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A B S T R A C T

During the population representative German Environmental Survey of Children and Adolescents (GerES V,
2014–2017) 2256 first-morning void urine samples from 3 to 17 years old children and adolescents were ana-
lysed for 21 metabolites of 11 different phthalates (di-methyl phthalate (DMP), di-ethyl phthalate (DEP), bu-
tylbenzyl phthalate (BBzP), di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-cyclohexyl phthalate
(DCHP), di-n-pentyl phthalate (DnPeP), di-(2-ethylhexyl) phthalate (DEHP), di-iso-nonyl phthalate (DiNP), di-
iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)).

Metabolites of DMP, DEP, BBzP, DiBP, DnBP, DEHP, DiNP and DiDP were found in 97%–100% of the par-
ticipants, DCHP and DnPeP in 6%, and DnOP in none of the urine samples. Geometric means (GM) were highest
for metabolites of DiBP (MiBP: 26.1 μg/L), DEP (MEP: 25.8 μg/L), DnBP (MnBP: 20.9 μg/L), and DEHP (cx-
MEPP: 11.9 μg/L). For all phthalates but DEP, GMs were consistently higher in the 3–5 years old children than in
the 14–17 years old adolescents. For DEHP, the age differences were most pronounced. All detectable phthalate
biomarker concentrations were positively associated with the levels of the respective phthalate in house dust.

In GerES V we found considerably lower phthalate biomarker levels than in the preceding GerES IV
(2003–2006). GMs of biomarker levels in GerES V were only 18% (BBzP), 23% (MnBP), 23% (DEHP), 29%
(MiBP) and 57% (DiNP) of those measured a decade earlier in GerES IV.

However, some children and adolescents still exceeded health-based guidance values in the current GerES V.
0.38% of the participants had levels of DnBP, 0.08% levels of DEHP and 0.007% levels of DiNP which were
higher than the respective health-based guidance values. Accordingly, for these persons an impact on health
cannot be excluded with sufficient certainty.

The ongoing and substantial exposure of vulnerable children and adolescents to many phthalates confirms the
need of a continued monitoring of established phthalates, whether regulated or not, as well as of potential
substitutes. With this biomonitoring approach we provide a picture of current individual and cumulative ex-
posure developments and body burdens to phthalates, thus providing support for timely and effective chemicals
policies and legislation.

1. Introduction

Phthalates (alkyl or aryl esters of phthalic acid) are synthetic or-
ganic chemicals with an annual consumption of several million tons
worldwide (Micromarket Monitor, 2015). They are used as plasticisers
in a variety of industrial applications, as well as in consumer goods and
personal care products (Calafat et al., 2015; Koch and Calafat, 2009;

Wang et al., 2019). Since phthalates are not chemically bound to the
materials to which they are added, they can be found as widespread
contaminants in indoor air, house dust and food. Subsequently, humans
are primarily exposed to phthalates by ingestion, inhalation and dermal
contact (Becker et al., 2009; CDC, 2009; Choi et al., 2017; Den Hond
et al., 2015; Heudorf et al., 2007; Koch et al., 2017; Salthammer et al.,
2018; Saravanabhavan et al., 2013).

https://doi.org/10.1016/j.ijheh.2019.113444
Received 24 September 2019; Received in revised form 17 December 2019; Accepted 20 December 2019

∗ Corresponding author. German Environment Agency (UBA), Corrensplatz 1, 14195, Berlin, Germany.
E-mail address: gerda.schwedler@uba.de (G. Schwedler).

International Journal of Hygiene and Environmental Health 225 (2020) 113444

1438-4639/ © 2020 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/14384639
https://www.elsevier.com/locate/ijheh
https://doi.org/10.1016/j.ijheh.2019.113444
https://doi.org/10.1016/j.ijheh.2019.113444
mailto:gerda.schwedler@uba.de
https://doi.org/10.1016/j.ijheh.2019.113444
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijheh.2019.113444&domain=pdf


Several phthalates have shown a variety of adverse health effects in
humans and in animals (Koch and Calafat, 2009; Mariana et al., 2016),
of which the most prominent are the endocrine disrupting and re-
protoxic effects (summarised by Benjamin et al., 2017; Heudorf et al.,
2007; Koch et al., 2017; Lioy et al., 2015; Radke et al., 2018). In ad-
dition, results of epidemiological studies also suggest associations be-
tween phthalate exposure and overweight, insulin resistance, asthma,
attention deficit and attention deficit hyperactivity disorder (Engel
et al., 2010; Franken et al., 2017; Hatch et al., 2010; Wang et al., 2015).

Because of their reproductive toxicity butylbenzyl phthalate (BBzP),
di-iso-butyl phthalate (DiBP), di-n-butyl phthalate (DnBP), di-(2-ethyl-
hexyl) phthalate (DEHP), di-cyclohexyl phthalate (DCHP), and di-n-
pentyl phthalate (DnPeP) were classified as substances of very high
concern (SVHC) and therefore included in the candidate list of SVHC for
authorisation under the European chemical regulation REACH (regis-
tration, evaluation, authorisation and restriction of chemicals) (Annex
XIV, EC, 1907/2006) (EU, 2006). DEHP, BBzP, DiBP, DnBP and in fu-
ture DnPeP must not be used within the European Union (EU) without
authorisation. Further restrictions for these substances will be im-
plemented in July 2020 (EU, 2018). In addition, di-iso-nonyl phthalate
(DiNP), di-iso-decyl phthalate (DiDP) and di-n-octyl phthalate (DnOP)
are also restricted to different degrees in children's toys and childcare
articles (Annex XVII EC, 1907/2006) (EU, 2006). Several phthalates are
also restricted in cosmetics products (EC/1223/2009) (EU, 2009) and
in materials intended to come into contact with food (EC/10/2011)
(EU, 2011). Similarly, use restrictions, authorisation obligations, and
bans were enacted also by the United States (CPSC, 2014) and Canada
(Health Canada, 2016).

First human biomonitoring (HBM) studies on phthalates revealed
that the general population is ubiquitously and simultaneously exposed
to several phthalates (Blount et al., 2000; Koch et al., 2003b; Silva et al.,
2004). Since then, phthalates are routinely determined in many HBM
studies and national HBM programmes for example in the United States
National Health and Nutrition Examination Survey (NHANES) (Calafat,
2012; CDC, 2019), the Canadian Health Measures Survey (CHMS)
(Haines et al., 2017), the Korean National Environmental Health Survey
(KoNEHS) (Choi et al., 2017), the German Environment Survey (GerES)
(Kolossa-Gehring et al., 2012b), and the European DEMOCOPHES
Study (Demonstration of a Study to Coordinate and Perform Human
Biomonitoring on an European Scale) (Den Hond et al., 2015). The
DEMOCOPHES succeeding European Human Biomonitoring Initiative
HBM4EU (www.hbm4eu.eu), which is coordinating human biomoni-
toring in Europe in order to support policy making (Ganzleben et al.,

2017), identified phthalates as substances of priority interest for which
various policy relevant questions have to be answered by tailored re-
search.

In Germany, urinary phthalate measurements have been carried out
in local studies (Kasper-Sonnenberg et al., 2012, 2014; Koch et al.,
2011) as well as in the German Environmental Survey on Children,
GerES IV (Becker et al., 2004, 2009; Koch et al., 2007a; Schulz et al.,
2012; Wittassek et al., 2007) and the German Environmental Specimen
Bank (ESB) (Koch et al., 2017; Kolossa-Gehring et al., 2012a).

GerES is part of a health-related environmental surveillance system
in Germany (Kolossa-Gehring et al., 2012a, 2012b). The main instru-
ments of GerES are HBM, ambient monitoring of drinking water, house
dust, indoor air, noise, and the collection of information on exposure
via questionnaires. The target population of GerES V (German En-
vironmental Survey on Children and Adolescents), carried out between
2014 and 2017, were participants aged 3–17 years (Schulz et al., 2017).

In the present paper we describe the urinary levels of 21 phthalate
metabolites of 11 parent phthalates in children and adolescents in
Germany in a population representative sample, and the associations
with some potential predictors of exposure. We compare the results
with those of the preceding GerES IV. Our data are used as a basis to
calculate and update reference values for these chemicals in Germany.
The results also contribute to the overarching goal of HBM4EU to gain
current HBM data on the exposure of the European population to
chemicals of concern in order to enhance chemical safety.

2. Material and methods

2.1. Study population and sample collection

From January 2015 to June 2017, a population representative
sample was recruited in GerES V, which was conducted in close co-
operation with the German Health Interview and Examination Survey
for Children and Adolescents (KiGGS Wave 2) of the Robert Koch-
Institute (RKI) (Mauz et al., 2017). RKI recruited a population re-
presentative sample in 167 sampling locations in Germany (Kamtsiuris
et al., 2007; Kurth et al., 2008). Out of these, the 3–17 years old GerES
V participants were randomly selected as a subsample in the course of
the KiGGS Wave 2 examination (Mauz et al., 2017).

In GerES V various environmental contaminants were measured in
blood, morning urine, tap water, indoor air and house dust samples.
Additionally, questionnaires were used to obtain information on ex-
posure relevant conditions, habits, and behaviors of the participants
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CAS Chemical Abstract Service
CHMS Canadian Health Measures Survey
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DEMOCOPHES Demonstration of a Study to Coordinate and Perform

Human Biomonitoring on a European Scale
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GerES German Environmental Survey
GerES IV German Environmental Survey on Children
GerES V German Environmental Survey on Children and

Adolescents 2014–2017
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G-EQUAS German External Quality Assessment Scheme
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(Schulz et al., 2017).
A visit at the homes of the participants was the essential component

of the GerES V fieldwork. Kantar Health Munich conducted the field-
work on behalf of the German Environment Agency (UBA). During the
home visits, the fieldworkers inter alia received first void urine, col-
lected dust bags in a subsample of the participants, and conducted in-
terviews either with the participants or their parents.

The first void urine samples were taken either in polypropylene
vessels or in narrow-necked polyethylene containers, depending on sex
and age of the participant. The samples were kept cold, aliquoted in
polypropylene tubes, frozen at the same day, and kept frozen (−20 °C)
until analysis. None of the pretested containers had detectable levels of
the investigated phthalate metabolites. Samples were analysed in a
randomised sequence to avoid observer bias.

The project was approved by the Ethics Committee of the Berlin
Chamber of Physicians (Eth-14/14) and the Federal Officer for Data
Protection and Freedom of Information (III-425/009#0018).

2.2. Chemical analysis

Analysis of phthalate metabolites in urine was performed by the
Institute for Prevention and Occupational Medicine of the German
Social Accident Insurance at the Ruhr-University Bochum, Germany. It
was executed by on-line high performance liquid chromatography
coupled to tandem mass spectrometry, using internal isotope-labelled
standards according to previously published methods (Koch et al.,
2003a, 2007b, 2012, 2017; Preuss et al., 2005). Creatinine of the urine
samples was quantified by the Analytisch-Biologisches Forschungslabor
München, Germany, using the Jaffé method (Blaszkiewicz and
Liesenhoff-Henze, 2010).

Internal quality control measures for phthalate metabolites were
performed throughout the entire period by analysing control urines
with known concentrations. These quality control samples were always
measured within the±3σ range. Additionally, blinded repeated mea-
surements of samples in different analytical cycles always resulted in
concentrations within the range of the respective confidence intervals
and no metabolite was ever determined in field blanks. The quality of
determined creatinine was confirmed by similar internal quality control
measures. External quality assurance was confirmed within regular,
biannual participation in ring trial program of the German External
Quality Assessment Scheme (G-EQUAS) for creatinine, for the meta-
bolites of DEHP, as well as for MnBP, MiBP and MBzP. For the other

analytes no external quality assurance was offered. The limits of
quantification (LOQ), and the Chemical Abstract Service (CAS) num-
bers of the measured phthalate metabolites are listed in Table 1.

For phthalate analyses in house dust, the 63 μm dust fraction was
analysed with gas or liquid chromatography/mass spectrometry based
on Nagorka et al. (2011). The Fraunhofer Institute for Process En-
gineering and Packaging IVV, Freising, Germany seived and extracted
the dust samples either with toluene for gas chromatography or with
acetonitrile for liquid chromatography. Quality controls were carried
out with inter-laboratory comparisons and constant cross-control
measurements of DEHP with gas and liquid chromatography.

2.3. Statistical analysis

In order to adjust the collected sample of GerES V with data from
the official demographic statistics of the German population from 2013
to 2015 (Microzensus, 2019), weighting variables based on the key
variables age, sex, community size and region were calculated by the
RKI (Hoffmann et al., 2018). Subsequently, weighted samples were
used in all statistical evaluations whereby the sample and subsample
characteristics were calculated from the respective case weighted
samples.

Characteristics of the urinary phthalate metabolite distributions
were calculated (sample size (N), percentage above the LOQ of the
respective phthalate metabolite as listed in Table 1 (%>LOQ), geo-
metric mean (GM), confidence intervals (CI) and percentiles (P)). Ad-
ditionally, weight sums of metabolites were built for the individual
phthalates, e.g. ∑(MiBP + OH-MiBP) for DiBP and ∑(MEHP + OH-
MEHP + oxo-MEHP + cx-MEPP) for DEHP. Volume-based as well as
creatinine-adjusted concentrations were presented. Concentrations
below the LOQ of the respective analytical method were assigned a
value equal to half of the LOQ for calculation purposes. Due to the
skewed (approximately log-normal) distribution of the metabolite
concentrations, GM is a parameter more suitable for assessment than
the arithmetic mean.

In the basic evaluation the urinary biomarker levels were described
for the total sample as well as for the standard stratification variables:
sex, age group, community size, socioeconomic status, region of re-
sidence in former East or West Germany, and migration background. In
addition, urinary levels for subgroups of substance-specific variables
were also described, which are suspected either by scientific knowledge
or by biological plausibility to be associated with the metabolite

Table 1
Phthalates measured in GerES V. Parent substances, CAS numbers, metabolites measured, and the respective limits of quantification (LOQ).

Phthalate Name of parent substance CAS Number Metabolite Name of metabolite LOQ (μg/L)

DMP Di-methyl phthalate 131-11-3 MMP Mono-methyl phthalate 1.0
DEP Di-ethyl phthalate 84-66-2 MEP Mono-ethyl phthalate 0.5
BBzP Butylbenzyl phthalate 85-68-7 MBzP Mono-benzyl phthalate 0.2
DiBP Di-iso-butyl phthalate 84-69-5 MiBP Mono-iso-butyl phthalate 1.0

OH-MiBP Mono-hydroxy-iso-butyl phthalate 0.25
DnBP Di-n-butyl phthalate 84-74-2 MnBP Mono-n-butyl phthalate 1.0

OH–MnBP Mono-hydroxy-n-butyl phthalate 0.25
DCHP Di-cyclohexyl phthalate 84-61-7 MCHP Mono-cyclohexyl phthalate 0.2
DnPeP Di-n-pentyl phthalate 131-18-0 MnPeP Mono-n-pentyl phthalate 0.2
DEHP Di-(2-ethylhexyl) phthalate 117-81-7 MEHP Mono(2-ethylhexyl) phthalate 0.5

OH-MEHP Mono(2-ethyl-5-hydroxyhexyl) phthalate 0.2
oxo-MEHP Mono(2-ethyl-5-oxohexyl) phthalate 0.2
cx-MEPP Mono(2-ethyl-5-carboxypentyl) phthalate 0.2

DiNP Di-iso-nonyl phthalate 28553-12-0; OH-MiNP Mono(4-methyl-7-hydroxyoctyl) phthalate 0.2
68515-48-0 oxo-MiNP Mono(4-methyl-7-oxooctyl) phthalate 0.2

cx-MiNP Mono(4-methyl-7-carboxyheptyl) phthalate 0.2
DiDP Di-iso-decyl phthalate 26761-40-0; OH-MiDP Mono-hydroxy-isodecyl phthalate 0.2

68515-49-1 oxo-MiDP Mono-oxo-iso-decyl phthalate 0.2
cx-MiDP Mono(2,7-methyl-7carboxy-heptyl) phthalate 0.2

DnOP Di-n-octyl phthalate 117-84-0 MnOP Mono-n-octyl phthalate 0.2
Various MCPPa Mono(3-carboxypropyl) phthalate 0.5

a Metabolite of several phthalates (currently known: DnBP, DnPeP, DnOP, DiNP, DiDP).
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concentrations: carpets with or without plastic backing or underlay,
polyvinylchloride (PVC) flooring, wearing of plastic or rubber shoes
without socks, habit of chewing on plastic objects, consumption of fast
food or ready meals before urine sampling, and concentration of the
specific phthalate in the house dust. Excepting phthalate concentration
in house dust, all stratification variables were collected by ques-
tionnaires. Phthalate levels in house dust were chemically quantified.
Bivariate statistical analyses were performed for each variable selected
for stratification and when at least 50% of the measured concentrations
were equal or above LOQ. Thereby differences of the GM of the sub-
groups were tested for significance by one-way ANOVA, based on log-
transformed data. Significance levels of p ≤ 0.05 (*), p ≤ 0.01 (**),
and p ≤ 0.001 (***) were marked for any differences within the ca-
tegories of the stratification variables.

No significance tests were applied for MCHP, MnPeP and MnOP as
they were only detected in very low frequency.

All statistical analyses were performed with the SPSS statistical
package (versions 20 and 25).

3. Results and discussion

In GerES V, 2294 children and adolescents participated with com-
plete data, amounting to 75.7% of the eligible persons. From those,
2256 provided sufficient urine volume to determine phthalate meta-
bolite concentrations. Due to chromatographic interferences, some
phthalate metabolites could not be determined quantitatively in all
samples, resulting in 2247–2256 datasets available for individual
phthalate biomarkers. The characteristics of the weighted study popu-
lation as well as the distribution of several variables, which might be
associated with the exposure to phthalates, are shown in Table 2. As the
study population was adjusted for the key variables age, sex, commu-
nity size and region by weighting variables, it can be concluded that the
phthalate metabolites were determined in samples representing the
3–17 years old population in Germany.

3.1. Urinary concentrations

Table 3 summarises descriptive statistics for urinary levels of the 21
phthalate metabolites measured. We found metabolites of DMP, DEP,
BBzP, DiBP, DnBP, DEHP, DiNP and DiDP at levels > LOQ in 97–100%
of the participants’ urine samples. In contrast, only 6% of the partici-
pants had DCHP and DnPeP and none had DnOP biomarker con-
centrations > LOQ. The simultaneous detection of DEP, BBzP, DiBP,
DnBP, DEHP, DiNP metabolites in almost all urine samples are in line
with the results in GerES IV, ESB, NHANES, CHMS, KoNEHS and
DEMOCOPHES, where metabolites of these phthalates, when analysed,
were also found in almost all urine samples (Becker et al., 2009; Choi
et al., 2017; Den Hond et al., 2015; Haines et al., 2017; Koch et al.,
2017; Zota et al., 2014). The only exceptions were DMP and DiNP,
which were detected in CHMS (2007–2011) less frequently (DMP) or
even not at all (DiNP) (Haines et al., 2017). However, this may be due
to the higher limits of detection in CHMS.

The highest urinary metabolite concentration was found for MiBP
with a GM of 26.1 μg/L urine, followed by MEP (GM of 25.8 μg/L
urine), MnBP (GM of 20.9 μg/L urine) and cx-MEPP (GM of 11.9 μg/L
urine). Lower concentrations were found for OH-MiNP (GM of 6.9 μg/L
urine), MMP (GM of 6.4 μg/L urine), MBzP (GM of 3.1 μg/L urine), and
OH-MiDP (GM of 1.5 μg/L urine). Taking the sums of biomarkers for
each phthalate, the ranking order of measurable GMs was
DiBP > DEHP > DEP > DnBP > DiNP > DMP > DiDP > BBzP.
A direct comparison between urinary metabolite levels in terms of ex-
posure to the respective phthalate however is not possible, as urinary
excretion fractions differ considerably between the different phthalates
and their metabolites. To extrapolate exposure from urinary con-
centration, urinary metabolite conversion factors, daily urine volume
and other anthropometric factors are necessary (Koch et al., 2017).

Table 2
Characterization of the weighted study population for phthalates in GerES V
and frequency of various environmental factors, suspected to be related with
phthalate exposure.

N (%)

Children and adolescent 2256
Sex
boys 1164 (52)
girls 1092 (48)
Age group
3–5 years 402 (18)
6–10 years 736 (33)
11–13 years 457 (20)
14–17 years 662 (29)
Community size
<50,000 inhabitants 593 (26)
50,000 - ≤100,000 inhabitants 143 (6)
≥100,000 inhabitants 1520 (67)
Socio-economic statusa

low 465 (21)
medium 1320 (58)
high 405 (18)
Region of residence
West Germany (including West Berlin) 1898 (84)
East Germany (including East Berlin) 358 (16)
Migration backgroundb

no migration background 1561 (69)
one-sided migration backgroundc 230 (10)
two-sided migration backgroundd 416 (18)
Carpets, carpet tiles, rugs e

with plastic underlay 912 (40)
without underlay 1115 (49)
PVC flooring
yes 588 (26)
no 1665 (74)
Wearing of plastic or rubber shoes without socks in summer
yes 1119 (50)
no 1137 (50)
Habit of chewing on plastic objects
yes 570 (25)
no 1684 (75)
Consumption of fast food or convenience food before urine sampling
1 day before 506 (22)
2 days before 332 (15)
more than 2 days/never before 1400 (62)
Phthalate level in house dust
categorized as low, medium, high f various g

Note: Due to rounding to nearest whole numbers, the sum of stratified sample
sizes not always exactly corresponds to the total sample size. Further differ-
ences are due to missing values in stratification criteria.

a Socioeconomic status was generated from the dimensions education, oc-
cupation and income as provided by the parents. Low, middle or high socio-
economic status were classified as the first (low), second to fourth (medium) or
fifth (high) quintile of an index, built by the equally weighted subscales of
education, occupation and income (Lampert et al., 2018).

b Migration background was based on the country of birth of the child or
adolescent and the parents and of the parents' nationality.

c One-sided migration background: defined as having one parent not born in
Germany or without German citizenship.

d Two-sided migration background: includes children and adolescents who
themselves migrated to Germany and have at least one parent who was not born
in Germany. Children and adolescents belong also to this group, when both
parents were born in a country other than Germany or when they are non-
German nationals (Frank et al., 2018).

e Participants who reported to have no carpets at all were filtered (N = 229).
f Categories of low, medium and high phthalate levels were chosen to

comprise approximately one third of the participants each. The limits for the
medium categories were for: DMP: 0.41–0.48 μg/g, DEP: 0.47–0.83 μg/g, BBzP:
1.67–5.10 μg/g, DiBP: 5.7–11.3 μg/g, DnBP: 5.1–10.5 μg/g, DCHP 1.4–2.7 μg/
g, DEHP 108–212 μg/g, DiNP: 135–402 μg/g, DiDP: 19.5–41.0 μg/g. Low levels
were below, high levels were above these values for the respective phthalate.

g Phthalate levels in house dust were determined in a subsample of 639–646
participants. For N for the specific phthalate see Table 4 and Supplementary
Tables 1–50.
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The urinary concentrations of phthalate metabolites were also
evaluated for the subgroups illustrated in Table 2. In Table 4 we ex-
emplarily show the distributions and statistical parameters for the
phthalate metabolite MiBP. The tables for all other metabolites and
metabolite sums are compiled in Supplementary Tables 1–26 in μg/L
urine and in Supplementary Tables 27–50 in μg/g creatinine.

The most striking result of the bivariate analyses was the age de-
pendence of urinary phthalate metabolite concentration. The GMs of
MBzP and the sums of DiBP, DnBP, DEHP DiNP and DiDP urinary
metabolite levels, constantly decreased with age, being highest for the
3–5 years old and lowest for the 14–17 years old participants. MEP
showed an opposite age effect, the GMs of MEP levels increased with
age. As MCHP, MnPeP and MnOP were only detected sporadically, no
subgroup differences became apparent. The GMs of phthalate urine
levels of 3–5 years old children and 14–17 years old adolescents are
illustrated in Fig. 1. Excepting DEP (i.e. MEP), the proportions of GMs
of the 3–5 compared to the 14–17 years old participants varied between
about 1.3-fold for DMP to about 1.9-fold for DEHP.

No consistent picture can be drawn from the additional socio-
economic and geographic variables suspected to be associated with
phthalate exposure. Sex differences were found for some phthalate
metabolites, mainly when comparing creatinine-adjusted levels
(Supplementary Tables 27–50). Whereas boys had a higher GM for
MMP, higher GMs for girls were found for MEP, MnBP, DiNP and DiDP
metabolites. Socioeconomic status (SES) was associated with MMP,
MEP, MBzP as well as with DiBP, DEHP, and DiNP metabolite levels in
urine (see Supplementary Tables 1-3, 5, 16, 20). Whereas GMs of MMP
increased with increasing SES, GMs of MEP, MBzP, DiBP, DEHP, and
DiNP metabolites were conversely associated and declined with in-
creasing SES. Migration background was associated with higher GMs of

MEP, DEHP, and DiNP metabolite concentrations (Supplementary
Tables 2, 16, 20). For MBzP GMs of urinary levels also differed with
community size (Supplementary Table 3), being smaller in larger
communities. Participants living in former East Germany had higher
GMs of MMP, DiBP, and DnBP metabolite levels than participants living
in former West Germany (Supplementary Tables 1, 5, 8).

When considering variables of living environment and habits, high
phthalate concentrations in house dust were associated with the re-
spective phthalate metabolite levels in urine (see Fig. 2 and
Supplementary Tables 1-3, 5, 8, 16, 20, 24). With high phthalate con-
centration in house dust, the participants had 1.6- to 2.0-fold higher
GMs of urinary MMP, MEP, MBzP, and DiBP metabolites and 1.2- to
1.3-fold higher GMs of urinary DEHP, DiNP, and DiDP metabolites than
with low concentrations of the respective phthalate in house dust.
Moreover, PVC flooring and carpets with plastic underlay were mostly
positively associated with phthalate concentrations, namely with MMP,
MBzP, DnBP, DEHP, and DiNP metabolites, either volume- or creati-
nine-adjusted or both (Supplementary Tables 1, 3, 8, 16, 20, 27, 29, 35,
41, 45). Levels of DiDP metabolites were only associated with plastic
carpet underlays, but not with PVC flooring (see Supplementary Tables
24 and 49). MEP levels were not associated with PVC flooring, which is
probably due to its main use in personal care products. Surprisingly,
MEP levels were positively associated with plastic underlays
(Supplementary Tables 2 and 28). For many phthalate concentrations,
positive associations were also found with the habit of chewing on
plastic objects, the consumption of fast or convenience food, and
wearing of plastic or rubber shoes. These associations, however, were
not coherent and could not be substantiated when adjusted for age.

The age dependency of urinary phthalate metabolite levels as re-
vealed in GerES V can be found in many studies (for example Becker

Table 3
Phthalates measured in GerES V. Frequency of quantification, percentiles, maximum, arithmetic mean and geometric mean with 95 %-confidence interval of urinary
metabolite levels (in μg/L) of the GerES V participants.

Phthalate Metabolite N % ≥ LOQ P10 P50 P90 P95 GM 95 %CI GM

DMP MMP 2256 97 1.9 5.9 23.1 43.2 6.4 6.1–6.7

DEP MEP 2256 100 7.0 23.1 113 219 25.8 24.6–27.0

BBzP MBzP 2256 99 0.9 2.9 11.2 18.7 3.1 2.9 - 3.2

DiBP MiBP 2256 100 9.4 26.2 75.0 110 26.1 25.2–27.0
OH-MiBP 2256 100 3.1 8.8 26.9 37.5 8.9 8.6–9.3
∑ MiBP + OH-MiBP 12.7 35.4 100 150 35.3 34.1–36.5

DnBP MnBP 2256 100 8.3 21.0 53.5 69.6 20.9 20.3–21.6
OH–MnBP 2256 99 0.8 2.5 6.3 8.5 2.4 2.3 - 2.5
∑ MnBP + OH–MnBP 9.2 23.4 59.6 77.0 23.4 22.7–24.2

DCHP MCHP 2256 6 < LOQ < LOQ < LOQ 0.3 < LOQ

DnPeP MnPeP 2255 6 < LOQ < LOQ < LOQ 0.2 < LOQ

DEHP MEHP 2256 86 < LOQ 1.5 4.7 6.7 1.4 1.4 - 1.5
OH-MEHP 2256 100 4.3 11.1 29.1 40.9 11.0 10.6–11.4
oxo-MEHP 2253 100 2.7 7.7 21.5 29.0 7.6 7.3–7.8
cx-MEPP 2256 100 4.4 12.0 34.0 46.1 11.9 11.5–12.3
∑ OH- + oxo-MEHP 2253 7.1 18.8 49.0 70.2 18.6 18.0–19.3
∑ MEHP + OH-MEHP + oxo-MEHP + cx-MEPP 12.4 32.4 86.9 123 32.5 31.5–33.6

DiNP OH-MiNP 2249 100 2.4 6.9 19.7 30.2 6.9 6.7–7.2
oxo-MiNP 2256 99 0.9 2.7 8.6 14.2 2.8 2.7 - 2.9
cx-MiNP 2250 100 1.9 5.4 19.0 30.2 5.9 5.6–6.1
∑ OH-MiNP + oxo-MiNP + cx-MiNP 5.5 15.7 47.1 71.9 16.0 15.4–16.6

DiDP OH-MiDP 2256 98 0.5 1.5 4.9 7.5 1.5 1.5 - 1.6
oxo-MiDP 2256 88 < LOQ 0.7 2.3 3.6 0.6 0.6 - 0.7
cx-MiDP 2256 97 0.3 0.9 2.6 4.2 0.9 0.9 - 0.9
∑ OH-MiDP + oxo-MiDP + cx-MiDP 1.0 3.1 9.6 16.0 3.2 3.1–3.3

DnOP MnOP 2256 0 < LOQ < LOQ < LOQ < LOQ < LOQ

Various MCPP 2256 92 0.5 1.4 4.1 6.4 1.5 1.4 - 1.5

Abbreviations: N: sample size, LOQ: limit of quantification, P10, P50, P90. P95: percentiles, GM: geometric mean, 95% CI GM: 95% confidence interval for GM.
Values below LOQ were set LOQ/2 for calculation purposes. No 95% CI GM is given if GM < LOQ.
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et al., 2009; Correia-Sa et al., 2018; Gari et al., 2019; Kasper-
Sonnenberg et al., 2014; Wittassek et al., 2007). Likewise, higher
phthalate metabolite levels are reported for children when directly
compared to adults, the only exception being MEP (CDC, 2019; Den
Hond et al., 2015; Schwedler et al., 2017; Zota et al., 2014). This is
probably due to a higher food consumption related to body weight of
young children, but also to other characteristics such as mouthing ha-
bits, or increased dust intake by playing near the ground. The clearly
higher burden of young children compared to adolescents and adults
and the simultaneous presence of the various phthalate metabolites
must be considered when assessing exposure burden.

There are no consistent results for the exposure factors sex and SES
in the literature. Only MEP urinary levels were constantly higher in
girls than in boys (CDC, 2019; Correia-Sa et al., 2018; Gari et al., 2019;
Saravanabhavan et al., 2013). Associations of higher SES with lower
urinary levels of MBzP were also found by Gari et al. (2019) in a Polish
study, and by Kobrosly et al. (2012) in the NHANES population of
2001–2008. Associations of SES with other phthalate metabolite levels
were inconsistent.

House dust levels of the respective phthalate were not associated

with the urinary phthalate metabolite concentrations in earlier studies
(Becker et al., 2004). However, in more recent studies, school dust
(Larsson et al., 2017) and PVC materials at home (Den Hond et al.,
2015; Koppen et al., 2019; Schwedler et al., 2017) indeed were asso-
ciated with urinary phthalate metabolite concentrations, underlining
the relevance of the exposure pathways via house dust and indoor air
for several phthalates.

A strength of the study is the robust sampling design and the ap-
plication of sampling weights in the analyses ensuring that the results
are representative of the respective population. However, the single
urine sample per participant and the cross-sectional study design limits
the analyses of associations of urinary phthalate levels and potential
predictors of exposure.

3.2. Comparison with results of GerES IV

Phthalates were also measured in GerES IV in 3–14 years old chil-
dren. This allows comparison of the average urinary phthalate meta-
bolite concentrations between GerES V and GerES IV for this age group
(Fig. 3). The GMs of all phthalate metabolite levels measured in both

Table 4
Urinary levels of MiBP in subpopulations of the GerES V participants in μg/L urine.

N %>LOQ P10 P50 P90 P95 GM 95% CI GM

Total 2256 100 9.4 26.2 75.0 110 26.1 25.2–27.0
Sex
boys 1164 100 9.5 26.2 83.6 115 26.3 25.0–27.6
girls 1092 100 9.1 25.9 72.9 104 25.9 24.6–27.1
Age group***
3–5 years 402 100 10.9 29.5 93.7 143 30.4 27.9–33.2
6–10 years 736 100 10.8 28.8 72.5 122 28.9 27.3–30.5
11–13 years 457 100 8.9 22.7 74.4 114 23.9 22.1–25.8
14–17 years 662 100 8.3 22.2 66.0 88.1 22.5 21.2–24.0
Community size (inhabitants)*
<50,000 593 100 9.7 24.5 65.4 100 25.1 23.5–26.7
50,000 - < 100,000 143 100 10.8 31.8 95.1 231 31.4 27.1–36.4
≥100,000 1520 100 9.1 26.2 77.6 110 26.0 24.9–27.1
Socioeconomic status*
low 465 100 9.5 29.2 75.4 114 28.1 26.1–30.3
medium 1320 100 9.1 25.0 79.3 113 26.0 24.8–27.2
high 405 100 9.7 23.7 62.5 84.7 23.8 22.1–25.6
Region of residence**
West Germany (including West Berlin) 1898 100 9.1 25.4 74.6 110 25.4 24.5–26.4
East Germany (including East Berlin) 358 100 11.5 29.7 79.0 120 29.6 27.2–32.3
Migration background***
no migration background 1561 100 9.4 24.9 70.4 100 25.2 24.2–26.3
one-sided migration background 230 100 7.9 27.9 66.2 86.1 25.1 22.7–27.7
two-sided migration background 416 100 11.2 29.9 110 136 30.1 27.5–33.0
Carpets, carpet tiles, rugs
with plastic underlay 912 100 9.5 27.7 80.6 113 27.0 25.6–28.6
without plastic underlay 1115 100 9.8 26.1 74.6 108 26.3 25.0–27.6
PVC flooring***
yes 588 100 11.4 29.6 101 141 31.4 29.3–33.7
no 1665 100 9.1 24.4 69.5 95.6 24.4 23.5–25.4
Wearing of plastic or rubber shoes without socks in summer***
yes 1119 100 8.5 24.9 69.1 107 24.6 23.4–25.8
no 1137 100 9.7 27.0 77.5 113 27.6 26.3–29.0
Habit of chewing on plastic objects*
yes 570 100 9.7 27.8 82.8 129 28.1 26.2–30.2
no 1684 100 9.4 25.2 71.6 105 25.4 24.4–26.4
Consumption of fast food or convenience food before urine sampling
1 day before 506 100 9.5 25.6 69.4 127 25.3 23.5–27.2
2 days before 332 100 8.5 28.1 68.2 110 26.7 24.4–29.1
more than 2 days/never before 1400 100 9.4 25.9 78.7 109 26.3 25.2–27.5
House dust levels of DiBP***
low 188 100 7.1 16.4 43.5 58.5 17.2 15.6–19.1
medium 193 100 12.2 25.9 69.2 105 26.9 24.3–29.8
high 248 100 13.2 32.1 84.5 109 32.4 29.6–35.6

For abbreviations see Table 3. For description of subpopulations see Table 2. Variant sample sizes and sums of sample sizes are due to rounding strategy, filtering and
missing values.
Significance test: One-way ANOVA (differences of GM). *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001. Significance levels mean differences within any of the categories of the
respective variable.
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surveys were considerably lower in samples collected in the years
2015–2017 (GerES V) than in the years 2003–2006 (GerES IV). The
highest difference was observed for MBzP with a GM in GerES V being
only 18% of that in GerES IV. GMs of MiBP, MnBP, and DEHP con-
centrations amounted to only 29%, 23%, and 23% of the GMs found in
GerES IV. The lowest difference was found for DiNP with a GM
amounting 57% of the GM calculated for GerES IV.

Reduced urinary phthalate concentrations over the last decade were
also reported for the German ESB (Koch et al., 2017), NHANES (Calafat
et al., 2015; Reyes and Price, 2018b; Zota et al., 2014) and CHMS
(Haines et al., 2017). The reduction may be assigned to bans and re-
strictions in children's toys and childcare articles, in cosmetic products
and materials intended to come in contact with food (summarised by
Koch et al., 2017), and also to increasing consumer awareness towards
these substances (Calafat et al., 2015). The relatively slim reduction of

DiNP, a phthalate introduced in the market as a substitute for DEHP
may extend in the future, as it has been restricted just recently. Ad-
ditionally, current market changes and substituting chemicals must be
considered. Newly developed plasticisers like DPHP (di-(2-pro-
pylheptyl) phhtalate), DEHTP (di-(2-ethylhexyl) terephthalate), and
Hexamoll® DINCH (di-(iso-nonyl)-cyclohexane-1,2-dicarboxylate) were
introduced into the market and have seen a constant increase of pro-
duction volume and applications. Meanwhile results of the German ESB
revealed an omnipresent detection of DINCH and DEHTP in urine
samples of the German ESB study population (Kasper-Sonnenberg et al.,
2019; Lessmann et al., 2019) and a detection of DPHP in one of five ESB
participants (Schmidtkunz et al., 2019). DINCH and DEHTP have also
been detected in urine samples of the population of the United States in
substantial amounts (CDC, 2019; Silva et al., 2013; Silva et al., 2019).
DINCH and DPHP measurements in children and adolescents in GerES V
revealed that DINCH has reached the bodies of all and DPHP of about
62% of the children and adolescents in Germany at quantifiable levels
(Schwedler et al., 2019). The favourable result of reduced phthalate
levels in children and adolescents in Germany therefore is contrasted by
a clear and extensive exposure to supplementary chemicals. In sum-
mary, to evaluate the total body burden with phthalates and plasti-
cisers, not only the reduction of exposure to established phthalates,
whether restricted or not, but also the emerging exposure to substitutes
must be considered.

3.3. Comparison with other surveys

In Table 5 we compare phthalate metabolite levels determined in
GerES V with biomonitoring data of HBM studies of a similar time
period and with participants of similar age. Additionally, data of 20–29
years old adults of the German ESB from 2015 (Koch et al., 2017) were
included. Compared to the German ESB, the children and adolescents of
GerES V throughout had higher median phthalate metabolites levels.

Compared to 6–11 years old children from NHANES (CDC, 2019),
6–10 years old GerES V participants had similar GMs of MEP and DEHP,
higher GMs of DnBP, and lower GMs of MBzP, cx-MiNP, and cx-MiDP
levels. The same differences were found in GerES IV (Becker et al.,
2009) and may reflect country specific production and use patterns.

Similarities and differences were also observed when European
studies were compared. MBzP, MiBP, MnBP, MEHP, OH-MEHP, and
oxo-MEHP were measured in Czechia (Puklova et al., 2019). The 5 and

Fig. 1. Urinary phthalate concentrations in younger (3–5 years) and older
(14–17 years) GerES V participants.
MMP, MEP and MBzP are the metabolites of DMP, DEP and BzPB, respectively.
DIBP, DnBP, DEHP, DiNP, and DiDP are expressed as sums of the following
metabolites: DiBP (∑ MiBP + OH-MiBP), DnBP (∑ MnBP + OH–MnBP),
DEHP (∑ MEHP + OH-MEHP + oxo-MEHP + cx-MEPP), DiNP (∑ OH-
MiNP + oxo-MiNP + cx-MiNP), DiDP (∑ OH-MiDP + oxo-MiDP + cx-MiDP).
Details on all age groups are given in the Supplementary Tables 1-3, 5, 8, 16,
20, and 24.

Fig. 2. Urinary phthalate concentrations in association with the respective
phthalate levels in house dust.
For the definition of low, medium and high house dust levels see legend to
Table 2.
For the description of phthalate and phthalate metabolites see legend to Fig. 1.

Fig. 3. Comparison of urinary phthalate biomarker levels in 3–14 years old
children in Germany. Samples were collected in 2003–2006 (GerES IV) and in
2015–2017 (GerES V).
MBzP, MiBP and MnBP are the metabolites of BBzP, DiBP and DnBP, respec-
tively DEHP and DiNP are expressed as sums of the following metabolites:
DEHP (∑ MEHP + OH-MEHP + oxo-MEHP + cx-MEPP), DiNP (∑ OH-
MiNP + oxo-MiNP + cx-MiNP).
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9 years old Czech children throughout had higher GMs of urinary
phthalate metabolite levels than the 6–10 years old participants of
GerES V, ranging from 1.1-fold for MBzP to 2.7-fold for MnBP. The GMs
of MEP, MBzP, MiBP, MnBP, MEHP, OH-MEHP, and oxo-MEHP, mea-
sured in the Esteban 2014–2016 study in France inter alia in 6–10 years
old children (Balicco et al., 2019) were also 1.2–2.9-fold higher than
those measured in GerES V. Only the GM of MMP was lower in the
Esteban than in the GerES V study.

In a Swedish study, children aged 40–48 months were investigated
for MEP, MBzP, MnBP, and for DEHP and DiNP metabolites (Larsson
et al., 2017). Compared with the 3–5 years old GerES V children, the
GMs for urinary DEHP metabolites were similar, whereas the Swedish
children had 1.5- to 2.3-fold higher GMs for MEP, MBzP, MnBP, OH-
MiNP, oxo-MiNP, and cx-MiNP.

The whole GerES V set of phthalate metabolites was analogously
determined in 7 years old children in Poland (Gari et al., 2019) and in
4–18 years old children in Portugal (Correia-Sa et al., 2018). For MCHP,
MnPeP, and MnOP, values below LOQ were obtained in all three stu-
dies. GMs of urinary DiNP and DiDP metabolite levels were in the same
range in the German, Polish, and Portuguese respective age groups
(GerES 6–10 years olds compared with Polish 7 years olds, GerES 3–17
years olds compared to Portuguese 4–18 years olds). GMs of the other
individual phthalate metabolite levels differed not more than 2.6-fold
compared with GerES V data. Polish children had lower GM of MMP
and higher MEP, MBzP, DiBP, DnBP, and DEHP levels than the GerES V
children. Portuguese children and adolescents had lower GMs of MMP,
MBzP, DiDP, and DnBP, higher GMs of MEP, and similar GMs of DEHP
levels compared to the German children and adolescents.

In summary, comparison of a similar time period predominantly
revealed similarities and only slight differences in GMs of individual
phthalate metabolite levels in comparable age groups. As all but one of
the compared studies were located in Europe, similar phthalate re-
strictions and usages may explain the predominant congruence.

3.4. Comparison with health-based guidance values

Health-based guidance values are available for MEP, MBzP, MnBP,
for the sum of the 3 DiNP metabolites and for different combinations of
DEHP metabolites (Angerer et al., 2011; Apel et al., 2017; Aylward
et al., 2009a, b; Hays et al., 2011). The proportions of children and
adolescents exceeding either human biomonitoring value I (HBM-I
value) derived by the German Human Biomonitoring Commission (Apel
et al., 2017) or BE (biomonitoring equivalent) values, derived by
Aylward et al. (2009a, 2009b) and Hays et al. (2011) are shown in
Table 6. None of the children and adolescents in Germany exceeded BE
values for MEP (18000 μg/L urine), BBzP (3800 μg/L urine) and the
HBM-I value for DEHP (∑ OH-MEHP and oxo-MEHP) of 500 μg/L for
6–13 years old children.

However, 0.38% of the participants had concentrations of MnBP in
urine above the BE value of 200 μg/L urine, exceeding the limit where
adverse health effects cannot be excluded with sufficient certainty.
Likewise, the BE value of 1800 μg/L for DiNP was exceeded by 0.007%,
and for DEHP (260 μg/L for ∑MEHP + OH-MEHP + oxo-MEHP and
400 μg/L for ∑MEHP+ OH-MEHP+ oxo-MEHP+ cx-MEPP) by 0.08%
of the participants. Extrapolated to the reference population in
Germany, this would represent about 41500, 800, and 9000 children

Table 5
Comparison of median phthalate levels in urine (μg/L) of GerES V children and adolescents with levels measured in different studies.

Study, region GerES Va

Germany
ESBb Germany GerES Va

Germany
NHANESc USA Czechiad REPRO_PLe

Poland
Estebanf France GerES Va

Germany
Swedeng GerES Va

Germany
Portugalh

Year 2015–2017 2015 2015–2017 2015–2016 2016–2017 2014–2015 2014–2016 2015–2017 2015 2015–2017 2014–2015
Age 3–17 y 20–29 y 6–10 y 6–11 y 5 + 9 y 7 y 6–10 y 3–5 y 40–48 m 3–17 y 4–18 y
N 2249–2256 60 727–736 415 370 250 397–402 113 2249–2256 112

P50 P50 GM GM GM GM GM GM GM GM GM

MMP 5.9 2.8 7.3 5.1 5.3 6.8 6.4 3.1
MEP 23.1 13.5 21.7 24.5 42.9 40.6 20.8 32 25.8 58.3
MBzP 2.9 1.2 3.4 10.7 3.65 5.5 9.7 4.0 9.0 3.1 2.25
MiBP 26.2 9.8 28.9 11.2 44.1 76.2 50.1 30.4 26.1 16.8
OH-MiBP 8.8 2.8 10.2 4.04 27.9 11..5 8.9 6.54
MnBP 21 8 22.9 14.4 63 55 27.6 24.2 55 20.9 12.8
OH–MnBP 2.5 0.8 2.7 1.5 7 3.2 2.4 1.67
MCHP < LOQ < LOQ < LOQ < LOQ NC < LOQ < LOQ < LOQ
MnPeP < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ < LOQ
MEHP 1.5 1.1 1.4 1.42 2.31 2.7 2.0 1.4 1.5 1.4 1.9
5OH-MEHP 11.1 4.2 12.7 8.81 20.5 27.1 17.0 15.4 17 11.0 10.9
5oxo-MEHP 7.7 3.2 9.0 5.97 12.8 19.9 12.9 11.0 11 7.6 7.62
5cx-MEPP 12 3.8 14.1 14.6 31.4 17.7 16 11.9 16.1
OH-MiNP 6.9 2.4 8 9.5 9.4 12 6.9 5.57
oxo-MiNP 2.7 0.9 3.1 3.1 3.6 5.9 2.8 2.23
cx-MiNP 5.4 2 6.6 11.1 7.6 7.6 17 5.9 7.42
OH-MiDP 1.5 0.8 1.8 1.8 1.9 1.5 1.31
oxo-MiDP 0.7 0.3 0.7 0.89 0.7 0.6 0.71
cx-MiDP 0.9 0.4 1.1 2.26 0.91 1.2 0.9 1.19
MnOP < LOQ < LOQ < LOQ < LOQ NC < LOQ < LOQ < LOQ
MCPP 1.4 0.3 1.8 1.79 2.2 2.1 1.4 1.03

Abbreviations: N: sample size, LOQ: limit of quantification, P50: 50th percentiles, GM: geometric mean, NC: not calculated, y: years, m: months.
a This study.
b ESB: German Environmental Specimen Bank (Koch et al., 2017).
c NHANES: National Health and Nutrition Examination Survey (CDC, 2019).
d Czechia (Puklova et al., 2019).
e REPRO_PL: Polish Mother and Child Cohort Study (Gari et al., 2019).
f Esteban, France (Balicco et al., 2019).
g Sweden (Larsson et al., 2017).
h Portugal (Correia-Sa et al., 2018).
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and adolescents, exceeding health-based guidance values for MnBP,
DiNP, and DEHP, respectively. These results show that even though
regulations of DnBP, DiNP, and DEHP are in force for several years and
average phthalate concentrations were lower than in previous studies, a
proportion of children and adolescents still exceeds health-based gui-
dance values.

Several phthalates have similar toxicological profiles and there is
evidence that they can produce cumulative additive adverse effects
(Christiansen et al., 2009; Conley et al., 2018; Furr et al., 2014;
Howdeshell et al., 2007, 2017; Reyes and Price, 2018a; Rider et al.,
2010). As DnBP and DEHP are among those phthalates suspected to
induce comparable endocrine disrupting and reprotoxic effects, ex-
ceedances of their health-based guidance values are of special im-
portance.

The ongoing exposure to phthalates, whether regulated or not,
confirms the need for continuous monitoring of established as well as of
upcoming phthalates and their substitutes. A comprehensive picture of
the actual levels and developments of aggregated body burdens and
comprehensive health-based guidance values are necessary to support
further actions to reduce exposure to plasticisers in the vulnerable
group of children and adolescents.

4. Conclusion

The omnipresence of phthalates in daily life is reflected in the body
burdens of children and adolescents in Germany. Metabolites of 8
phthalates were found in 97%–100% of the samples. With the exception
of MEP, the young children in GerES V were exposed to phthalate
metabolites at up to 1.9-fold higher levels than the adolescents.
Compared to GerES IV reduced GMs of all measured phthalates were
measured in GerES V, which is most probably due to restrictions and
regulations in applications and consumer products. However, alter-
natives and substitutes have entered the market and have to be mon-
itored and evaluated accordingly.

Comparison with other studies for the years 2015–2017 revealed
similarities and only slight differences in GMs of individual phthalate
metabolite levels. Comparable phthalate restrictions and usages may
contribute to these results.

Although regulation, bans, and restrictions are in force for several
phthalates and average phthalate concentrations have declined, there
are still some children and adolescents with urinary levels exceeding
the individual health-based guidance values for DnBP, DEHP, and
DiNP.

Maintaining biomonitoring of phthalate metabolites is also neces-
sary to reveal whether the current authorisation of BBzP, DiBP, DnBP
and DEHP results in further reduction of urinary levels.

The representative GerES V data on phthalate exposure of children
and adolescents will be used to calculate and update reference values
for this subpopulation in Germany. Repeated monitoring is necessary to
assess the extent of phthalate exposure in the population in the light of
their widespread use and to observe the developments due to regulatory
restrictions and replacements by substitutes. By providing the best
possible exposure data, our results will also contribute to further EU
chemicals regulation via the European HBM initiative HBM4EU, which
aims to support and promote the protection of all Europeans against
environmental health risks.
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