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SPLIT QUESTIONNAIRE DESIGNS FOR ONLINE
SURVEYS: THE IMPACT OF MODULE
CONSTRUCTION ON IMPUTATION QUALITY

JULIAN B. AXENFELD *
ANNELIES G. BLOM
CHRISTIAN BRUCH
CHRISTOF WOLF

Established face-to-face surveys encounter increasing pressures to move
online. Such a mode switch is accompanied with methodological chal-
lenges, including the need to shorten the questionnaire that each respon-
dent receives. Split Questionnaire Designs (SQDs) randomly assign
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respondents to different fractions of the full questionnaire (modules) and,
subsequently, impute the data that are missing by design. Thereby, SQDs
reduce the questionnaire length for each respondent. Although some
researchers have studied the theoretical implications of SQDs, we still
know little about their performance with real data, especially regarding
potential approaches to constructing questionnaire modules. In a Monte
Carlo study with real survey data, we simulate SQDs in three module-
building approaches: random, same topic, and diverse topics. We find
that SQDs introduce bias and variability in univariate and especially in
bivariate distributions, particularly when modules are constructed with
items of the same topic. However, single topic modules yield better esti-
mates for correlations between variables of the same topic.

KEYWORDS: Long surveys; Missing data; Monte Carlo simulation;
Multiple imputation; Split Questionnaire Design.

1. INTRODUCTION

Surveys are an indispensable source of evidence in the social sciences. Many
large-scale face-to-face surveys like the General Social Survey (Smith,
Davern, Freese, and Morgan 2019) or the British Social Attitudes survey
(Curtice, Clery, Perry, Phillips, and Rahim 2019) stimulate scientific discourse
with high-quality data. However, face-to-face surveys are increasingly under
pressure due to decreasing response rates (De Leeuw, Hox, and Luiten 2018)
and increasing costs (e.g., Calinescu, Bhulai, and Schouten 2013; Roberts,
Vandenplas, and Ernst St€ahli 2014).

Statement of Significance

Face-to-face surveys—until recently considered the gold standard for
high-quality surveys—are increasingly replaced by online surveys re-
quiring shorter questionnaires. Split questionnaire designs can be used
to reduce individual questionnaire length while collecting data on
questions from a longer questionnaire. The resulting dataset contains a
large share of intentionally missing data. One way to analyze these
data is to replace the missing values by imputing them. This study
compares different strategies for constructing split questionnaires with
respect to the quality of the imputed datasets. More precisely, we
study how different ways to distribute questions to respondents affect
the quality of imputed data regarding frequencies of and correlations
between variables. We find that distributing questions belonging to the
same topic across different questionnaires improves imputation quality.
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With close to universal internet coverage in Western countries (International
Telecommunication Union 2019), online surveys have become a viable alter-
native to face-to-face data collection in recent years at considerably lower cost
(e.g., Bianchi, Biffignandi, and Lynn 2017; Olson et al., 2021). Several large-
scale probability-based online surveys have been established across the world
(e.g., the KnowledgePanel in the United States (Ipsos 2021), the LISS Panel in
the Netherlands (Knoef and de Vos 2009), and the German Internet Panel
(GIP; Blom, Gathmann, and Krieger 2015)).

Consequently, survey projects face pressures to switch to the less expensive
online mode (e.g., J€ackle, Lynn, and Burton 2015; Bianchi et al. 2017).
However, there is one major obstacle to moving face-to-face surveys online:
Online surveys are typically much shorter than those conducted face-to-face
because researchers worry about higher breakoff rates (Galesic 2006; Peytchev
2009; Tourangeau, Conrad, and Couper 2013, p. 52; Mavletova and Couper
2015; Revilla 2017), lower response quality, and higher measurement error
(Galesic and Bosnjak 2009; Peytchev and Peytcheva 2017) in lengthy online
questionnaires. When asking directly, the median online survey respondent
reports that they would like to answer surveys of 25 minutes at maximum
(Revilla and Höhne 2020). Many established face-to-face surveys, however,
are considerably longer at approximately 1 hour (Curtice et al. 2019, p. 257)
and, thus, would have to be shortened when moved online.

Split Questionnaire Designs (SQDs) may provide a solution to such
obstacles. It allocates the items of a given questionnaire to different modules
and randomly assigns respondents to a subset of these modules. Data for the
questions not presented to a respondent are missing by design and can subse-
quently be imputed to allow for applying conventional analysis techniques
(Raghunathan and Grizzle 1995).

While SQDs theoretically provide an attractive solution to shortening online
questionnaires, little is still known about their practical implications.
Importantly, low variable correlations in real social survey data driven by mul-
titopic questionnaires and nonexact measurement may lead to biases and ineffi-
ciencies in the imputation process. Imputation models rely fundamentally on
information on the unobserved data stored in the observed data. Due to gener-
ally low correlations, however, observed data cannot contribute much informa-
tion. Moreover, with SQDs large proportions of the data are imputed, implying
that poor imputations could severely affect substantive analyses on the data.
Consequently, preserving as much of the scarce information as possible for the
imputation is a major challenge for SQD surveys. Otherwise, imputation mod-
els might fail to reproduce distributions and relationships in the data, implying
potentially inefficient and biased estimates.

In this paper, we therefore shed light on an important practical aspect of
SQDs: the construction of the questionnaire modules and its impact on the
quality of the imputed data (i.e., biases and variability of frequency and corre-
lation estimates). For a realistic examination of modularization strategies, this
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study relies on real (nonsynthetic) survey data to account for real-data chal-
lenges (e.g., low correlations or skewed distributions). We test three modulari-
zation methods: random modules (RM), where the questions are randomly
allocated to modules; single topic modules (STM), where each module con-
tains only one questionnaire topic; and diverse topics modules (DTM), where
the various topics of a questionnaire are spread across several modules. We
present findings from a Monte Carlo simulation that examines how RM, STM,
and DTM affect imputation quality in real survey data.

2. ADMINISTRATION OF SQDs

2.1 Split Questionnaire Design (SQD)

SQD is a planned missing data method developed by Raghunathan and Grizzle
(1995) as an extension of matrix sampling (e.g., Shoemaker 1973; Munger and
Loyd 1988). Items are bundled to mutually exclusive packages called modules
(e.g., Raghunathan and Grizzle 1995; Peytchev and Peytcheva 2017). There
may be one core module containing especially important items that are admin-
istered to all respondents (e.g., Raghunathan and Grizzle 1995). Additionally,
respondents are randomly assigned to a subset of the remaining modules.

Constructing modules instead of sampling items directly is an important as-
pect of SQD, guaranteeing sufficient pairwise observations for each pair of
items (Raghunathan and Grizzle 1995; R€assler, Koller, and M€aenp€a€a 2002).
To this end, every split questionnaire must contain two split modules at mini-
mum and all possible combinations of split modules must be allowed to appear
(Raghunathan and Grizzle 1995). This general procedure is the same indepen-
dent of the modularization strategy.

SQDs produce so much missing data that often too few observed cases are
available for conventional complete-case analyses. As a solution, Raghunathan
and Grizzle (1995) suggest multiple imputation (MI; Rubin 1987) to impute
values missing by design.

2.2 Multiple Imputation

MI is a method for completing incomplete data matrices with plausible values
to enable analyses on the full data (for a detailed overview, see Rubin 1987;
Van Buuren 2018). MI replaces missing values with values drawn from a pos-
terior probability density distribution. This distribution is obtained by an impu-
tation model relying on a set of predictor variables. Values are drawn multiple
times to account for the uncertainty of the missing values, generating multiple
datasets with different imputed values. Data analyses are carried out on each
dataset separately and estimates are subsequently pooled using Rubin’s Rules
(Rubin 1987).

4 Axenfeld et al.
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The challenge of MI lies in the reproduction of distributions and relation-
ships that would be observed in a complete dataset. In general, this challenge
is best met when the missing information is limited (Madley-Dowd, Hughes,
Tilling, and Heron 2019) and correlations between imputed and predictor vari-
ables are strong. However, correlations in surveys are typically weak, and
SQDs produce lots of missing data. The aim of choosing a modularization
strategy for SQDs is thus to maximize the information that predictors provide
on the variables to be imputed (Raghunathan and Grizzle 1995). In practice
this means that relatively highly correlated variables need to be allocated to dif-
ferent modules to prevent them from being missing together.

2.3 Modularization Techniques

The module construction strategy may decisively shape the resulting SQD.
First, as described above, the imputation requires retaining as much information
as possible, that is, correlated variables should be distributed across modules.

Second, however, certain items should not be separated (Raghunathan and
Grizzle 1995; R€assler et al. 2002). For example, this can be motivated by the
need to maintain question filtering (see for instance, Bishop, Oldendick, and
Tuchfarber 1983 or Kreuter, McCulloch, Presser, and Tourangeau 2011 for
question-filter effects on data quality), prevent differential order effects (e.g.,
McFarland 1981; Silber, Höhne, and Schlosser 2016), or limit frequent topic
switches that may raise respondent burden.

Finally, module construction must be feasible in real survey settings. Thus,
all information used during modularization must be available or obtainable be-
fore data collection. Exact variable correlations, for example, are not available
a priori; instead, we have to rely on previous surveys or collect this information
during a pilot study.

Thus, guidance on modularization will depend on how various perspectives
are weighted. Similar to Gonzalez and Eltinge (2007), we classify such differ-
ent techniques into three general strategies: RM, STM, and DTM. Figure 1
illustrates these three strategies with a small example questionnaire.

2.3.1 Random modules. The upper part of figure 1 shows one potential out-
come when modules are constructed randomly in an example questionnaire.
The questionnaire is a set Q of questions described by the index
q ¼ 1; 2; . . . ; Z, where Z is the total number of questions in the questionnaire
(in this example, Z ¼ 9). All questions in Q belong to mutually exclusive
topics with each topic described by the index h ¼ 1; 2; . . . ; L, where L is the
total number of topics (here, L ¼ 3). For RM, we want to randomly allocate all
questions to a fixed number M of split modules, which are mutually exclusive
and described by the set W with the index w ¼ 1; 2; . . . ;M denoting a certain
module. The number of modules M can in principle be set to any value 2
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< M � Z (in the example, we chose M ¼ 3) so that each respondent can re-
ceive at least 2 modules.

Furthermore, we suppose modules should be balanced in size so that all
respondents receive questionnaires of similar length (R€assler et al. 2002;
Thomas, Raghunathan, Schenker, Katzoff, and Johnson 2006). Therefore, we
determine uniform module sizes Bw ¼ Z=M if Z=M 2 N. If Z=M 62 N, we cre-
ate two different subsets of modules by randomly drawing a subset V from the

Figure 1. Illustration of modularization strategies.

6 Axenfeld et al.
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set of modules W that contains a number of M Z=M � Z=Mb cð Þ modules. For
these two subsets, we define different module sizes:

Bw ¼
Z=Md e if w 2 V

Z=Mb c if w 62 V
:

(
(1)

This means each module w will receive a number of items Bw defined by either
the ceiling or floor value of the total number of items Z over the total number
of modules M, depending on whether the module was or was not in subset V .
Then, we randomly assign all questions in Q to the modules with sizes Bw,
with each question q having a probability of Bw=Z to be allocated to a module
w before the assignment of questions starts.

RM considers no survey information other than the number of questions Z
and the predetermined number of modules M. Consequently, imputation qual-
ity may suffer because correlated items are not systematically distributed
across modules optimally and could possibly amass within the same module
by chance. From a practitioner’s perspective, RM might not be optimal either
as question sequences are ignored and, hence, meaningful and consistent ques-
tionnaires cannot be guaranteed using RM.

2.3.2 Single topic modules. STM’s procedure is illustrated in the middle part
of figure 1, again with Z ¼ 9 questions, L ¼ 3 topics, and M ¼ 3 modules.
This is a fully deterministic process, where all items of one topic h are allo-
cated to the same single module w. However, if one topic module contains con-
siderably more (or more burdensome) questions than the other topic modules,
the large single topic module may be additionally split to achieve balanced
module lengths.

The key benefit of STM is that it avoids potential disruptions in the ques-
tionnaire structure. STM therefore seems to be the strategy of choice for many
survey practitioners, who seek to obtain questionnaires that appear meaningful
and consistent to respondents regarding its topics. Consequently, STM has
many real-life applications such as in the 2017 European Values Study (Luijkx
et al. 2021) and the 2012 PISA study (OECD 2014, Chapter 3).

However, STM may hinder imputation, because most variables on the same
topic may deliver the highest correlations but are clustered within rather than
distributed across modules. Hence, while RM may trigger adverse scenarios
for MI by chance, STM will cause them by design.

2.3.3 Diverse topics modules. Finally, DTM purposefully assigns the most
highly correlated variables to different modules to optimize subsequent impu-
tation. DTM constitutes a diverse group of techniques that optimize SQDs
(examples can be found in R€assler et al. 2002; Thomas et al. 2006; Adigüzel
and Wedel 2008; Chipperfield and Steel 2009, 2011; Chipperfield, Barr, and
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Steel 2018; Imbriano 2018). From an imputation perspective DTM is attrac-
tive, because it maximizes the information available for the MI. However, it
contains a conundrum: To determine which variables are highly correlated, the
data must be available a priori, that is, before fieldwork. Although some sur-
veys can draw on data from a pilot study, typically these correlations are un-
known during modularization. Therefore, this study uses a DTM approach
proposed similarly by Bahrami, Aßmann, Meinfelder, and R€assler (2014),
which assumes that variables correlate more strongly when they originate from
questions on the same topic. This implies that all items from a topic h should
be evenly distributed over all M modules, such that highly correlated variables
will most likely end up in different modules. Since here the topics serve only
to identify potentially highly correlated items, practitioners could also consider
alternative ways to group highly correlated items other than topics (e.g., prior
theoretical knowledge).

The bottom part of figure 1 illustrates a potential outcome of this DTM ap-
proach. The procedure is a stratified random assignment, in which the topics
described by the index h ¼ 1; 2; . . . ; L serve as strata. Hence, RM is applied
separately within each topic h.

We first determine how many questions from a given topic h should end up
in each of the modules. This number of questions Bw;h is defined by Bw;h ¼ Ah

=M if Ah=M 2 N in a topic h, where Ah is the number of questions in a topic h
(in the example, Ah ¼ 3). In figure 1, Bw;h ¼ 1 for each w and h, so in each
topic h one question is allocated to each module w.

Otherwise, if Ah=M 62 N in a topic h, we create two different subsets of
modules by randomly drawing a subset Uh from the set of modules W that con-
tains a number of M Ah=M � Ah=Mb cð Þ modules. For these two subsets, we
define different topic-specific module sizes:

Bw;h ¼
Ah=Md e if w 2 Uh

Ah=Mb c if w 62 Uh

:

(
(2)

Thus, from a given topic h, each module w will receive a number of items de-
fined by either the ceiling or floor value of the number of items in the topic Ah

over the number of modules M, depending on whether module w was or was
not in Uh. Subsequently, we randomly assign Bw;h questions from a topic h to
each module w. We apply this procedure to each topic h, yielding modules
constructed by stratified random assignment.

Compared to RM, the stratification in DTM can make module sizes vary
slightly more. In our study, module sizes turn out constant (always equal to
10). However, practitioners may consider rejecting module structures with
sizes that vary too much.

Whereas RM may lead to an underrepresentation of some topics in some
modules (in figure 1 for example, module 1 contains no question from topic 2),

8 Axenfeld et al.
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DTM obtained by stratified random assignment may eliminate the “unluckier”
outcomes of RM while requiring only heuristic information on the correlation
structure.

2.4 Prior Research

Prior research into SQD imputation with real data can be grouped into two cat-
egories: Monte Carlo simulations investigating imputation quality with one
specific modularization strategy (Raghunathan and Grizzle 1995; Thomas
et al. 2006; Bahrami et al. 2014) and case studies that explore different modu-
larization strategies (R€assler et al. 2002; Adigüzel and Wedel 2008; Imbriano
and Raghunathan 2020).

From existing simulation studies, we learn that “little is lost” regarding
means and standard errors (Raghunathan and Grizzle 1995). Thomas et al.
(2006) report only small biases in means and regression coefficients but con-
siderable precision losses in simulated SQDs compared to complete surveys.
Bahrami et al. (2014) observe a small attenuation in most of their regression
coefficients. As their MI estimates are overall still mostly in line with complete
data estimates, they evaluate their design favorably in general.

Furthermore, three single-case (non-Monte Carlo) studies compare different
modularization strategies. Adigüzel and Wedel (2008) suggest that data-driven
solutions could retain more information than ad-hoc solutions. Additionally,
R€assler et al. (2002) briefly report a poorer imputation performance when split
modules consist of highly correlated items. Imbriano and Raghunathan (2020)
compare different SQDs in a longitudinal health survey context, manipulating
whether respondents receive repeatedly the same topics or different topics each
wave (whereby correlations of one variable across waves are usually high).
They find that univariate and regression estimates are reproduced best when
respondents receive different items each wave (i.e., when highly correlated var-
iables are separated).

To our knowledge, our study is the first to combine the application of
Monte Carlo simulations with examining different modularization strategies
(RM, STM, and DTM) using real survey data. Furthermore, it also goes be-
yond most existing real-data evidence through investigating bivariate in addi-
tion to univariate measures (e.g., Adigüzel and Wedel 2008, or Raghunathan
and Grizzle 1995, study 1).

3. DATA AND METHODS

3.1 Data

Our study uses real data from an existing survey: the German Internet Panel
(GIP), a probability-based online panel of the German population (for details

Split Questionnaire Designs for Online Surveys 9
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on recruitment and response rates, see Blom et al. 2015, 2017; Cornesse,
Felderer, Fikel, Krieger, and Blom 2021). The GIP is particularly suited, be-
cause it has a reasonably large number of cases (5,411) and a multitopic struc-
ture. The latter arises from independent research teams in various areas of
economics, political science, sociology, and data science feeding question-
naires into the GIP to answer their respective research questions.

We used 61 variables from GIP waves 37 and 38 (Blom et al. 2019a,
2019b). Table 1 depicts the topics and number of variables selected and
indicates whether the variables were used in the core or split modules. The ta-
ble also shows to which module the variables were allocated with STM. All
variables are discrete, most of them ordinal or dichotomous, and seven varia-
bles in the core are nominal. Additional information on the wording of survey
questions, field-time periods, and response rates is provided in tables A.1
and A.2 in the online supplementary materials.

To pursue our research question of examining different modularization strat-
egies, we rely on imputed data of the planned missing SQD data. In order not
to confound the effects of this type of missing data with regular missing data,
we removed all unit and item nonresponse from the dataset. Consequently, par-
ticipants who did not respond to either wave 37 or 38 were excluded from the
GIP dataset. Furthermore, where possible, missing observations were matched
to responses from earlier waves (Blom, Bossert, Funke et al., 2016a; Blom,
Bossert, Gebhard et al., 2016b). Finally, the remaining item nonresponse was
replaced with single imputations using predictive mean matching (PMM) as
implemented in the mice package in R1 (Van Buuren and Groothuis-
Oudshoorn 2011; R Core Team 2020), using all variables as predictors that
have Spearman correlations of j0:05j or stronger. The effects of this procedure
on univariate frequencies and correlations appear negligible, as both turn out
extremely similar when calculated without imputation (with pairwise deletion)
and with imputation (for details, see figure A.1 in the online supplementary
materials).

Finally, rarely observed categories with fewer than 100 cases were com-
bined into broader categories to avoid obtaining empty categories in the simu-
lation. This yielded a completely observed dataset with 4,061 cases as the
population for our simulation.

3.2 Variable Correlations within and between Topics

To consider the variable correlations in the data set, we calculate a Spearman
correlation matrix for the 50 split variables (see figure A.2 in the online

1. Other R packages used for this paper are as follows: DescTools (Signorell et al. 2020), doMPI
(Weston 2017), dplyr (Wickham, François, Henry, and Müller 2021), faux (DeBruine 2020), fore-
ach (Microsoft and Weston 2020), ggcorrplot (Kassambara 2019), MASS (Venables and Ripley
2002), Matrix (Bates and Maechler 2019), Rmpi (Yu 2002), and tidyverse (Wickham et al. 2019).
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supplementary materials for an illustration). Absolute values of correlations
range from 0.000 to 0.702 with 81.6 percent smaller than 0.1. We further eval-
uate average absolute correlations within and between topics using Fisher’s-Z
transformation. Different-topic variable pairs tend to have weaker correlations
than same-topic variable pairs with an average correlation of 0.046 compared
to 0.162 (average correlations within topics are between 0.107 and 0.258);
45.3 percent of within-topic correlations and 89.8 percent of between-topic
correlations are below 0.1.

Finally, we take a glimpse at the correlations of variables of different mod-
ules. The absolute Spearman correlations between variables of different mod-
ules are on average 0.049 with STM, 0.070 with RM, and 0.072 with DTM.

3.3 Simulation of SQDs

We applied a Monte Carlo simulation, repeating modularization and imputa-
tion on different samples over 1,007 simulation runs.2 Accordingly, we ran-
domly drew 1,007 samples with each 2,000 respondents from our GIP
population data. Unlike single simulations, this procedure produces findings
beyond anecdotal evidence by ruling out random differences. The following
paragraphs describe the steps taken in each simulation run.

3.3.1 Generating module structures. To generate module structures, we
implemented RM, STM, and DTM as described above in R. With each modu-
larization technique, we create five split modules with 10 items each. This
results in three module structures tested in each simulation run. While the ar-
rangement of variables with RM and DTM differs across simulation runs due

Table 1. Variables Used in Monte Carlo Simulation

Topic No. of
variables

SQD
constituent

Origin STM
allocation

Sociodemographics 10 Core Wave 37 Core
Sampling cohort 1 Core Wave 37 Core
Organization membership 10 Split Wave 37 Module 1
Big Five personality traits 10 Split Wave 37 Module 2
Lobbying in EU politics 10 Split Wave 38 Module 3
Domestic and party politics 20 Split Wave 38 Modules 4 and 5

2. This number of simulation runs (1; 007) was favored over 1; 000 because and we had access to
1; 008 processor cores (one core per simulation run, except for one consumed by setting up the
simulation).
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to their stochastic procedure, STMs are predefined (see table 1) and thus do not
vary.

3.3.2 Creating reduced datasets. To generate SQD datasets, we randomly
assigned three out of five split modules plus the core module to each respon-
dent in the sample. All possible combinations of split modules had equal chan-
ces to appear (although empirical frequencies of occurrence may vary
randomly). All values from unassigned modules were deleted from the sample
data, generating reduced datasets with 67 percent of the original size.

3.3.3 Completing the reduced data. For all three strategies and in each simu-
lation run, we applied MI with the mice package in R with 40 imputations
drawn after 15 iterations to complete the reduced data. Like R€assler et al.
(2002), we used PMM as the imputation method because a small-scale test
with one simulation run and RM showed enormous shifts in univariate distri-
butions and correlation sizes with the mice default methods (logistic regression
for binary variables, proportional-odds logistic regression for ordinal variables)
but not with PMM (see figure B.1 in the online supplementary materials for
details). Considering the possibility that the poor performance of the default
methods could be due to a violation of the proportional-odds assumption for
ordinal logistic regression, we also tested polytomous logistic regression as an
alternative method (also displayed in figure B.1 in the online supplementary
materials). However, the shifts in estimates with this imputation method seem
even somewhat larger than with the mice default. These findings comply with
prior research revealing difficulties with imputation using categorical regres-
sion methods (White, Royston, and Wood 2011; Wu, Jia, and Enders 2015;
Van Buuren 2018, p. 91) and recommending PMM at least as a fallback option
(Koller-Meinfelder 2009, pp. 48–68; Van Buuren 2018, p. 166).

Small-scale tests also showed that restricting imputation models to predictor
variables with Spearman correlations stronger than j0:1j in the nonimputed
SQD data may lead to improved imputations. Thereby, imputation models in-
clude on average between 2 and 22 predictors (median: 11). If no predictors
are included in a simulation run, we resort to unconditional hot-deck sampling.
Also considering that general recommendations are to include at most 15–25
(Van Buuren 2018) or 30–40 (Honaker and King 2010) predictors, we pro-
ceeded with this approach. The excluded variables’ correlations with the im-
puted variable are thereby assumed to be zero. Hence, their strength may be
underestimated after imputation, but these underestimations should be small
because the correlations are close to zero. Results from an additional simula-
tion that instead includes all variables as predictors can be found in figures B.2
and B.3 in the online supplementary materials, with substantively identical
findings for the relative performance of modularization strategies. Overall,
these unrestricted predictor sets yield much larger biases especially in
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univariate estimates. Bivariate estimates also have a tendency towards more
extreme biases. At the same time, many of the biases that are very small with
unrestricted predictor sets are slightly larger with restricted predictor sets, be-
cause restricting predictor sets in this way implies slight biases in very weak
correlations.

3.3.4 Estimating distribution parameters. We examine how well univariate
and bivariate distributions in the complete sample data can be reproduced with
the imputed data. In consequence, distribution parameters were estimated in
each simulation run with the complete sample dataset and with all imputed
datasets. For each modularization strategy, the resulting estimates were pooled
using Rubin’s Rules. Consequently, for each parameter and in each simulation
run, we have one pooled estimate per strategy and, as a benchmark, one esti-
mate for the complete sample data.

To cover univariate distributions, we estimated relative univariate frequen-
cies. All split items in our simulation are available as categorical variables. The
index c describes a single category of any of these variables. We calculated rel-
ative univariate frequencies for each variable category c in each simulation run
s based on the complete sample data (bpcomplete

c;s ) and imputed data (bpimputed
c;s ).

For bivariate distributions, we used Spearman correlations. We first gener-
ated dummy variables for all categories of the seven nominal-type variables in
the core module, increasing the total number of variables to 99. Then,
Spearman correlations bqcomplete

i;j;s for the complete sample data and bqimputed
i;j;s for

the imputed data were estimated in each simulation run s for each relevant
unique pair of variables i; j. We excluded all variable pairs that did not include
at least one split module, that is, imputed, variable.

3.4 Measures

The basis of our analyses is the deviation bD of imputed-data estimates from
complete-data estimates in each simulation run s.3 For a frequency bpc;s of a cat-
egory c or correlation bqi;j;s of a variable pair i; j each simulation run s entails
the following operation:

bD bpc;s

� �
¼ bpimputed

c;s � bpcomplete
c;s ; (3)bD bqi;j;s

� �
¼ bqimputed

i;j;s � bqcomplete
i;j;s : (4)

3. Dividing D̂ by the complete-data benchmark would yield percentage deviations. This study,
however, does not consider such a measure because it turned out unstable for the many correla-
tions near zero, as this implies dividing by numbers very close or equal to zero.
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A positive value on bDðbpc;sÞ or bD bqi;j;s

� �
means that the corresponding

estimate has been overestimated, whereas a negative value indicates an
underestimation.

3.4.1 Bias. If a given estimate is Monte Carlo unbiased, we expect the aver-

age of its deviations b�D over all simulation runs to be zero. In contrast, a posi-
tive (negative) average suggests that the estimate is systematically
overestimated (underestimated).

The Monte Carlo bias of a frequency estimate bp for a category c is obtained
through the average over its deviations in all S ¼ 1; 007 simulation runs:

b�D bpcð Þ ¼
1
S

XS

s¼1

bD bpc;s

� �
: (5)

The Monte Carlo bias of a correlation estimate bq for variables i and j is:

b�D bqi;j

� �
¼ 1

S

XS

s¼1

bD bqi;j;s

� �
: (6)

3.4.2 Variability. Another important aspect of the quality of an estimate is its
precision. In practice, this means that ideally standard errors are relatively small.
The Monte Carlo simulation allows one to approximate the variance of a given
point estimate through taking the estimate’s variance over all simulation runs
(e.g., Münnich and R€assler 2005; Mashreghi, L�eger, and Haziza 2014; Bruch
2016). Because the point estimator of interest is the deviation from the complete-
sample estimate, we use the variance of these deviations in (3) and (4) instead of
the variance of the frequency or correlation estimates themselves. (In doing so,
we focus more on the variance caused by the SQD, but standard errors of the fre-
quencies and correlation estimates as approximated through the simulation (see
figures C.1 and C.2 in the online supplementary materials) yield equivalent find-
ings.) Thus, for a frequency bp of a category c, we measure the variability of devi-
ations across all simulation runs from the average deviation through the standard
deviation of deviations (SDD) br bDðbpcÞ

n o
:

br bDðbpcÞ
n o

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S� 1

XS

s�1

fbD bpc;s

� �
� b�D bpcð Þg2

vuut : (7)

Correspondingly, br bDðbqi;jÞ
n o

is the SDD for a correlation bq of two variables i
and j:
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br bDðbqi;jÞ
n o

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

S� 1

XS

s�1

fbD bqi;j;s

� �
� b�D bqi;j

� �
g2

vuut : (8)

An SDD equal to zero means that imputed and complete data produce identical
estimates in each simulation run net of systematic bias, while larger SDDs cor-
respond to more uncertain estimates. Hence, a modularization technique that
obtains small biases and SDDs will yield high imputation quality. However,
since RM and DTM rely on a stochastic procedure, this additional source of
randomness may increase the estimates’ variability.

3.5 Evaluation Strategy

As we generate a huge number of imputation quality measures (297 for fre-
quencies and 3,675 for correlations), we need to condense the information dis-
played in our results. Therefore, we produce one summary graph each for
univariate and bivariate biases and SDDs. We combine this evaluation of gen-
eral patterns with additional analyses on specific sets of variable pairs to gain
more insight into potential differences between variable pairs.

We focus on two aspects. First, we provide additional analyses restricted to
variable pairs that were used in all their respective imputation models through-
out the simulation, because whether a variable is included in an imputation
model may decisively determine if its correlation to the imputed variable can
be estimated correctly.

Second, we perform separate analyses for correlations based on within-topic
and different-topic variable pairs. Depending on the modularization strategy,
this difference has important consequences. For instance, consider a correlation
of two variables within the same topic. With STM, the two variables are al-
ways in the same module, implying all cases are either pairwise observed or
unobserved. Therefore, the imputation can rely on many commonly observed
values, but we must impute both variables for all other cases. With DTM, how-
ever, the variables tend to end up in different modules. Consequently, there are
relatively few pairwise observed cases, but many cases where only one of both
variables must be imputed. Thus, two variables may have systematically differ-
ent bivariate missing data patterns depending on the modularization strategy.

4. RESULTS

4.1 Univariate Frequencies

Figure 2 displays the distribution of average Monte Carlo biases of univariate fre-
quencies for the imputed data for RM (first boxplot), STM (second boxplot), and
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DTM (third boxplot). The rug plots in the second section of figure 2 show the
complete distribution of biases for the three strategies (same order). Each data
point represents the average bias of one variable category over all simulation runs.

Many biases concentrate closely around zero. With RM and DTM 80
percent of biases range from �0:002 to þ0:002. However, some frequencies
have stronger biases. The largest biases are �0:006 and þ0:006 with RM and
�0:005 and þ0:005 with DTM. Biases are larger with STM, where 80 percent
of biases range from �0:004 to þ0:003 with outliers of up to 60:014.

Figure 3 summarizes the sizes of SDDs for the imputed frequencies with
boxplots and rugs in the same fashion as for biases. Again, each data point rep-
resents the SDD of a certain category’s frequency. Although small SDDs
would be preferable, unlike average biases they cannot be expected to ap-
proach zero. Like with the biases, the differences between RM and DTM are
negligible. At the same time, SDDs with STM tend to be somewhat larger than
with RM and DTM. For example, the largest SDD with STM is 0.011, while it
is 0.010 with RM and DTM.

4.2 Bivariate Correlations

Figure 4 displays the distribution of average Monte Carlo biases of bivariate
correlations for the imputed data for RM (first boxplot), STM (second box-
plot), and DTM (third boxplot). The rug plots show the complete distribution
of biases for the three strategies (same order). Each data point represents an av-
erage bias for one variable pair over all simulation runs.

With both RM and DTM 50 percent of average biases range from �0:006
to þ0:006, 90 percent from �0:017 to þ0:017, and the most extreme bias is

Figure 2. Average biases for 297 univariate frequencies according to (5), by mod-
ularization technique: Random modules (RM), single topic modules (STM), and
diverse topics modules (DTM). Based on a Monte Carlo simulation with 1,007 runs
on 2,000 cases (40 percent missing data) each.
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0:082. Note that these are absolute measures; thus some correlations are highly
biased. The outlier with a value of 0:082, for example, belongs to a correlation
that is �0:065 in the complete data and, on average, þ0:017 in the imputed
data. Hence, it is overestimated by 126 percent, entailing a sign change. The
second-most extreme bias is �0:081 (with RM) with a correlation of 0:206 in
the complete data and, on average, 0:125 in the imputed data, suggesting it
was underestimated by 39 percent. Furthermore, the rug plots also show some
average biases in the area closely around zero. STM has a different pattern: 50

Figure 3. Standard deviations of deviations (SDDs) of 297 univariate frequencies
according to (7), by modularization technique: Random modules (RM), single
topic modules (STM), and diverse topics modules (DTM). Based on a Monte Carlo
simulation with 1,007 runs on 2,000 cases (40 percent missing data) each.

Figure 4. Average biases of 3,675 bivariate correlations according to (6), by mod-
ularization technique: Random modules (RM), single topic modules (STM), and
diverse topics modules (DTM). Based on a Monte Carlo simulation with 1,007 runs
on 2,000 cases (40 percent missing data) each.

Split Questionnaire Designs for Online Surveys 17

D
ow

nloaded from
 https://academ

ic.oup.com
/jssam

/advance-article/doi/10.1093/jssam
/sm

ab055/6566401 by G
ESIS - Leibniz-Institut für Sozialw

issenschaften user on 01 June 2022



percent range from �0:007 to þ0:008 and 90 percent from �0:020 to þ0:020:
Furthermore, STM produces fewer extreme outliers larger than 60:05 (three
correlations) than RM (six correlations) and DTM (eight correlations).

Figure 5 summarizes the SDDs for Spearman correlations. STM tends to pro-
duce larger SDDs than RM and DTM, with boxes visibly shifted to the right.
Again, however, STM yields fewer extreme outliers. The largest SDD with
STM is 0.050, while the largest SDDs with RM and DTM are 0.074 and 0.075.

4.2.1 Analysis by topic. To further investigate effects of the modularization
on biases in bivariate correlations, figure 6 shows the distributions of average
biases, separately for correlations between variables of different topics (on the
left) and correlations between variables of the same topic (on the right).

For different-topic correlations 50 percent of average biases with RM and
DTM are between �0:008 and þ0:009. Biases with STM are larger with 50
percent between �0:010 and þ0:013. The strongest biases are 0:037 with RM
and DTM and 0:048 with STM.

For within-topic correlations 50 percent of average biases with RM and
DTM are between �0:015 and þ0:005 and 50 percent of biases with STM be-
tween �0:009 and þ0:007. STM leads to fewer extreme biases of larger than
60:05 (two with STM, five with RM, and six with DTM). Correspondingly,
the strongest biases with RM and DTM are 0.082 but only 0.055 with STM.

In addition, within-topic correlations seem to be underestimated. With RM,
66.7 percent of within-topic correlations have biases smaller than zero, 60.0
percent with STM and 68.0 percent with DTM.

Figure 7 shows the sizes of SDDs for different-topic and within-topic correla-
tions. For different-topic correlations, small SDDs are again less common with

Figure 5. Standard deviations of deviations (SDDs) of 3,675 bivariate correlations
according to (8), by modularization technique: Random modules (RM), single
topic modules (STM), and diverse topics modules (DTM). Based on a Monte Carlo
simulation with 1,007 runs on 2,000 cases (40 percent missing data) each.
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STM than with RM or DTM: With RM and DTM, the majority of SDDs are
smaller than 0.02, while with STM, the majority of SDDs are larger than 0.02.
For same-topic correlations, however, STM tends to produce smaller SDDs.

4.2.2 Subset by representation in the imputation models. Figure 8 displays
average biases exclusively for variable pairs included in each imputation model
throughout the simulation. Note that this subset covers only a small fraction

Figure 6. Average biases of 3,675 bivariate correlations according to (6), separat-
ing correlations of variables of different versus same topics, by modularization
technique: Random modules (RM), single topic modules (STM), and diverse
topics modules (DTM). Based on a Monte Carlo simulation with 1,007 runs on 2,000
cases (40 percent missing data) each.

Figure 7. Standard deviations of deviations (SDDs) of 3,675 bivariate correlations
according to (8), separating correlations of variables in different versus same
topics, by modularization technique: Random modules (RM), single topic mod-
ules (STM), and diverse topics modules (DTM). Based on a Monte Carlo simulation
with 1,007 runs on 2,000 cases (40 percent missing data) each.
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(72 correlations) of all correlations. These correlations are generally stronger,
as imputation models only included correlations stronger than 0.1. Even in this
subset, biases are still different from zero. This underscores the challenges of
SQDs for the imputation. Again, correlations in both graphs tend to be under-
estimated. For different-topic correlations, all correlations are underestimated
and 73.2 percent (RM and DTM) and 71.4 percent (STM) of same-topic corre-
lations are underestimated.

Fifty percent of biases of different-topic correlations are between�0:019 and
�0:014 with RM and DTM (STM: �0:026 and �0:013). The most extreme
biases are �0:025 (RM), �0:036 (STM), and �0:023 (DTM). For same-topic
correlations 50 percent of the biases are between�0:021 and þ0:005 with RM,
�0:012 and þ0:002 with STM, and �0:021 and þ0:004 with DTM. The most
extreme biases areþ0:055 (RM),�0:027 (STM), andþ0:061 (DTM).

SDDs are displayed in figure 9. STM clearly produces larger SDDs for
different-topic correlations ranging from 0.026 to 0.033 whereas SDDs with
RM range from 0.023 to 0.026 and SDDs with DTM from 0.022 to 0.026. For
within-topic correlations, STM leads to smaller SDDs than RM and DTM
ranging from 0.012 to 0.025, while SDDs with RM range from 0.019 to 0.042
and with DTM from 0.018 to 0.043.

4.3 Alternative Correlation Structures

In contrast to our expectations, DTM and RM generally performed similarly.
The lack of high correlations even within topics may have prevented such an
effect. To test this hypothesis, we applied two additional simulations (using the

Figure 8. Average biases of 72 bivariate correlations according to (6) for correla-
tions represented in every imputation model throughout the simulation, sepa-
rately for correlations of variables of different versus same topics, by
modularization technique: Random modules (RM), single topic modules (STM),
and diverse topics modules (DTM). Based on a Monte Carlo simulation with 1,007
runs on 2,000 cases (40 percent missing data) each.
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same procedure as with the main simulation) with synthetic data. Here, we
maintained the univariate distributions found in the GIP dataset but manipu-
lated correlation structures to assess whether DTM outperforms RM when
there is one highly correlated predictor within the same topic for each imputed
variable (see appendix D in the online supplementary materials for a descrip-
tion of the data-generating process). Scenario 1 (control condition) largely
adopts the original correlation structure but with maximum correlations of
j0:2j. Scenario 2 is the same except for one same-topic correlation per imputed
variable increased towards 60:9.

Results (see Figures D.1 through D.4 in the online supplementary materials)
indeed show somewhat smaller biases and SDDs with DTM than with RM for
scenario 2, while STM performs exceptionally poorly. However, even in this
extreme scenario DTM’s advantage over RM remains quite small. Scenario 1
largely replicates the findings from the main simulation study, with STM pro-
ducing somewhat larger biases and SDDs than RM and DTM, which perform
similarly.

5. SUMMARY

In this paper, we simulated the impact of different modularization strategies on
imputation quality in an SQD. By using real data from a probability-based on-
line survey, our goal was to test approaches to implementing SQDs under real-
istic conditions, characterized by a large number of variables with many

Figure 9. Standard deviations of deviations (SDDs) of 72 bivariate correlations
according to (8), for correlations represented in every imputation model through-
out the simulation, separately for correlations of variables in different versus
same topics, by modularization technique: Random modules (RM), single topic
modules (STM), and diverse topics modules (DTM). Based on a Monte Carlo simu-
lation with 1,007 runs on 2,000 cases (40 percent missing data) each.
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missing cases to be imputed using a wide range of relatively weakly correlated
predictor variables that are partially missing themselves.

The evidence suggests that univariate frequencies tend to be slightly biased.
More concerning are our results concerning bivariate relationships captured by
correlations. Although some biases are small, others are comparatively large.
This observation holds for all examined modularization strategies, among
within-topic correlations and different-topic correlations as well as for correla-
tions included in all imputation models.

Correlations tend to be attenuated. Most correlations that are positive in the
population data have biases smaller than zero (RM: 81.0 percent; STM: 81.0
percent; DTM: 81.5 percent). However, most correlations that are negative in
the population data have biases larger than zero (RM: 84.2 percent; STM: 86.1
percent; DTM: 83.9 percent). (Note that overestimating a truly negative corre-
lation implies a loss in correlation strength.)

Overall, we find that STM leads to larger biases and variability in estimates
than RM and DTM. This effect is most pronounced for frequencies but holds
for correlations in the overall pattern as well. However, STM performs better
than RM and DTM for same-topic correlations, suggesting that correlations
with more pairwise observed cases (here: correlations based on variables in the
same module) can be estimated with higher quality.

6. CONCLUSIONS

We draw several conclusions. First, modularization strategies affect imputation
quality. Overall, STM produced estimates with larger biases and variability
compared to RM and DTM. Thus, from a statistical perspective, modules
should be designed heterogeneously regarding topics. This concurs with the
notion that strongly correlated items should not be allocated to the same mod-
ule (Raghunathan and Grizzle 1995; R€assler et al. 2002), although STM may
be a solution when analyses are conducted within one topic only and thus do
not require imputation.

Second, results for RM and DTM hardly differed. As suggested by the addi-
tional synthetic-data simulations, DTM might outperform RM in different data
scenarios if, for instance, one correlation per imputed variable within the same
topic was considerably increased. However, even these effects were small, po-
tentially because the probability for some highly correlated variable pair to end
up in the same module is already quite small with RM.

However, DTM might also have insufficiently exploited the correlation
structure. To test this, we applied the modified-cluster-analysis technique for
modularization developed by R€assler et al. (2002) on our (original) population
data, a method that minimizes correlations within modules. The resulting aver-
age between-module correlation was 0.073 (compared to 0.072 with DTM and
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0.070 with RM). Thus, the added value of such data-driven methods may be
limited for settings with low variable correlations.

Third, differences between modularization strategies were detectable, but
average biases and variability seem to differ more between estimates for differ-
ent categories or variable pairs than between modularization strategies. This
suggests independent of modularization strategy, items in split modules should
be designed to be well-suited for imputation. Additionally, modularization
strategy might also affect response quality, as for example, topic switches
would be more frequent with DTM than with STM. Thus, we encourage future
research into response effects to complement our findings.

Finally, imputation remains a great challenge for SQD data. In particular,
Relationships between variables are not fully retained. This finding is compati-
ble with Bahrami et al. (2014), who report small downwards slants in regres-
sion estimates. Further restricting the number of predictors in the imputation
models may help more, but the more the model is restricted, the larger will be
the risk of underestimating relevant relationships. Thus, future research should
further investigate on how SQD data can be imputed in real-data contexts.

This study has some limitations. First, our findings may be sensitive to
changes in the data context. For example, surveys with more items could ag-
gravate problems with the complexity of imputation models.

Second, alternative imputation strategies could change the results. Although
we do not expect differences in the relative performance of modularization
strategies, future research should explore how different imputation strategies
generally affect imputation quality for SQDs.

Third, our research should be extended to testing the performance of multi-
variate models. This was beyond the scope of this paper. However, the biases
in bivariate correlations revealed by our simulation suggest that multivariate
coefficients may also be biased. Therefore, future research would benefit the
state of the art by running simulations of SQD on real data with models com-
monly found in the social science literature.

Fourth, our analyses ignored item nonresponse in the data caused by respon-
dent behavior. Again, for our purposes, this was out of scope. However, we
look forward to future research that investigates how missingness by SQD and
item nonresponse differentially affect analyses and may be best imputed.

Fifth, simulating reduced data (rather than implementing an SQD in a real
survey) does not allow to examine response behavior with different SQDs.
Again, we encourage future research on this.

We anticipate that with the continued growth in online surveys, the pressure
to shorten questionnaires with SQD will increase, too. Our study, however,
demonstrates the challenges to the imputation of SQD data. We show that the
choice of modularization strategy may alleviate some of these challenges.
Moreover, our findings stress the need for further exploration of how existing
SQD procedures may be enhanced to fit the reality of social data and thereby
ensure high data quality for future surveys.
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