of the respondents’ future par-
ticipation in the panel. In particular, interviewers’ ratings of a respondent’s propensity to
participate in a future survey, as well as ratings of cooperativeness and enjoyment, have been
found to improve nonresponse models (see, for example, Plewis et al., 2017; Sinibaldi & Eckman,

Table 1. Extract of Regressors.

Treatment variables
Gender, age, nationality, education, living situation, invitation mode
Willingness to answer the questions, willingness to participate in the interview,
Willingness to participate in the panel, likelihood of participating in the welcome survey

Control variables
Migration, employment status, occupational group, life satisfaction, leisure time
Country of birth, internet use, technical affinity, survey experience,
Household size, number of children, income, incentive point
Invitation hesitance, interview intervention
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2015). Understanding the nonresponse process better can help to identify measures to address the
problem, for example, through targeted invitations (Lynn, 2020).

While having a rich set of factors that potentially influence nonresponse is very helpful to
understanding the nonresponse decision, it poses a challenge to nonresponse modeling. Indeed,
including a large number of variables, possibly split into multiple dummy variables, and in-
teractions requires big data solutions.

Data and Methods

The GESIS Panel Data. The GESIS panel (Bosnjak et al., 2018) is a probability-based, mixed-mode
online and postal mail panel conducted bimonthly by GESIS—Leibniz Institute for the Social
Sciences in Mannheim, Germany. The first cohort of the GESIS panel was recruited in 2013 and
refreshment samples were recruited in 2016 and 2018. Recruitment to the GESIS panel in 2013
was based on a random sample of 21, 870 German-speaking residents of Germany aged 18 to 70
during the year of recruitment. In the first step, all sampled cases were invited to participate in a
face-to-face recruitment survey. During this survey, respondents were asked for their consent to be
invited to the GESIS panel by means of the online or the paper-and-pencil mode. Consenting
respondents were then invited to participate in the welcome survey in the mode of their choice.
Only after completing the welcome survey were respondents considered to be GESIS panel
members.

In our study, we analyze nonresponse in the 2013 welcome survey among consenting re-
spondents. We use data from the GESIS panel registration survey in 2013 (GESIS, 2020) to model
nonresponse (or drop-out) (yes/no) in the subsequent welcome survey. In total, 7, 599 persons
participated in the face-to-face registration survey, of whom 6, 210 agreed to being invited to the
welcome survey and participating in the GESIS panel. Of these individuals, 4, 938 responded to
the welcome survey and thus became regular panel members (dropout rate: 20.5%).

Nonresponse Model. For our final sample, we drop 302 observations with missing information,
leaving us with 5, 908 respondents from the registration survey, of whom 4, 720 completed the
welcome survey (dropout rate: 20.1%). In our analysis, we use 63 initial regressors representing
information collected in the recruitment interview. This includes socio-demographic character-
istics of the individuals and their cooperativeness throughout the interview. The variables we
include in the analysis are listed in Table 1. We transform categorical variables into level-wise
dummies and add interaction terms of the regressors. This ultimately leads to a high-dimensional
logit model with a total of 329 regressors:

E½Y jX , D� ¼ exp
�
Dα0 þ X 0β0

�
1þ exp

�
Dα0 þ X 0β0

�: (3)

The binary dependent variable Y indicates nonresponse to the welcome survey. The regressors
split up into 303 control variables X and 26 treatment variables D. For the treatment variables, we
choose key socio-demographics, the mode the respondents chose for the welcome interview
(paper-and-pencil or online questionnaire) and interviewer ratings collected in the recruitment
survey. The interviewer ratings include three cooperativeness ratings and one rating of indi-
viduals’ willingness to participate in the welcome interview. The questions are:

· How would you rate the respondent’s willingness to answer the questions? (answer cat-
egories: good, moderate, low, good in the beginning but got worse, low in the beginning but
got better)
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· How difficult or easy was it to persuade the respondent to take part in the interview? (answer
categories: very difficult, rather difficult, rather easy, very easy)

· How difficult or easy was it to persuade the respondent to take part in the follow-up in-
terview? (answer categories: very difficult, rather difficult, rather easy, very easy)

· How likely is it that the respondent will take part in the first online- or paper questionnaire?
(answer categories: very likely, rather likely, rather unlikely, very unlikely)

Sparse categories are combined with other categories for our analysis. We recode the answer
categories into good vs. bad/all other categories for “willingness to answer the questions” and
combine very difficult and difficult for the two questions on the difficulty of persuading re-
spondents to take part in the interview and follow-up interview. For the rating of the likelihood of
response to the first online or paper questionnaire, we combine rather unlikely and very unlikely.
With regard to sociodemographics, we include age, gender, highest educational degree, country of
birth, and living situation. We generate the living situation variable from information on marital
status, partnership and living in a shared household leading to the five categories: no partner;
partner, not in household; partner, in household; married, living together; married, living apart.
An overview of the coding for all treatment variables can be found in Table 2 in the Appendix. We
include interactions of the choice of mode for the welcome survey with age, education and living
situation to account for differential effects of the choice of mode on nonresponse.

Model Training. We apply the double machine learning approach introduced in Double Se-
lection for Logistic Models for our logit model (3). The model training includes the three main
steps described in Appendix B. The estimation is performed in R using the function rlassolo-
gitEffects(x,y,index), which is provided by the R-package hdm (Chernozhukov et al., 2016). The
input parameter x is the matrix of our 329 regressors serving as controls and treatments. The input
parameter y is our outcome variable nonresponse. The input parameter index indicates the position
of variables of x which we use as treatment variables (cf. Table 1). The regression functions are
estimated via post-lasso with default penalty levels

λ1 ¼ 1:1
	
2
ffiffiffi
n

p
Φ�1ð1� 0:05=maxðn, p logðnÞÞÞ

and

λ2 ¼ 2:2
ffiffiffi
n

p
Φ�1ð1� 0:05=maxðn, p logðnÞÞÞ

in Algorithm 1, where n is the number of observations (5908) and p is the total number of
covariates (329) in equation (3). This choice of the penalization parameters is grounded in theory.
For details, we refer to Appendix E3 in Belloni et al. (2013). In equation (2) of our general
introduction to double machine learning, we consider a linear regression to model the relationship
between D and the other covariates X. If we have, for example, binary treatments as in our
application, a logit model might be more suitable to model the relationship between D and X.
Therefore, the optimal auxiliary regression (2) strongly depends on the problem at hand. This is
discussed in more detail in Appendix B.

For refined models using the double machine learning approach, we refer to the Python and R
package DoubleML (Bach et al., 2021, 2022). This package provides a general implementation of
the double/debiased machine learning framework and makes it possible to base inference on a
large collection of classification algorithms including non-linear methods for the nuisance pa-
rameter estimation in the auxiliary regression, for example, random forests and gradient boosting.
A detailed user guide for readers interested in applying the double machine learning approach can
be found at https://docs.doubleml.org/stable/index.html.
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Results

In this section, we present the results of our double machine learning approach to the inferential
analysis of nonresponse in the GESIS panel. The results of the double lasso for logistic regression
are visualized in Figures 2–4, and a regression table can be found in Table 3 in the Appendix. We
start with the interpretation of the interviewer ratings. The estimated coefficients of the interviewer
ratings from the logistic regression together with the corresponding confidence intervals are
displayed in Figure 2.

Cooperativeness

We find that the interviewer observation of respondents’ willingness to answer the survey
questions in the recruitment survey had a highly significant negative effect on survey
nonresponse. Respondents who were rated as having good willingness to respond to the
recruitment survey dropped out of the survey after the recruitment stage to a lesser extent than
respondents who were rated as having low willingness. We do not find significant effects for
the ease of persuading respondents to participate in the interview nor for the ease of per-
suading respondents to consent to be contacted again for the follow-up interview. The effects
however tend in the same direction as the observed willingness to answer the questions:
respondents who were rated as being rather easy or very easy to persuade were less likely to
drop-out.

Rated likelihood of participation

Respondents who were rated as being rather or very likely to participate in the welcome survey
dropped out after the recruitment survey to a lesser extent than did those who were rated as being

Figure 2. Regression coefficients of the interviewer ratings in the logistic regression model.
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Figure 3. Regression coefficients of the socio-demographic characteristics in the logistic regression model.

Figure 4. Regression coefficients of the chosen survey mode in the logistic regression model.
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rather unlikely or very unlikely to participate. We, however, find that the only significant effect in
this regard is for “very likely” category.

Socio-demographics and chosen survey mode

Next, we discuss the effects of socio-demographics and chosen survey mode for the welcome
survey. The results are found in Figures 3 and 4.

We do not find a significant effect for respondents’ gender but do find a positive effect for
having German citizenship: respondents with German citizenship dropped out after the re-
cruitment survey at a higher rate than respondents without German citizenship.

We find that survey mode interacts with age, education (though only significantly with
high education) and living situation (only being significant at the 10% level for “married,
living together”). We interpret the effects of all variables that show a significant interaction
with chosen survey mode. The online mode variable has a positive coefficient and is
positively interacted with age, which itself has a negative coefficient. For both survey
modes, we find that the older the respondents are, the lower is their likelihood to drop out
after the recruitment survey. The effect is much stronger for respondents who chose the
paper-and-pencil mode (�2.126) than those who chose the online mode (�1.511). Having
medium, high or other education is negatively interacted with online survey mode. Medium
and other education both have negative main effects and negative (though not significant)
interactions with online mode. Drop-out was lower for these two groups than for re-
spondents with low education for both survey modes and the decreasing effect is less
pronounced for respondents who chose the paper-and-pencil mode than it is for those who
chose the online mode. For high education, we find a positive effect on drop-out for
respondents who chose the paper-and-pencil questionnaire (0.081); this turns into a
negative effect for highly educated respondents who chose the online mode (�0.630). We
find positive but not significant effects for the living situations “not married with partner,
separate households,” “not married with partner, joint household” and “married, living
apart” and negative interactions with online mode for these categories. This means that,
compared to respondents who were not married and did not have a partner, the risk of drop-
out was higher for respondents who chose the paper-and-pencil mode but lower for those
who chose the online mode. Compared to respondents who were not married and did not
have a partner, respondents who were married and lived together with their spouse showed
a significant reduction in drop-out after the recruitment interview that was stronger if they
chose the paper-and-pencil questionnaire (�0.634) than if they chose the online mode
(�0.300).

Discussion and Conclusion

In this study, we analyze nonresponse in the welcome survey of the probability-based mixed-mode
GESIS panel. Losing respondents after the face-to-face recruitment interview is not only very
costly but can, through selective nonresponse, put the validity of panel inference at risk. Thus, the
goal of panel recruitment should be to prevent panel drop-out among population groups that are
found to be unlikely to become panel members. Knowing which population groups are likely to
drop-out can help in the identification and development of targeted strategies for these groups
(Lynn, 2017).

Using double machine learning for logistic regression, we are able to provide valid confidence
intervals for the regression coefficients of interest and are thus able to discover significant variables that
affect the likelihood to drop out. Bosnjak et al. (2018) find that the GESIS panel shows composition
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bias for several socio-demographic variables.We go beyond this analysis and show that these variables
explain nonresponse even after controlling for several other characteristics. Furthermore, the effects of
age, education, and family status are moderated by the choice of the paper-and-pencil or online survey
modes. Knowing this, it might be worthwhile to develop targeted interventions that increase response
depending on the mode the respondents choose. For example, older respondents who choose the
paper-and-pencil mode are less likely to need an intervention than those who choose the online mode.
Our findings, however, are not generalizable to countries with strongly different degrees of digita-
lization and different digital-divide than Germany. For the face-to-face recruited respondents of the
German Internet Panel, Herzing and Blom (2019) show that age and education are associated with
Internet use. If the Internet penetration within population subgroups strongly differs from Germany
(e.g., only young individuals are able to respond online), the mode choices will be different than in
Germany and thus our findings concerning the interactions of mode-choice and socio-demographic
characteristics are not transferable.

Our study supports the findings from previous studies that interviewer ratings on the
likelihood to participate in a subsequent survey are associated with respondents’ actual par-
ticipation. Also, an observed good willingness to answer the questions of the survey just
completed is positively associated with the likelihood to respond to a subsequent survey. While
this is strong support for the usefulness of collecting such ratings in a panel survey, it is not clear,
however, how to best ask interviewers to provide these. For the observed likelihood to par-
ticipate in a subsequent survey, previous studies have used different scales (from 1 to 100 in
Sinibaldi and Eckman (2015), from 1 to 5 in Plewis et al. (2017) and from 1 to 4 in the present
study) and more research is needed on comparing these in their ability to classify respondents
and explain nonresponse in a subsequent panel wave. Collecting the observed willingness to
participate in follow-up surveys is only useful in a panel context. Whether collecting the
observed willingness to answer the questions of the just completed questionnaire has any use
beyond predicting future nonresponse, for example, in assessing response quality in a cross-
sectional survey, is beyond the scope of this study.

The findings presented in this study are also limited to the nonresponse process in the face-to-
face recruitment to a (mixed-mode) online panel. More research is needed on the explanation of
nonresponse in different recruitment strategies. For example, recruiting respondents by mail and
subsequently switching them online (see, for example, Cornesse et al., 2021) might be prone to
very different nonresponse mechanisms. Furthermore, the mechanisms of nonresponse in the
recruitment step are likely to differ from the mechanisms of nonresponse in subsequent waves. For
example, comparing the sample composition of a panel study of employees in Germany to official
benchmarks, Sakshaug and Huber (2016) find that nonresponse bias increases over time.
However, the largest wave-to-wave increase in nonresponse bias occurred after the initial wave
and the wave-to-wave increases get smaller over time. Future research should focus on under-
standing differences between nonresponse in recruitment and subsequent waves to learn more
about respondents’ decision-making and find optimal ways of maintaining high motivation
throughout the panel life-cycle.

The logistic regression model we consider in this paper is only one exemplary setting where
double machine learning can be used for valid inference in high dimensions. The double
machine learning approach can also be combined with nonlinear regression methods, like
random forests, boosted trees, and neural nets, for both continuous and categorical dependent
variables (Chernozhukov et al., 2018). Nevertheless, the double machine learning strategy has
some limitations. First, like many statistical methods, the double machine learning strategy
can only be applied to data sets that contain no missing values and cannot correct for possible
measurement error in the observed variables. Second, and most crucial, it strictly relies on the
unconfoundedness assumption, that is, the assumption that all relevant confounders are
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observed. As this assumption is not always plausible, the double machine learning approach
has been adapted for the case of unobserved confounders using instrumental variables (IV)
methods, see Belloni et al. (2012). In this context, Kueck et al., 2022 provide results for valid
inference in an instrumental variable model when L2-Boosting is used for variable selection.
Further adaptations of the double machine learning approach have been developed, for
example, for causal mediation analysis (Farbmacher et al., 2022) or dynamic treatment effects
estimation (Bodory et al., 2020).

The double machine learning approach can be successfully applied in all kinds of settings
where researchers are interested in explaining the effects of treatment variables while controlling
for a high number of covariates. Recently, many studies have been published which apply the
double machine learning technique in economics, for example, to analyze gender differences in
wage expectations (Bach et al., 2018a; Fernandes et al., 2021; Wunsch & Strittmatter, 2021) or to
estimate the effect of policies/programs (Denisova-Schmidt et al., 2021; Goller et al., 2021; Huber
et al., 2021; Knaus, 2021; Knaus et al., 2020).

In survey methodology, we intend to analyze how double machine learning might be used to
select and include high numbers of control variables in imputation or weighting models. An
application from political science could be the study of voting behavior on the neighborhood level,
including detailed information about the socio-demographic structure, economic situation, and
welfare. Another interesting research topic could be the identification of the parental effect on
educational attainment during the COVID-19 pandemic, controlling for measures of children’s
online behavior like social media usage. Given that social scientists are increasingly confronted
with many types of big data, such as digital behavioral data and geo-spatial information of all
kinds, the applications for which social scientists might benefit from the double machine learning
technique are numerous.
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Appendix A

Data and Empirical Results.

Table 2. Estimated treatment effects of the double lasso for logistic regression including p-values and
confidence intervals.

Coefficient p-value 2.5% 97.5%

Age �2.126 0.000 �3.120 �1.133
Female �0.069 0.440 �0.246 0.107
Germany 0.489 0.003 0.171 0.807
Good willingness to answer questions �0.354 0.013 �0.632 �0.076
Rather easy to persuade respondent (interview) �0.147 0.178 �0.360 0.067
Very easy to persuade respondent (interview) �0.209 0.111 �0.465 0.048
Rather easy to persuade respondent (follow-up interview) �0.114 0.353 �0.354 0.127
Very easy to persuade respondent (follow-up interview) �0.158 0.295 �0.454 0.138
Rather likely to participate �0.039 0.821 �0.373 0.296
Very likely to participate �0.436 0.012 �0.775 �0.098
Medium education �0.146 0.289 �0.417 0.124
High education 0.081 0.616 �0.235 0.397
Other education �0.370 0.514 �1.481 0.741
Not married with partner, separate households 0.014 0.951 �0.430 0.458
Not married with partner, joint household 0.023 0.910 �0.371 0.416
Married living together �0.634 0.003 �1.047 �0.221
Married living apart 0.233 0.562 �0.554 1.019
Online 0.537 0.044 0.015 1.058
Age*online 0.615 0.098 �0.114 1.343
Medium education*online �0.282 0.123 �0.640 0.077
High education*online �0.711 0.002 �1.153 �0.269
Other education*online �0.938 0.294 �2.691 0.814
Not married with partner, separate households*online �0.126 0.637 �0.652 0.399
Not married with partner, joint household*online �0.218 0.449 �0.783 0.347
Married living together*online 0.334 0.092 �0.054 0.722
Married living apart*online �0.605 0.309 �1.770 0.560
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Appendix B

Double Machine Learning for Logistic Regression.

Table 3. Answer Categories and Coding of the Treatment Variables.

Variable Answer categories Code (0 is baseline)

Participation mode Offline 0: Offline
Online 1: Online

Willingness of the respondent Good 1: Good
To answer the question Medium 0: Bad

Bad 0: Bad
Good in the beginning but got worse 0: Bad
Bad in the beginning but got better 0: Bad

Difficulty to persuade
respondent

Very difficult 0: Difficult

To take part in interview Rather difficult 0: Difficult
Rather easy 3: Rather easy
Very easy 4: Very easy

Difficulty to persuade
respondent

Very difficult 0: Difficult

to take part in follow-up
interview

Rather difficult 0: Difficult
Rather easy 3: Rather easy
Very easy 4: Very easy

Likelihood of participation in
first

Very likely 5: Very likely

online—or paper
questionnaire

Rather likely 2: Rather likely
Rather unlikely 0: Unlikely
Very unlikely 0: Unlikely

Highest education Still in school 8: High
Left school without degree 0: Low
Lower secondary degree 0: Low
Secondary degree 4: Medium
Polytechnical secondary degree (GDR) 8th or
9th grade

0: Low

Polytechnical secondary degree (GDR) 10th
grade

4: Medium

Advanced technical college certificate 8: High
General qualification for university entrance 8: High
Other degree 9: Other

Gender Male 0: Male
Female 2: Female

Citizenship Germany 0: Germany
EU28 4: Other
Rest of Europe 4: Other
Other 4: Other

Age Year of birth 2013 - year of birth
Living situation Not married, no partner 0: No partner

Not married with partner, separate households 1: Partner not in
household

Not married with partner, joint household 2: Partner in household
Married living together 3: Married living

together
Married living apart 4: Married living apart
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The double machine learning approach for logistic regression includes three main steps:

1. initial estimation of the regression function via post-lasso logistic regression,
2. estimation of instruments that are orthogonal to the weighted controls via weighted post-

selection least squares, and
3. estimation of α0 based on the nuisance estimates obtained in (1) and (2).

The estimation procedure for α0 is summarized in more detail in the following algorithm:

Algorithm 1. DML for Logistic Regression
1: Run a post-lasso-logistic regression of Yi on Di and Xi�bα,bβ�2 argmin

α,β
E½Λiðα,βÞ� þ λ1=nkðα,βÞk1, 

~α,~β

!
2 argmin

α,β
E½Λiðα,βÞ� : supportðβÞ � support

 
~β

!
,

where Λi (α, β) is the (negative) log-likelihood function associated with the logistic link
function. For i = 1, …, n, keep the value

X 0
i
~β and the weightbωi which is defined as

bωi ¼ bσ2i ¼ VarðYijDi,XiÞ ¼ G

 
Di~αþ X 0

i
~β

!(
1� G

 
Di~αþ X 0

i
~β

!)

with the logistic link function G(t) = exp(t)/{1 + exp(t)}
2: Run a post-lasso OLS regression offfiffiffiffiffibωi

p
Di onffiffiffiffiffibωi

p
Xi :bθ2 argmin

θ
E½bωiðDi � X 0

iθÞ2� þ λ2=nkΓθk1,
~θ2 argmin

θ
E½bωiðDi � X 0

iθÞ2� : supportðθÞ � supportðbθÞ:
Keep the residual bvi : ¼ ffiffiffiffiffibωi

p ðDi � X 0
i
~θÞ and instrument

bzi : ¼ bvi� ffiffiffiffiffibωi

p
,i ¼ 1,…,n

3: Run an instrumental logistic regression of Yi � X 0
i
~β on Di usingbzi as the instrument for Di

α
⋁2 arginf

α2A
LnðαÞ,

where
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LnðαÞ ¼






En

"(
Yi � G

 
Diαþ X 0

i
~β

!)bzi
#






2

En

"(
Yi � G

 
Diαþ X 0

i
~β

!)2bz2i
#

and A ¼ fα2R : jα� ~αj ≤C=log ng. Compute the confidence region with asymptotic
coverage 1 � ξ: �

α2R :





α� ~α





 ≤ bΣnΦ
�1ð1� ξ=2Þ	 ffiffiffi

n
p �

For the estimator of the variance bΣn and details about the Algorithm 1, we refer to Belloni et
al. (2016). Applying the double machine learning approach, Belloni et al. (2016) consider
the following auxiliary regressionffiffiffiffiffi

ωi
p

Di ¼ ffiffiffiffiffi
ωi

p
X 0

iθ0 þ vi, E½ ffiffiffiffiffiωi
p

viXi� ¼ 0

where the weight ωi is defined as the conditional variance of the outcome Yi given Di and
Xi. Using this auxiliary regression, they construct the instruments zi ¼ Di � X 0

iθ0 (cf. step
2 of Algorithm 1) that are necessary for valid inference in high dimensions. It is worth
noting that the projection X 0

iθ0 is only defined as the best linear approximation of Di and
there is no distributional assumption on ν, except conditions on the moments (cf. Condition
L in Belloni et al. (2016)). Nevertheless, we could also construct instruments using the
conditional expectation of Di given Xi, m0(Xi) = E[Di|Xi]. If we want to model the
conditional expectation, we need to adjust the auxiliary regression in step 2 in Algorithm 1
for each treatment Di depending on the type of the treatment (binary, nominal, continuous).
Note that even if we consider the following regression model

ffiffiffiffiffi
ωi

p
Di ¼ ffiffiffiffiffi

ωi
p

m0ðXiÞ þ ~vi, E

� ffiffiffiffiffi
ωi

p
~vi





Xi

�
¼ 0

for a continuous treatment Di, the function m0 could satisfy different structured properties
depending on the problem at hand. Such properties motivate the use of different estimators
for m0 in high dimensions. If one assumes a sparse linear model, as we did in Algorithm 1, it
permits the use of lasso or post-lasso to estimate θ0. On the other hand, we can use ridge
estimators if we assume thatm0ðXiÞ ¼ X 0

iθ0 is dense with respect to X. If we do not want to
assume linearity, we could also use non-linear estimation methods like random forests or
boosted trees for the estimation of the auxiliary regression.
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