
www.ssoar.info

Teaching on Jupyter - Using notebooks to
accelerate learning and curriculum development
Reades, Jonathan

Veröffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Empfohlene Zitierung / Suggested Citation:
Reades, J. (2020). Teaching on Jupyter - Using notebooks to accelerate learning and curriculum development. Region:
the journal of ERSA, 7(1), 21-34. https://doi.org/10.18335/region.v7i1.282

Nutzungsbedingungen:
Dieser Text wird unter einer CC BY-NC Lizenz (Namensnennung-
Nicht-kommerziell) zur Verfügung gestellt. Nähere Auskünfte zu
den CC-Lizenzen finden Sie hier:
https://creativecommons.org/licenses/by-nc/4.0/deed.de

Terms of use:
This document is made available under a CC BY-NC Licence
(Attribution-NonCommercial). For more Information see:
https://creativecommons.org/licenses/by-nc/4.0

http://www.ssoar.info
https://doi.org/10.18335/region.v7i1.282
https://creativecommons.org/licenses/by-nc/4.0/deed.de
https://creativecommons.org/licenses/by-nc/4.0

Volume 7, Number 1, 2020, 21–34 journal homepage: region.ersa.org
DOI: 10.18335/region.v7i1.282

Teaching on Jupyter – Using notebooks to accelerate
learning and curriculum development

Jonathan Reades1

1 King’s College London, London, United Kingdom

Received: 7 October 2019/Accepted: 5 January 2020

Abstract. The proliferation of large, complex spatial data sets presents challenges
to the way that regional science and geography more widely is researched and taught.
Increasingly, it is not ‘just’ quantitative skills that are needed, but computational ones.
However, the majority of undergraduate programmes have yet to offer much more than
a one off ‘GIS programming’ class since such courses are seen as challenging not only
for students to take, but for staff to deliver. Using the evaluation criterion of minimal
complexity, maximal flexibility, interactivity, utility, and maintainability, we show how the
technical features of Jupyter notebooks particularly when combined with the popularity
of Anaconda Python and Docker enabled us to develop and deliver a suite of three
‘geocomputation’ modules to Geography undergraduates, with some progressing to data
science and analytics roles.

1 Introduction

The growth of data from sources that are both ‘accidental, open, and everywhere’ (Arribas
Bel 2014), and characterised by volume, velocity, variety, and questions of veracity
(Gorman 2013) has opened up new possibilities, and challenges, for researchers. This, in
turn, calls for new conceptual, methodological, and technical approaches since ‘acquiring
data is no longer a strongly limiting factor to completing analytical tasks’ (Bowlick,
Wright 2018), working with it is. It is not particularly important whether these skills are
framed as an informed empirical social science (Ruppert 2013) or as a computational social
science (Lazer et al. 2009); authoritative reviews of the social sciences and humanities
by The British Academy (2012), and of human geography by the Economic and Social
Research Council (Ley et al. 2013), have concluded that many graduates are poorly
prepared to engage with this world of ‘big data’. The Royal Society (2019) has called for
curriculum change at Higher Education Institutions (HEIs) with a view to encouraging
interdisciplinarity and the effective integration of data science skills.

This presents something of a problem for a nascent ‘geographic data science’ (Singleton,
Arribas Bel 2019) of the sort that regional science, and regional studies and geography
more widely, require since a surprisingly large number of university programmes continue
to teach proprietary, mostly point-and-click software. So many students’ principal
exposure to quantitative methods, let alone computational ones, comes in a standalone
‘quantitative methods module’ that provides little in the way of meaningful interaction
with the underlying issues of spatial data and spatial data analysis at scale. And while
the issue may be particularly acute for students in the U.K. (Johnston et al. 2014),
even in more technically-oriented countries there is often not much more on offer than a

21

22 J. Reades

straightforward ‘GIS course’ (Wikle, Fagin 2014). Consequently, students progressing to
higher levels of study or the professional realm often find that ‘the skills least developed
in undergraduate GIS courses are those related to programming and computer science’
(Bowlick et al. 2017).

2 Dependencies

This notebook requires the GeoJSON labextension to be installed in JupyterLab. All
other packages should be part of a default Python 3 installation.

3 Context

The long history of computers in geography has not been without controversy (Arribas
Bel, Reades 2018, Barnes 2013, Cresswell 2014, Johnston et al. 2014), although many have
actively engaged with recent developments (e.g. Torrens 2010) and expect impacts on the
very fabric of the discipline (González Bailón 2013). So although our experience with
teaching computational skills using Jupyter notebooks is clearly rooted in the ‘geography
of geography’ (Bradbeer 1999) in the sense that we speak to particular challenges here in
the U.K., it is part and parcel of a wider skills gap at the undergraduate level in general.
In short, too few students are gaining the skills needed to engage with this deluge of
data or to take advantage of cutting-edge tools developed outside of the field, either as
researchers or as end-users in the public or private sectors (Singleton 2014).

This is where we believe that the pedagogical potential of Project Jupyter (Kluyver
et al. 2016) is revolutionary: reflecting on our experience of trying to roll out exactly
this type of programme, we seek to highlight the transformative potential of notebooks
for student and researcher development. Jupyter removes significant barriers to teaching
by providing a flexible and familiar interface that hides, or even postpones indefinitely,
some of the complexity of managing local programming language installations whilst
also allowing instructors to provide rich media and contextual information next to the
code where it is needed the most. Making coding accessible is not simply about allowing
students to ‘hack away’ at data, it can actually help students to better understand spatial
analytic methods by linking concepts to code as Xiao’s outstanding text on algorithms
demonstrates (Xiao 2016).

3.1 Teaching Programming to Non Programmers

Given the interaction effects between pedagogical and subsequent practice, it is therefore
worth placing the challenge of teaching programming in the context of the shifting
terrain for quantitative research and researcher development. These challenges start
early: many students already demonstrate what Spronken-Smith (2013) calls ‘equation
phobia’: “students not linking numbers, and problems with visualisation of quantities.”
Hodgen et al. (2014) suggest just some of the reasons for this: limited prior knowledge
and attainment; time elapsed since last study of maths; a failure to see relevance; and the
wide range of attainment levels within each cohort (Hodgen et al. 2014). Whatever its
origins, a general lack of confidence and/or competence creates a feedback loop fuelling
further avoidance (Chapman 2010).

In the context of maths instruction Macdonald, Bailey (2000) have also noted the
challenge inherent in delayed gratification given that ‘maths is the tool, not the goal.’
Given the apparent gulf between print('Hello world.') and being able to write useful
analytical code, the issue is no less serious in programming. There is no reason why
the familiarity of so-called ‘Digital Natives’ with computers should have any bearing on
their understanding of how they actually work; indeed, today’s students may well be
more detached from the underlying processes – metaphorical and actual – thanks to ‘the
sophistication of modern Graphical User Interfaces’ (Muller, Kidd 2014). In the long
run, programming requires an ability to envision and manipulate abstract entities such
as data structures sitting, in turn, on top of additional layers of abstraction such as the
application and its state(s), the file system and its structure(s), the operating system and
even the underlying hardware.

REGION : Volume 7, Number 1, 2020

https://github.com/jupyterlab/jupyter-renderers
https://jupyter.org/

J. Reades 23

Figure 1: Barron Stone memorably demonstrates for and while loops (Stone 2013)

There are many differing views of how programming should be taught (Pears et al.
2007), though we come down firmly on the side of Lukkarinen, Sorva (2016) that there
are advantages to ‘contextualising programming practice in the field of application’. In
general, it seems that introductory programming courses should strive simultaneously for
richness and simplicity: richness in the ‘constructs’ associated with programming, and
simplicity in terms of the foundation being laid (Lukkarinen, Sorva 2016). Unfortunately,
the expertise of teachers is not always a plus for effective teaching (Chapman 2010) since
concepts that seem intuitive and are easily connected to a range of related problems by
the instructor may yield no such benefit to the novice. As we developed our teaching
materials, we found that videos created by other learners could, at times, capture student
attention more effectively than our own demonstrations; for example, Stone’s instructional
video for students at Rice University on the difference between for and while loops, shown
in Figure 1. Using Jupyter notebooks this kind of content can be embedded directly in
the task explanation.

3.2 Course Structure

The work reported here draws on methodological and pedagogical research conducted over
the past five years in the Department of Geography at King’s College London; it seeks
both to position learning to code as essential to further student and staff development,
and to examine the reasons why Jupyter notebooks have been selected as the best means
of achieving this goal. As such, this research is necessarily caught up in a wider debate
about quantitative skills amongst students; however, our undergraduate ‘pathway’ in
Geocomputation & Spatial Analysis (which could be understood as an optional ‘minor’ in
the North American tradition) seeks to go beyond the kinds of statistical skills training
encouraged by funders (see brief discussion in Johnston et al. 2014) and to tackle these
in conjunction with computational skills. We want to take students with a variety of
social, economic, ethnic, and computational backgrounds and cultivate in (and with)
them an appreciation of, and ability to undertake, interdisciplinary work with a strong
computational element (see Mir et al. 2017, for a discussion of the CS+X format).

Based on our own experience, we felt that shoe horning exposure to ‘computational
geography’ into a single module – as seems to occur in many American programmes
(Bowlick et al. 2017) – would only reinforce student aversion to such approaches, so we
opted to ‘unpack’ the concepts across three modules:

1. Geocomputation

2. Spatial Analysis and Modelling, and

3. Applied Geocomputation.

REGION : Volume 7, Number 1, 2020

https://www.youtube.com/watch?v=9AJ0uoxtdCQ
https://www.kcl.ac.uk/geography
https://www.kcl.ac.uk/
https://github.com/kingsgeocomp/geocomputation
https://github.com/kingsgeocomp/spatial-analysis
https://github.com/kingsgeocomp/applied_gsa

24 J. Reades

These modules must be taken in sequence, the preceding module acting as a pre-requisite
for admission to the next, although students are free to exit the sequence at any time.
We also provide an optional ‘Code Camp’ (Reades et al. 2019) to be undertaken over
the summer before the first module begins so that students begin the term familiar with
basic concepts: variables, lists/arrays, dictionaries/hashes, and functions/subroutines,
provided they have done the work.

3.3 Contextualised Computing

To our knowledge, there is no other undergraduate programme like it with important
differences in both style and substance from what would be covered in an Economics,
Statistics, or Computer Science (CS) degree in terms of its spatial and applied focus. In
this sense, the modules are an extended test of ‘contextualised computing’ instruction (see
Lukkarinen, Sorva 2016, for a review) which seeks to emphasise relevance to ‘real-world’
applications and to avoid “general CS content, such as how one might go about sorting
an array of any type for an unspecified purpose” (Lukkarinen, Sorva 2016). We also
recognise, however, that “contextualized computing education cannot help students learn
more in less time” (Guzdial 2010) and that the transferrable aspects of this learning need
to be emphasised: in our case we try to highlight how the same approach can be applied
to human and physical geography problems.

Consequently, wherever possible these exercises are grounded in spatial examples, even
where these are very simple indeed, on the basis that connecting them to the learner’s
existing knowledge and interests will improve retention at the introductory level (Guzdial
2010). For example, a notebook on dictionaries (taken from Reades et al. 2019) can
start with creating and querying a phone book of national emergency numbers where the
student has to replace the ??? in eNumbers = { ??? } with functioning Python code:

[1]: eNumbers = {

'IS': 112,

'US': 911

}

print(f"The Icelandic emergency number is {eNumbers['IS']}")

print(f"The American emergency number is {eNumbers['US']}")

[1]: The Icelandic emergency number is 112

The American emergency number is 911

Students then progress towards a task involving a dictionary-of-dictionaries:

[2]: cityData = {

'London': {

'population': 8673713,

'location': [51.507222, -0.1275],

'country': 'UK'

},

'Paris': {

'population': 2140526,

'location': [48.8567, 2.3508],

'country': 'FR'

}

}

for city, data in cityData.items():

print(f"The population of {city} ({data['location'][0]:0.3f}ºN,

{data['location'][1]:0.3f}ºE) is {data['population']:,}")

[2]: The population of London (51.507ºN, 0.128ºE) is 8,673,713

The population of Paris (48.857ºN, 2.351ºE) is 2,140,526

This work is building towards a GeoJSON example in which they have to complete
missing attributes in order to show a marker centred on the university’s central London
campus. Since GeoJSON is essentially a dictionary-of-dictionaries, this is a good test of
their understanding, but with Jupyter they receive immediate feedback on this because
GeoJSON can be embedded directly into the notebook: an interactive web map shows up

REGION : Volume 7, Number 1, 2020

https://zenodo.org/record/3474043

J. Reades 25

as soon as they’ve run the code, reinforcing the contextual aspect – that this is all about
geography – of their learning.

[3]: # King’s College London’s coordinates...

What format are they in? Does it seem appropriate?

How would you convert them back to numbers if you

needed to do so?

longitude = '-0.11596798896789551'

latitude = '51.51130657591914'

Notice how we set up a data type and location

here where it’s easy to see where the lat/long

values are being used we could also use these

in a loop as a _template_ for creating many points

from a data file! Notice too that it’s a dictionary

containing a mix of string and list values...

the_geometry = {

"type": "Point",

"coordinates": [longitude, latitude],

}

Now we set up the larger ’data file’ this is harder

to read but is *still* basically a dictionary! A

’collection’ implies more than one feature, and in this

case the list of ’features’ is nothing more than a list

of dictionaries so that our data stays in order!

the_position = {

"type": "FeatureCollection",

"features": [

{

"type": "Feature",

"properties": {

"marker-color": "\#7e7e7e",

"marker-size": "medium",

"marker-symbol": "building",

"name": "KCL"

},

"geometry": the_geometry

}

]

}

And show the points on an interactive map!

You don’t need to know what’s happening here *yet*, but

see if you can make sense of the main elements...

try:

from IPython.display import GeoJSON

from IPython.display import display

import json

parsed = json.loads(str(the_position).replace("\'", "\""))

display(GeoJSON(parsed))

except ImportError:

print("You seem to be missing either the GeoJSON extension or json library.")

[3]: The output is shown in Figure 2

4 How We Reached Jupyter

Since the pathway pushes students both conceptually and technically, finding ways to
take the deployment and management of the software stack out of the picture has been
a priority. Our review of the pedagogical literature and practical experience gained
in the private and HEI sectors—including several failures during the first few years
of teaching—led us to the ultimate conclusion that a useful geospatial programming
environment should possess the following characteristics:

Minimal Complexity : it does not require students to load and learn a new Operating
System or large number of new applications/platforms at the same time as they are

REGION : Volume 7, Number 1, 2020

26 J. Reades

Figure 2: Output of code 3

learning to code; it should also be reasonably ‘performant’ on a mix of student and
HEI hardware.

Maximal Flexibility : it is simple, if not always easy, to configure and install on a
range of hardware, but is not ‘sandboxed’ or ‘packaged’ in ways that constrain our
freedom to install what we need to teach effectively.

Interactivity : it allows us to keep commentary, ‘rich’ media, and other scaffolding
material together with the code so that students can move between code and
explanations easily, and can add their own annotations as needed.

Utility : it supports life-long learning by providing a ‘real world’ development environ-
ment that would be both familiar, and accessible, to students after graduation in
personal and professional contexts.

Maintainability : it can be easily updated by the instructor(s) and supports version
control and easy distribution mechanisms.

These five features can, at times, appear to cut against each other: maximal flexibility
and minimal complexity are difficult to reconcile since the former tends to expose more
‘options’ to the user, while the latter seeks to mask those same options. However, a strong
advantage of Jupyter is that it meets all of these criteria to some extent, and in most
cases meets them fully!

4.1 Pretty Walled Gardens

The desired set of features ruled out commonly-used proprietary platforms: at the time
we began developing the curriculum, MATLAB was still a de facto standard for many but
its pricing and sandboxing approach made it both less flexible and less useful for students
once they graduated and lost access to the HEI license. Like Etherington (2016), we were
therefore attracted by the fact that Python presented ‘no financial or hardware obstacles
to teaching’ and that, consequently, “students [would] always be able to use their Python
programming skills...” Etherington (2016). However, in developing the early iterations of
the course we also, again like Etherington (2016), encountered significant challenges in
‘getting a working installation of Python together with its associated geospatial packages’.

We discovered that the existing, IT-supported Enthought Canopy Python distribution
provided few of geospatial libraries, and that updating it with packages from outside
of their ‘walled garden’ caused all manner of issues. This situation was not entirely
unexpected since geospatial analysis is not a key component of Enthought’s offering to
universities; however, the challenges of keeping up with the state-of-the-art are such that
additional barriers to software update management are undesirable. Indeed, the pace
of change in the field can be gauged from Wise’s review of ‘geospatial technologies’ in
U.K. universities (Wise 2018): it not only questions the utility of ‘free’ programmes
(presumably meaning Free Open Source Software, or FOSS) which now dominate in the
data sciences and in many research projects, but it also contains not a single mention of
programming—in Python or any other language.

REGION : Volume 7, Number 1, 2020

J. Reades 27

4.2 The Wrong Kind of Flexibility

Like Muller, Kidd (2014), who sought to ‘debug geographers’ with an introduction to a
holistic computing context alongside programming skills tout court, we next attempted to
provide our students with virtualised Linux desktop systems in the belief that this would
empower them not only with a better understanding of what was going on ‘under the
hood’ but also with a computer on which they could experiment without fear of damaging
their existing installation. For good measure, we included other useful analytics tools
such as the latest version of QGIS with all of the ‘bindings’ for low-level packages such as
GDAL (the Geospatial Data Abstraction Layer).

Using VMWare and Ubuntu 16 LTS with a full Python installation configured largely
‘by hand’ provided us with a fully FOSS ‘solution’ that students could take with them
and update in the future as they gained confidence in using such software. However, we
soon found that in-memory and on-disk bottlenecks, together with students’ tendency to
actually try to install Ubuntu’s suggested updates and render their systems inoperable,
made this a profoundly alienating and frustrating experience. For students already
working hard to master the basics of programming, having to ‘drop’ into the Terminal in
order to resolve installation errors when they were used to seamless updates on their host
operating systems simply represented an unnecessary hassle that detracted from the real
focus of the modules: learning to use code to perform spatial analyses.

4.3 Escape Velocity

While we had been tinkering with different Linux and Python distributions, a set of three
connected developments had been transforming the landscape for teaching:

1. A few academics who had taken very different approaches began, rather bravely, to
publish their teaching methods and materials freely for others to use (e.g. Arribas
Bel 2019);

2. Data scientists not only adopted Python en masse, driving the rapid development
of new analytical and visualisation libraries (e.g. pandas, seaborn, bokeh), but
they had also quickly settled on the use of a then-novel technology called ‘iPython
notebooks’ to widely share their tutorials online;

3. Since many of these data scientists were paid by firms interested in moving their
work into production systems as smoothly and quickly as possible, this also led to
improvements in the way that Python distributions and notebooks were managed.

Rather unexpectedly, the kinds of practical problems that data scientists were trying
to solve mirrored quite closely the kinds of challenges that we, as teachers, were trying to
solve in terms of being able to replicate installations across multiple systems and share
code/commentary quickly and easily.

The iPython platform ultimately gained the ability to run other programming lan-
guages and was rebranded ‘Project Jupyter’, but this means that it has become a viable,
general purpose teaching platform. So although the term ‘Virtual Learning Environment’
(VLE) is typically understood to refer to a full-featured, client-server system such as
Moodle or Blackboard (see Britain 1999), it could also apply to Jupyter: not only does
it have a client/server architecture (with the web-based interface allowing the server to
run locally or on a remote system with no discernible difference to the student), but it
has been progressively enriched with tools for grading and other common teaching tasks.
Although we are not yet making full use of these new features, it is clear that Jupyter is
well on its way to becoming an important teaching platform.

5 Discussion

Perhaps the single greatest benefit of working with Jupyter notebooks is that development
is not being driven by educational needs: this is a full-featured development environment
used day-in and day-out by professional software developers and large firms such as Netflix

REGION : Volume 7, Number 1, 2020

https://jupyter.org/

28 J. Reades

(Ufford et al. 2018). So, unlike both expensive proprietary systems that are rarely used
by small or innovative firms, and instructional systems whose functionality is limited
to teaching purposes, students are able to seamlessly progress from learning to code, to
competent coders, and on to practicing data scientists (as a few of our students have
done), using a single environment. This is a platform with the capacity to grow with the
student, following them out of the ‘ivory tower’ and into gainful employment.

An additional benefit flowing from the professional use of Jupyter is that many
researchers, not least the others included in this special issue, use notebooks as a normal
part of their research practice; this allows lecturers to remain abreast of technical
developments on the platform without ‘updating my installation’ being a separate overhead
in a congested working week. This pattern of usage is in sharp contrast to tools – such
as SPSS or ArcGIS – that are less-used by active researchers but often still taught in
standalone modules, with the quality and timeliness of teaching materials often suffering
accordingly. Jupyter breaches the historical divide between computational research and
teaching, not only allowing students to benefit from active research, but also for research
to build on student outputs (see, for example Reades et al. 2019).

5.1 Cloning Around

Jupyter becomes particularly powerful when combined with other recent developments in
the management and distribution of computing platforms. Anaconda Python’s enhanced
support for the configuration of virtual environments (in essence, multiple distributions
of Python on the same system) allows specific versions of Python and sets of required
libraries to be specified in a simple text file following the ‘Yet Another Markup Language’
(YAML) standard. The code below downloads and prints out part of the YAML file that
we use to configure both student machines and our Docker container (about which more
below); here the virtual environment is named gsa2019:

[4]: import urllib

url = 'https://raw.githubusercontent.com/kingsgeocomp/gsa_env/gsa2019/gsa.yml'

with urllib.request.urlopen(url) as resp:

file = resp.read().decode('utf8').split('\n')

Don’t output everything...

to_print = list(range(0,5)) list(range(39,48)) list(range(110,116))

print("=" * 50)

for line in to_print:

print(file[line])

print("=" * 50)

[4]: ==

OVERVIEW

This YAML script will attempt to install a Python virtual environment able to

support the requirements of all three of King’s College London’s ’Geocomputation’

pathway in the BA/BSc Geography programme.

#

CONFIGURATION PARAMETERS

name: gsa2019

channels:

- conda-forge

- defaults

dependencies:

- python=3.7

- pip

- git

- xlrd

- xlsxwriter

- pip:

- six

#- git\+http://github.com/sevamoo/SOMPY#egg=sompy # Doesn’t run in Python3

- git\+http://github.com/kingsgeocomp/SOMPY#egg=sompy

==

The use of YAML configuration files makes it easier to install a teaching instance of

REGION : Volume 7, Number 1, 2020

https://yaml.org/

J. Reades 29

Python and to expose this as a named ‘iPython kernel’. The connection between virtual
environments and kernels allows researchers to manage multiple research and teaching
installations of Python on the same system, to access them through the same Jupyter
interface, and to do so without changes to one Python installation impacting any others.

5.2 Docking Safely

The emergence of containerisation platforms such as Docker now makes it much simpler to
distribute a pre-configured virtual machine1 (such as a pre-packaged teaching or research
environment) that will run on almost any host operating system: Mac, Windows, or
Linux. Because the virtual machines are fully specified at the time of creation, students
can download and install a working version with one command, while instructors can be
confident that every student is working with the same version of every library. This year
we provided students with a Docker image that leveraged the work of Arribas Bel (2019)
but that had been customised to provide only the features that we wished to teach.

The combined popularity of Python and Docker has led to the creation of novel,
web-based platforms such as Binder (mybinder.org); these take notebooks stored on the
GitHub code-sharing web site to build a Docker image serving those notebooks on Binder’s
servers. Students may now learn to code without installing any software whatsoever.
Local installation can be deferred to the point at which specialist requirements or load on
the server require it. In a stroke, one of the most pernicious barriers to entry, needless
technical issues associated with installation and configuration of programming software,
has been eliminated.

5.3 Houston, We Have a Problem

Of course, no single solution is without drawbacks and Jupyter is no exception. It is worth
noting that there are quite specific technical, conceptual, and development issues raised
by Jupyter that are difficult to circumvent without both know-how and some careful
thinking about assessment and teaching. The principal technical challenge relates to user
permissions on managed machines (e.g. in computer clusters) since Python, Jupyter, and
Docker all struggle to different degrees with ‘locked down’ Windows systems. Indeed,
Docker does not currently run at all without administrator privileges. We worked closely
with university-level IT staff to install and provision Anaconda Python and Jupyter.
Provision of the YAML configuration script assisted with both installation and isolation
of our teaching environment from their existing installation, easing institutional barriers
to adoption.

From a teaching standpoint, an additional issue is that Git – the dominant version
control software that we use to manage and share notebook changes – sees notebooks in a
way that means just re-running code registers as a local modification of the file that needs
to be committed to the version control system. So although ‘GitHub’ provides support
for the online display of Jupyter notebooks, the use of Git can lead to a large number
of essentially meaningless commits. This can make tracking meaningful content changes
over time more difficult, and it means that we’ve shied away from teaching students about
version control on the basis that they may not perceive the value of commits that seem
to record little of value.

A final and rather unexpected disbenefit was uncovered the year after we moved from
the Spyder IDE to Jupyter: weaker student understanding of execution flow. Unlike
a traditional script that clearly executes from top-to-bottom (typically in its entirety),
Jupyter notebooks freely intermingle code blocks and text/rich media blocks allowing –
and even encouraging – the user both to jump between widely separated blocks without
executing intervening code and to edit and re-run earlier blocks. This leads to: a) difficult-
to-diagnose bugs because the code looks like it should execute properly but doesn’t, and
b) to a weaker student understanding of system ‘state’ in terms of instantiated variables,
loaded libraries, and available functions. We typically seek to cultivate this understanding
by stressing that the real test, whether directly assessed or not, of whether their code

1It should be noted that, technically, Docker containers are not virtual machines in the traditional
sense.

REGION : Volume 7, Number 1, 2020

https://www.docker.com/
https://mybinder.org/
https://github.com/
https://github.com/kingsgeocomp/gsa_env/blob/master/gsa.yml
https://git-scm.com/
https://github.com/
https://www.spyder-ide.org/

30 J. Reades

Table 1: Evaluating Jupyter

Pros Cons

Minimal Com-
plexity

Deploying a full geographic data sci-
ence ‘stack’ requires installing one appli-
cation (Docker or Anaconda Python)
and running two lines of code in a
Terminal/Shell to install and configure
Jupyter, its dependencies, and the ana-
lytical libraries. Environment requires
no configuration.

Persistent challenges with student un-
derstanding of file system interaction
and paths. Some confusion around mul-
tiple Python instances manifesting as
different ‘kernels’ in notebooks.

Maximal Flexi-
blity

Combination of Binder, Docker, and
Anaconda Python allows us to install
on nearly any hardware/operating sys-
tem mix. Docker uses same YAML con-
figuration script as Anaconda Python
so maintaining compatibility and consis-
tency is straightforward.

Students cannot update Docker con-
tainers and do not gain understanding
of package management or dependency
conflict resolution.

Interactivity Students can view/edit/add rich media,
code, and other content directly within
the Jupyter notebook environment. Tex-
tual and graphical outputs from code
cells in notebooks are saved between
restarts of Jupyter.

Students do not develop a strong under-
standing of execution flow and system
state.

Utility Growth of Jupyter has made it the ‘tool
of choice’ for data scientists, and stu-
dents are able to continue working with
a fully functioning development environ-
ment. Students can edit installation and
configuration scripts incrementally, as
expertise grows.

Relative ease of installation may not pre-
pare students for managing their own de-
velopment and production environments.
Students remain unfamiliar with IDEs
and code-completion.

Maintainabili-
ty

Docker and Anaconda update mech-
anisms are straightforward. GitHub
works well for distribution, previewing,
and (to a lesser extent) version control.

Nature of notebooks makes it harder for
instructors to track incremental changes
in version control, and for students to
see value of such an approach.

‘works’ is that a notebook can be run in full (Restart Kernel and Run All Cells)
without user intervention.

We should note that, in the absence of an Integrated Development Environment
(IDE), students are unlikely to benefit from test suites and other tools that support
developer best-practice. However, such an approach can also have the effect of deterring
new students by pushing back the point at which they appear to be achieving anything
concrete: “Because learning in computer science and programming is challenged by
numerous barriers, students need to be motivated about the purpose, value, and utility of
concepts within course work” (Bowlick et al. 2017) So while knowledge of professional
tools and practices is desirable, we nonetheless feel that these kinds of ideas and issues are
best tackled when students have progressed further with their studies and are motivated
to tackle more abstract challenges.

6 Conclusion: Back Here on Earth

In order to understand why the practical benefits of teaching with Jupyter notebooks
outweigh the technical and conceptual challenges encountered, it is worth returning to the
evaluation criteria outlined near the start of this work. Table 1 summarises the pros and
cons observed across the five dimensions identified by our review of the state-of-the-art
nearly six years ago.

From this, the principal technical recommendation is that a flexible mix of platforms
should be used to deliver Jupyter-based learning. We recommend Binder to deliver
foundational material using few non-core Python libraries, and now strongly recommend
that students use Docker in subsequent modules. However, a critical issue is that Windows
10 Home Edition does not support Docker, and it is therefore still necessary to support
direct installation of Anaconda Python and associated configuration of the ‘kernel’ using a

REGION : Volume 7, Number 1, 2020

https://www.anaconda.com/distribution/

J. Reades 31

YAML text file. We are also investigating the use of a containerised JupyterHub running
on our own hardware: this would allow students to mimic using Binder while benefiting
from the ability to save work and make full use of Python’s capabilities. All of the code
supporting these configurations is available as a Github repository, as is Arribas-Bel’s
resource.

6.1 And Back to the Future

A failure to engage directly with computational approaches and tools poses long-term
risks: while ours ‘has always been a following discipline’ (Burton 1963), what is new is
that other disciplines have now taken an interest in cities and regions (O’Sullivan, Manson
2015). Ruppert (2013) warns, “if social scientists do not step forward, then computational
social science risks becoming the exclusive domain of . . . computing scientists” (Ruppert
(2013). However, there is also an enormous opportunity for students equipped with
both domain knowledge and programming skills to act as ‘knowledge brokers’ (Bowlick,
Wright 2018). As Mir et al. (2017) note: “truly transformative work at the intersection
of computing and . . . other disciplines requires . . . people with heterogeneous skill-sets
(both computational and non-computational) who, despite their differences in training,
can work collaboratively.” In other words, facing the future requires both translators and
explorers: individuals who understand the broader terrains across which knowledge moves
and the frontiers at which new knowledge is generated.

We have also come to believe that the use of Jupyter-like platforms in non-STEM
disciplines may have a role to play in addressing a deeper problem: the widening par-
ticipation challenge in computationally-oriented disciplines such as data science (The
Royal Society 2019). A particular contribution is these other disciplines’ capacity to
provide an applied context for computational training that helps to motivate further
study and engagement (see Bort et al. 2015, for a creative application in literary studies).
It should not be the responsibility of Geography and allied fields to plug the so-called
‘leaky pipeline’ (Berryman 1983), but they may yet create novel pathways for a more
diverse cohort of students to enter computationally intensive fields. Such an outcome
would not only be to the benefit of Computer Science, it would very much be to the
benefit of an innovative Regional Science as well.

Acknowledgements

This work builds on the input of many – staff and students – to the Geocomputation
and Spatial Analysis pathway at King’s College London; however, I wish to particularly
acknowledge the critical contributions of Dr. James Millington, Michele Ferretti, Dr. Chen
Zhong, and Dr. Yijing Li. Finally, Dr. Arribas-Bel has donated many hours of his time –
directly and by example – to helping me to develop and migrate our teaching environment.

References

Arribas Bel D (2014) Accidental, open and everywhere: Emerging data sources for the
understanding of cities. Applied Geography 49: 45–53. CrossRef.

Arribas Bel D (2019) A course on geographic data science. The Journal of Open Source
Education 2: 42. CrossRef.

Arribas Bel D, Reades J (2018) Geography and computers: Past, present, and future.
Geography Compass e12403

Barnes T (2013) Big data, little history. Dialogues in Human Geography 3: 297–302

Berryman S (1983) Who will do science? Trends, and their causes in minority and female
representation among holders of advanced degrees in science and mathematics. A special
report. Rockefeller Foundation, New York, NY

REGION : Volume 7, Number 1, 2020

https://github.com/conjuring
https://github.com/kingsgeocomp/gsa_env/
https://github.com/darribas/gds_env
https://github.com/jamesdamillington/
https://github.com/miccferr
https://github.com/daisy8738
https://github.com/daisy8738
https://github.com/aolifodaisy
https://github.com/darribas/
https://doi.org/10.1016/j.apgeog.2013.09.012
https://doi.org/10.21105/jose.00042

32 J. Reades

Bort H, Czarnik M, Brylow D (2015) Introducing computing concepts to non majors: A
case study in gothic novels. Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 132–137. ACM. CrossRef.

Bowlick F, Goldberg D, Bednarz S (2017) Computer science and programming courses in
geography departments in the United States. The Professional Geographer 69: 138–150.
CrossRef.

Bowlick F, Wright D (2018) Digital data centric geography: Implications for geography’s
frontier. The Professional Geographer 70: 687–694. CrossRef.

Bradbeer J (1999) Barriers to interdisciplinarity: Disciplinary discourses and student
learning. Journal of Geography in Higher Education 23: 381–396. CrossRef.

Britain S (1999) A framework for pedagogical evaluation of virtual learning environments.
Report, Joint Information Systems Committee. https://www.webarchive.org.uk/way-
back/archive/20140613220103/http://www.jisc.ac.uk/media/documents/program-
mes/jtap/jtap-041.pdf

Burton I (1963) The quantitative revolution and theoretical geography. The Canadian
Geographer/Le Géographe Canadien 7: 151–162. CrossRef.

Chapman L (2010) Dealing with maths anxiety: How do you teach mathematics in
a geography department? Journal of Geography in Higher Education 34: 205–213.
CrossRef.

Cresswell T (2014) Déjà vu all over again: Spatial science, quantitative revolutions and
the culture of numbers. Dialogues in Human Geography 4: 54–58

Etherington T (2016) Teaching introductory GIS programming to geographers using an
open source python approach. Journal of Geography in Higher Education 40: 117–130.
CrossRef.

González Bailón S (2013) Big data and the fabric of human geography. Dialogues in
Human Geography 3: 292–296. CrossRef.

Gorman S (2013) The danger of a big data episteme and the need to evolve geographic
information systems. Dialogues in Human Geography 3: 285–291. CrossRef.

Guzdial M (2010) Does contextualized computing education help? ACM Inroads 1: 4–6.
CrossRef.

Hodgen J, McAlinden M, Tomei A (2014) Mathematical transitions: A report on the
mathematical and statistical needs of students undertaking undergraduate studies in
various disciplines. Report, The Higher Education Academy

Johnston R, Harris R, Jones K, Manley D, Sabel C, Wang W (2014) Mutual misunder-
standing and avoidance, misrepresentations and disciplinary politics: Spatial science
and quantitative analysis in (United Kingdom) geographical curricula. Dialogues in
Human Geography 4: 3–25. CrossRef.

Kluyver T, Ragan Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K,
Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C, Jupyter
Development Team (2016) Jupyter notebooks – a publishing format for reproducible
computational workflows. In: Loizides F, Schmidt B (eds), Positioning and power in
academic publishing: Players, agents and agendas. IOS Press, 97–90

Lazer D, Pentland A, Adamic L, Aral S, Barabási A, Brewer D, Christakis N, Contractor
N, Fowler J, Gutmann M, Jebara T, King G, Macy M, Roy D, Van Alstyne M (2009) Life
in the network: The coming age of computational social science. Science 323: 721–723.
CrossRef.

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1145/2676723.2677308
https://doi.org/10.1080/00330124.2016.1184984
https://doi.org/10.1080/00330124.2018.1443478
https://doi.org/10.1080/03098269985326
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://www.webarchive.org.uk/wayback/archive/20140613220103/http://www.jisc.ac.uk/media/documents/programmes/jtap/jtap-041.pdf
https://doi.org/10.1111/j.1541-0064.1963.tb00796.x
https://doi.org/10.1080/03098260903208277
https://doi.org/10.1080/03098265.2015.1086981
https://doi.org/10.1177/2043820613515379
https://doi.org/10.1177/2043820613513394
https://doi.org/10.1145/1869746.1869747
https://doi.org/10.1177/2043820614525706
https://doi.org/10.1126/science.1167742

J. Reades 33

Ley D, Braun B, Domosh M, Elliott S, Le Heron R, Peake L, Willekens F, Yeoh B (2013) In-
ternational benchmarking review of UK human geography. Report, Economic and Social
Research Council, in partnership with the Royal Geographical Society (with IBG) and
the Art and Humanities Research Council. https://esrc.ukri.org/files/research/research-
and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/

Lukkarinen A, Sorva J (2016) Classifying the tools of contextualized programming
education and forms of media computation. Proceedings of the 16th Koli Calling
International Conference on Computing Education Research, 51–60. ACM. CrossRef.

Macdonald R, Bailey C (2000) Integrating the teaching of quantitative skills across the
geology curriculum in a department. Journal of Geoscience Education 48: 482–486.
CrossRef.

Mir D, Mishra S, Ruvolo P, Pollock L, Engen S (2017) How do faculty partner while
teaching interdisciplinary CS+X courses: Models and experiences. Journal of Computing
Sciences in Colleges 32: 24–33

Muller C, Kidd C (2014) Debugging geographers: Teaching programming to non computer
scientists. Journal of Geography in Higher Education 38: 175–192. CrossRef.

O’Sullivan D, Manson S (2015) Do physicists have geography envy? and what can
geographers learn from it? Annals of the Association of American Geographers 105:
704–722. CrossRef.

Pears A, Seidman S, Malmi L, Mannila L, Adams E, Bennedsen J, Devlin M, Paterson
J (2007) A survey of literature on the teaching of introductory programming. ACM
SIGCSE Bulletin 39: 204–223. CrossRef.

Reades J, De Souza J, Hubbard P (2019) Understanding urban gentrification through
machine learning. Urban Studies 56: 922–942. CrossRef.

Reades J, Ferretti M, Millington J (2019) Code camp: 2019. Github repository, King’s
College London

Ruppert E (2013) Rethinking empirical social sciences. Dialogues in Human Geography 3:
268–273. CrossRef.

Singleton A (2014) Learning to code. Geographical Magazine 77

Singleton A, Arribas Bel D (2019) Geographic data science. Geographical Analysis: 1–15.
CrossRef.

Spronken-Smith R (2013) Toward securing a future for geography graduates. Journal of
Geography in Higher Education 37: 315–326. CrossRef.

Stone B (2013) Differences between for & while loops (in Python). Video, YouTube.
https://www.youtube.com/watch?v=9AJ0uoxtdCQ

The British Academy (2012) Society counts. Report, The British Academy, https://www.-
thebritishacademy.ac.uk/sites/default/files/BA Position Statement - Society Counts.pdf

The Royal Society (2019) Dynamics of data science skills: How can all sectors benefit
from data science talent? Report, The Royal Society, https://royalsociety.org/-/me-
dia/policy/projects/dynamics of data science/dynamics of data science skills report.pdf

Torrens P (2010) Geography and computational social science. GeoJournal 75: 133–148.
CrossRef.

Ufford M, Pacer M, Seal M, Kelley K (2018) Beyond interactive: Notebook innova-
tion at Netflix. Blog post, Netflix, https://netflixtechblog.com/notebook-innovation-
591ee3221233. [last checked: 3 October 2019]

REGION : Volume 7, Number 1, 2020

https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/
https://esrc.ukri.org/files/research/research-and-impact-evaluation/international-benchmarking-review-of-uk-human-geography/
https://doi.org/10.1145/2999541.2999551
https://doi.org/10.5408/1089-9995-48.4.482
https://doi.org/10.1080/03098265.2014.908275
https://doi.org/10.1080/00045608.2015.1039105
https://doi.org/10.1145/1345375.1345441
https://doi.org/10.1177/0042098018789054
https://doi.org/10.1177/2043820613514321
https://doi.org/10.1111/gean.12194
https://doi.org/10.1080/03098265.2013.794334
https://www.youtube.com/watch?v=9AJ0uoxtdCQ
https://www.thebritishacademy.ac.uk/sites/default/files/BA%20Position%20Statement%20-%20Society%20Counts.pdf
https://www.thebritishacademy.ac.uk/sites/default/files/BA%20Position%20Statement%20-%20Society%20Counts.pdf
https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf
https://royalsociety.org/-/media/policy/projects/dynamics-of-data-science/dynamics-of-data-science-skills-report.pdf
https://doi.org/10.1007/s10708-010-9361-y
https://netflixtechblog.com/notebook-innovation-591ee3221233
https://netflixtechblog.com/notebook-innovation-591ee3221233

34 J. Reades

Wikle T, Fagin T (2014) GIS course planning: A comparison of syllabi at US college and
universities. Transactions in GIS 18: 574–585. CrossRef.

Wise N (2018) Assessing the use of geospatial technologies in higher education teaching.
European Journal of Geography 9

Xiao N (2016) GIS Algorithms: Theory and Applications for Geographic Information
Science & Technology. Research Methods. SAGE. CrossRef.

© 2020 by the authors. Licensee: REGION – The Journal of ERSA, European
Regional Science Association, Louvain-la-Neuve, Belgium. This article is distri-

buted under the terms and conditions of the Creative Commons Attribution, Non-Commercial
(CC BY NC) license (http://creativecommons.org/licenses/by-nc/4.0/).

REGION : Volume 7, Number 1, 2020

https://doi.org/10.1111/tgis.12048
https://doi.org/10.4135/9781473921498
http://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Dependencies
	Context
	Teaching Programming to Non Programmers
	Course Structure
	Contextualised Computing

	How We Reached Jupyter
	Pretty Walled Gardens
	The Wrong Kind of Flexibility
	Escape Velocity

	Discussion
	Cloning Around
	Docking Safely
	Houston, We Have a Problem

	Conclusion: Back Here on Earth
	And Back to the Future

