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Abstract. Methods of regional economic analysis are widely used in regional and urban
economics as well as in economic geography. This paper introduces the REAT (Regional
Economic Analysis Toolbox) package for the programming environment R, which pro-
vides a collection of mathematical regional analysis methods in a user-friendly way. The
focus is on the identification of regional inequality, beta and sigma convergence, measure-
ment of agglomerations, point-based measures of clustering and accessibility, as well as
regional growth. The theoretical basics of the applications are briefly introduced, while
the usage of the most important functions is presented and explained using real data.

1 Introduction

Methods of regional economic analysis (or regional analysis) are used frequently in theory-
based, empirical studies from regional and urban economics as well as (quantitative)
economic geography. These methods aim at analyzing some of the most important issues
in the mentioned research fields, including (but not limited to) the existence and evolution
of agglomerations, regional economic growth and regional disparities (Capello, Nijkamp,
2009; Dinc, 2015; Farhauer, Kröll, 2014; Schätzl, 2000). In any of the mentioned fields,
a growing amount of quantitative data has to be processed when using traditional or
novel methods and models of regional analysis. This paper introduces the package (add-
on) REAT (Regional Economic Analysis Toolbox) (Wieland, 2019) for the programming
environment R (R Core Team, 2018a). The package provides a collection of mathematical
regional analysis applications, designed in a relatively user-friendly way.

The main topics in the regional analysis context can be summarized as follows, show-
ing also the structure of the present paper with respect to the presented approaches and
their application in REAT:

1. Identifying regional inequality (or regional disparities) using indicators of concen-
tration and/or dispersion (Section 2)

2. Regional disparities over time leading to the concept of beta and sigma convergence
(Section 3)

3. Measuring agglomerations, which means the specialization of regions and the spatial
concentration of industries as well as more complex cluster indices (Section 4)

4. Point-based measures of clustering and accessibility (Section 5)

5. Regional growth, especially shift-share analysis (Section 6)
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Note that, in its original form, the open source software R is a command-line environment
including a lot of mathematical and statistical features. For the installation of R and its
packages as well as the basics of navigation and implemented statistical functions, see
the R documentations (R Core Team, 2018b). A good supplement for working with R is
RStudio (RStudio Team, 2016). The REAT package deals with several R data types: The
most functions require and calculate numeric vectors, but, in some cases, also objects
of type matrix, data frame and list, depending on the complexity of calculation. For
a quick introduction to the data types in R and their properties, see e.g. Kabacoff (2017).

2 Concentration, dispersion and regional disparities

2.1 Indicators of concentration and dispersion

Regional disparities are a frequent topic in economic geography and regional economics.
The spatial inequality with respect to e.g. regional output, income or employment is an
essential element of polarization theory (Myrdal, 1957) and ”New Economic Geography”
(Krugman, 1991; Fujita et al., 2001). Assessing regional disparities is possible using
concentration and dispersion indicators, which belong to the univariate and descriptive
analysis in statistics. Apart from regional economics, these measures are used in several
contexts, such as competition economics (market concentration of firms) or welfare eco-
nomics (income inequality). For a review of the most common indicators with respect
to regional inequality, see Portnov, Felsenstein (2010), for studies comparing different
indicators in the regional economic context using empirical data, see e.g. Gluschenko
(2018); Habánik et al. (2013); Huang, Leung (2009); Palan (2017); Petrakos, Psycharis
(2016).

Concentration is operationalized as the discrepancy between an empirical distribution
of a variable x (e.g. annual turnover, income, gross domestic product [GDP]) with n
observations or objects (e.g. competing firms, households, regions) and a (theoretical)
equal distribution or a reference distribution (e.g. population distribution). Dispersion
indicators aim at the deviation from the arithmetic mean of x, x̄. In this context, Portnov,
Felsenstein (2005, 2010) distinguish between measures of deprivation and variation.

Typical measures of regional disparities are the Gini coefficient, the Herfindahl-
Hirschman index and the coefficient of variation (Lessmann, 2005). The most popular
measure of concentration is the Gini coefficient (Gini, 1912) in combination with the
Lorenz curve (Lorenz, 1905). There are several calculation approaches for the Gini coef-
ficient, all producing the same result. The Lorenz curve is a graphical indicator, showing
the deviation of the empirical shares of the regarded variable x from a (theoretical) equal
distribution. Another well-known indicator is the Herfindahl-Hirschman index, which
was developed independently by Hirschman (1945) and Herfindahl (1950), both in the
context of competition economics. Several other concentration indicators are also applied
in the fields of regional economics with respect to regional disparities, such as the Hoover
coefficient (Hoover, 1936) and the Theil coefficient (Theil, 1967).

Except for the standard deviation, whose unit is equal to the unit of x, all common
indicators are dimensionless. Most of them (except for standard deviation and coeffi-
cient of variation) have a fixed value range, normally between zero (indicating complete
equality/dispersion) and one (indicating complete inequality/concentration).

Most of the common indicators are mathematically formulated in an unweighted and
in a weighted form, while, in the context of regional disparities, the latter is mostly
done using the regions’ proportion of the total (e.g. national) population (Doran, Jordan
2013; Lessmann 2014; Mussini 2017; Petrakos, Psycharis 2016; for a critical discussion of
weighting these coefficients, see Gluschenko 2018). In the literature, there are different
formulations where the weighted coefficients also include a weighted arithmetic mean.
Note that, in the case of the population-weighted Gini coefficient, a weighted arithmetic
mean is mandatory to keep the indicators’ value range.

Especially when dealing with GDP per capita as an indicator of regional economic
output, several recent studies use dispersion measures rather than concentration mea-
sures, especially the (weighted) coefficient of variation (e.g. Lessmann 2005, 2014, 2016;
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Lessmann, Seidel 2017; Petrakos, Psycharis 2016). This dispersion indicator is a dimen-
sionless normalization of the standard deviation. Weighting the coefficient of variation
with population shares was introduced by Williamson (1965), which has led to calling
this coefficient the Williamson index. As regional incomes or outputs are not normally
distributed in most cases, resulting in biased arithmetic means used in the calculation of
dispersion measures, the regarded variable may be log-transformed, which means replac-
ing xi with log(xi) in the calculations.

Table 1 shows the common indicators, including their (population-)weighted and their
normalized form (if there exist any) and the corresponding value ranges. The formulae
are shown in a way that includes several ways of application. The regarded variable
is always named xi, while the (population) weighting is called wi. Some indicators,
such as the Hoover or the Coulter coefficient, require a variable representing a reference
distribution the shares of xi are compared to. This reference is not a weighting. However,
in many studies, the regional population is also used for the reference distribution. In
these cases, reference and weighting are the same data. The reference distribution may
also be equal to 1/n.

Several indicators are also used for the analysis of regional specialization or the spatial
concentration of industries, such as the Hoover coefficient or the Herfindahl-Hirschman
index or its inverse (1/HHI ; also known as the “equivalent number” in the competition
context). Other coefficients of concentration and specialization are discussed in Section
4. The last coefficient in Table 1, the mean square successive difference (von Neumann
et al., 1941) is a measure for time variability not originating from but also transferable
to regional economics.

2.2 Application in REAT

2.2.1 REAT functions for concentration and dispersion indicators

Table 2 shows the functions for concentration and dispersion measures implemented in
the REAT package. All functions require at least one argument, a numeric vector with
a length equal to n, containing the regarded variable x (e.g. income) with i observations
(e.g. regions), where i = 1, ..., n. This data may be a single vector or a column of a
data frame or matrix.

An optional weighting of the vector x can be done using the function argument
weighting which is also a numeric vector of length n. By default, the functions remove
missing (NA) values. The hoover() function always needs a reference distribution (see
the Hoover coefficient formula in Table 1), which is stated via the ref argument, also
requiring a numeric vector of length n. If no reference variable is stated (ref = NULL),
the reference is set to 1/n.

All functions (except for disp()) return the single value of the computed coefficient.
In the relevant cases (gini(), gini2(), herf() and cv()), a normalization of the coeffi-
cient is possible using the function argument coefnorm = TRUE, returning the normalized
coefficient instead of the raw coefficient. The function disp() is a wrapper for all men-
tioned functions, calculating all coefficients (except for the MSSD) at once for one vector
x or a set of variables/columns from a data frame or matrix.

Note that there are two functions for the Gini coefficient, gini() and gini2(), both
producing the same result in the unweighted case. The former function is designed
for income inequality, where the weighting option is designed for the calculation of the
Gini coefficient for groups (e.g. income classes), where the weighting represents the group
mean. The function gini2() is designed for the population-weighted analysis of regional
inequality.

2.2.2 Application example: Small-scale regional disparities in health care provision

Regional inequality with respect to health care providers is a topic of high societal signif-
icance. In Germany, the health care planning system (Kassenärztliche Bedarfsplanung)
attempts to flatten the disparities of local health care provision (Kassenärztliche Bun-
desvereinigung, 2013). Here, we analyze small-scale regional disparities in health care
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Table 1: Indicators of concentration and dispersion for analyzing regional disparities

Indicator Unweighted Weighted Normalized

Gini G = 1
2n2x̄

∑n

i=1

∑n

j=1
|xi − xj | Gw = 1

2x̄w

∑n

i=1

∑n

j=1
wiwj |xi − xj | G∗ = n

n−1G

0 ≤ G ≤ 1− 1
n 0 ≤ G ≤ 1− 1

n 0 ≤ G∗ ≤ 1

HHI HHI =
∑n

i=1
(

xi∑n

i=1
xi

)2 HHI∗ =
HHI− 1

n

1− 1
n

1
n ≤ HHI ≤ 1 0 ≤ HHI∗ ≤ 1

Hoover HC = HCw =

1
2 [
∑n

i=1
| xi∑n

i=1
xi

− ri∑n

i=1
ri

|] 1
2 [
∑n

i=1
wi|

xi∑n

i=1
xi

− ri∑n

i=1
ri

|]

0 ≤ HC ≤ 1 0 ≤ HC ≤ 1

Theil TC = 1
n

∑n

i=1
ln( x̄xi

) TCw = 1
n

∑n

i=1
wi ln( x̄xi

)

0 ≤ TC ≤ 1 0 ≤ TCw ≤ 1

Coulter CC =√
1
2 [
∑n

i=1
wi(

xi∑n

i=1
xi

− ri∑n

i=1
ri

)2]

0 ≤ CC ≤ 1

Atkinson AI = 1− [ 1
n

∑n

i=1
x1−ε
i

]
1

1−ε

0 ≤ AI ≤ 1

Dalton δ =
log( 1

n

∑n

i=1
xi)

log( n
√

πn
i=1

xi)

0 ≤ δ ≤ ∞

SD s =
√

1
n

∑n

i=1
(xi − x̄)2 sw =

√
1
n

∑n

i=1
wi(xi − x̄)2 see CV

0 ≤ s ≤ ∞ 0 ≤ s ≤ ∞

CV v = 1
¯|x|

√
1
n

∑n

i=1
(xi − x̄)2 see Williamson v∗ = v√

n

0 ≤ v ≤ ∞ 0 ≤ v∗ ≤ 1

Williamson WI = 1
¯|x|

√
1
n

∑n

i=1
wi(xi − x̄)2

0 ≤ v ≤ ∞

MSSD MSSD =

∑T−1

t=1
(xt+1−xt)

2

T−1

Notes: xi is the i-th observation of the regarded variable x (e.g. GDP [per capita] in region i), xj is the
value of the same variable with respect to object j, ri is the i-th observation of a reference variable (e.g.

population), n is the number of objects (e.g. regions), x̄ is the arithmetic mean of x: x̄ = 1
n

∑n

i=1
xi, x̄

w is the

weighted arithmetic mean of x: x̄w = 1
n

∑n

i=1
wixi, wi and wj are the population weightings: Pi/

∑n

i=1
Pi

and Pj/
∑n

j=1
Pj , where Pi and Pj are the population sizes of regions i and j, respectively, ε is an inequality

aversion parameter (0 < ε < ∞) for the Atkinson index, t is a given time period and T is the number all
regarded time periods.
Compiled from: Charles-Coll (2011); Cracau, Durán Lima (2016); Damgaard, Weiner (2000); Gluschenko

(2018); Heinemann (2008); Kohn, Öztürk (2013); Portnov, Felsenstein (2005, 2010); Taylor, Cihon (2004);
Schätzl (2000); Störmann (2009)

provision in two neighboring German counties (Göttingen and Northeim) using the data
on medical practices and local population from Wieland, Dittrich (2016). The data is
stored in the datasets GoettingenHealth1 and GoettingenHealth2, both included as
example datasets in the REAT package. The study area is segmented into 420 districts,
representing either city districts of larger cities or villages and hamlets.

The dataset GoettingenHealth2 contains these 420 regions with an individual ID
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Table 2: REAT functions for concentration and dispersion indicators

Indicator REAT function Mandatory arguments Optional arguments Output

Gini/ gini() vector x weighting vector, value: G or G∗

Lorenz remove NAs, or Gw,
Lorenz curve, optional: plot (LC)
normalization

gini2() vector x weighting vector Pi, value: G or G∗

remove NAs, or Gw,
normalization

lorenz() vector x weighting vector, plot LC,
remove NAs, value: G or Gw

and/or G∗

HHI herf() vector x remove NAs, value: HHI or
normalization HHI ∗ or NHHI

Hoover hoover() vector x weighting vector Pi, value: HC or HCw

reference vector ri remove NAs

Theil theil() vector x weighting vector Pi, value: TC or TCw

remove NAs

Coulter coulter() vector x weighting vector Pi, value: CC
remove NAs

Atkinson atkinson() vector x remove NAs, value: AI
epsilon

Dalton dalton() vector x remove NAs value: δ

SD sd2() vector x weighting vector, value: s or sW

remove NAs,
treating as sample

CV cv() vector x weighting vector, value: v or vW

remove NAs, or v∗

normalization,
treating as sample

Williamson williamson() vector x, remove NAs value: WI
weighting
vector Pi

MSSD mssd() vector x remove NAs value: MSSD

All indicators disp() vector x weighting vector Pi, matrix with 13
or vectors x1, x2, ... remove NAs (no weighting)

from dataframe or 19 indicators
(incl. weighted)

Source: own compilation.

(column district) and geographic coordinates (columns lat and lon, respectively)
and the number of general practitioners, psychotherapists and pharmacies located there
(columns phys_gen, psych and pharm, respectively) as well as the local population (col-
umn pop). First, we load the dataset:

data(GoettingenHealth2)

Now, we investigate how the health care providers are dispersed over the whole area.
In the first step, we calculate the Gini coefficient for the concentration of general practi-
tioners using the REAT function gini():

gini (GoettingenHealth2$phys_gen)

[1] 0.8386269

The empirical Gini coefficient is equal to 0.839, indicating a relatively strong concen-
tration. If we want to calculate the normalized (unbiased) indicator instead, we use the
same function with the optional argument coefnorm = TRUE:
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gini (GoettingenHealth2$phys_gen, coefnorm = TRUE)

[1] 0.8406284

In the same way, we calculate e.g. the Herfindahl-Hirschman index, non-normalized
and normalized:

herf (GoettingenHealth2$phys_gen)

[1] 0.01528053

herf (GoettingenHealth2$phys_gen, coefnorm = TRUE)

[1] 0.01293036

Remember that the minimum of HHI is 1/n (here: 1/420 ≈ 0.00238) and the mini-
mum of HHI ∗ is equal to zero.

If we want to inspect the concentration graphically, we could use the Lorenz curve,
which can be plotted using either the functions gini() or lorenz(). Here, we use
gini(), tell the function to plot the curve (lc = TRUE), and include several graphical
parameters (such as lc.col for the color of the Lorenz curve or lcx and lcy for the
x/y axes labels). As we want to compare the population distribution to the location
distribution, we start by plotting the Lorenz curve for the local population:

gini(GoettingenHealth2$pop, lc = TRUE, lsize = 1, le.col = "black",

lc.col = "orange", lcx = "Shares of districts", lcy = "Shares of

providers", lctitle = "Spatial concentration of health care

providers", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Population 2016:", lcg.lab.x = 0, lcg.lab.y = 1)

# Gini coefficient and Lorenz curve for the no. of inhabitants

[1] 0.5840336

Now, we overlay the Lorenz curves of general practitioners and psychotherapists,
which means adding two more curves (function argument add.lc = TRUE):

gini(GoettingenHealth2$phys_gen, lc = TRUE, lsize = 1, add.lc = TRUE,

lc.col = "red", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Physicians 2016:", lcg.lab.x = 0, lcg.lab.y = 0.85)

# Adding Gini coefficient and Lorenz curve for the general practitioners

[1] 0.8386269

gini(GoettingenHealth2$psych, lsize = 1, lc = TRUE, add.lc = TRUE,

lc.col = "blue", lcg = TRUE, lcgn = TRUE, lcg.caption =

"Psychotherapists 2016:", lcg.lab.x = 0, lcg.lab.y = 0.7)

# Adding Gini coefficient and Lorenz curve for psychotherapists

[1] 0.9329298

Our commands result in the output of Figure 1, showing three Lorenz curves (pop-
ulation, general practitioners and psychotherapists) and the line of equality (diagonal).
All three empirical distributions differ from an equal distribution. In about 72% of the
regions, representing about 23% of the whole population (orange curve; G ≈ 0.584), no
general practitioner is located (red curve; G ≈ 0.839). But the psychotherapists are
more concentrated, as they are located only in about 13% of all districts (blue curve;
G ≈ 0.933). As we can see, the physicians are more concentrated than the inhabitants
but the psychotherapists are more concentrated than the physicians.

Now, we calculate all mentionened concentration and dispersion coefficients at once for
all three types of providers using the function disp(), including a population weighting:

disp(GoettingenHealth2[c(5,6,7)], weighting = GoettingenHealth2$pop)

# column 5 = general practitioners, column 6 = psychotherapists,

# column 7 = pharmacies, column "pop" = local population
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Figure 1: Lorenz curves for the spatial concentration of health care providers

Our output is:

Concentration and dispersion measures

Note: w = weighted, n = normalized, eq = equivalent number

phys_gen psych pharm

Gini 0.838626907 0.932929782 0.891547619

Gini n 0.840628403 0.935156345 0.893675418

Gini w 0.629454516 0.770895945 0.705628058

Gini w n 0.630956794 0.772735792 0.707312135

HHI 0.015280527 0.038494685 0.024166667

HHI n 0.012930361 0.036199923 0.021837709

HHI eq 65.442769020 25.977611940 41.379310345

Hoover 0.721428571 0.883333333 0.838095238

Hoover w 0.001852337 0.003130602 0.003418787

Theil NA NA NA

Theil w NA NA NA

Coulter 0.049850824 0.123305927 0.065569205

Atkinson 0.761164110 0.900755425 0.854223763

Dalton NA NA NA

SD 1.714506606 1.095496987 0.865286915

SD w 4.010246439 1.847716870 2.401476794

CV 2.330397328 3.899226565 3.028504203

CV n 0.113847359 0.190489683 0.147952112

Williamson 1.429449565 1.965446423 1.709288672

We conclude that any concentration/dispersion measure is the highest for psychother-
apists and the lowest for the general practitioners, while the values for pharmacies lie
between them. The regional disparities with respect to pharmacies are higher than those
with respect to general practitioners, while the most unequal distribution is that of psy-
chotherapists. In other words: The pharmacies are more spatially concentrated than the
general practitioners and the psychotherapists are the most concentrated health locations
here.

In most cases, population weighting reduces the coefficient values. That is, because
districts with a large (small) population have a high (low) impact on the resulting co-
efficient and the districts without health service providers are also small districts. Fur-
thermore, as the regarded variables contain zero values (which means no health service
locations), the Theil coefficient (including the term ln(x̄/xi)) and the Dalton coefficient
(including the n-th root) cannot be computed, resulting in an output of NA.

REGION : Volume 6, Number 3, 2019



R8 T. Wieland

The visible output of any function presented above can be saved in a new R object:

gini_phys <- gini (GoettingenHealth2$phys_gen)

# save as gini_phys (numeric vector of length = 1)

We can simply access our result:

gini_phys

[1] 0.8386269

The function disp() returns a matrix with 13 rows (when only unweighted coeffi-
cients are computed) or 19 rows (in the case of additional weighted coefficients) and one
column for each regarded variable:

disp_Goettingen <- disp(GoettingenHealth2[c(5,6,7)],

weighting = GoettingenHealth2$pop)

# save as disp_Goettingen (matrix)

We call our results:

disp_Goettingen

phys_gen psych pharm

Gini 0.83862691 0.93292978 0.89154762

Gini n 0.84062840 0.93515634 0.89367542

...

3 Regional convergence

3.1 The concept of beta and sigma convergence

Regional convergence is derived from (regional) growth theory (for an extensive survey,
see Barro, Sala-i Martin 2004) and means the decline of regional disparities over time.
The neoclassical growth model states that a region’s economic output (e.g. GDP per
capita) depends on its stock of factors of production, capital and labor (aggregate pro-
duction function), on condition of constant returns to scale and diminishing marginal
product of the factor inputs. As a consequence, regions with a high (low) initial level
of factor input grow slower (faster) than “poor” (“rich”) regions, what is called beta
convergence. It is assumed that all regions converge to the same regional output level
(steady-state). Sigma convergence means the decline of regional inequality with respect
to regional output over time itself (Allington, McCombie, 2007; Capello, Nijkamp, 2009).

Both types of convergence can be tested empirically, as presented in Table 3. When
testing for beta convergence, the natural logarithms of output growth over T time periods
in i regions is regressed against the natural logarithms of the initial output values at time
t. The original convergence formula was presented by Barro, Sala-i Martin (2004) using
a nonlinear least squares (NLS) estimation approach. But in many cases, a linear trans-
formation is used which allows for ordinary least squares (OLS) estimation (Allington,
McCombie, 2007; Dapena et al., 2016; Schmidt, 1997; Young et al., 2008). The outcome
variable of the convergence equation can be the regional growth between two years (e.g.
Young et al. 2008) or the average growth rate per year (e.g. Goecke, Hüther 2016; Puente
2017; Weddige-Haaf, Kool 2017). Significance tests are carried out with t-tests for the
regression coefficients and, in the OLS case, the F -test for the significance of R2.

The estimated parameter of interest is the slope of the model, here denoted β (that is
why the modeled process is called beta convergence): If β < 0 and statistically significant,
there is absolute beta convergence. If additional variables (conditional variables) are in-
cluded into the convergence equation, we have a test for conditional beta convergence.
A further interpretation of the β coefficient is possible using the speed of convergence, λ,
and H, the so-called half-life, which means the time (measured in the regarded time peri-
ods) to reduce the regional disparities by one half (Allington, McCombie, 2007; Schmidt,
1997).

Sigma convergence (which is named after the Greek letter for the standard deviation,
σ) can be tested in two ways depending on the number of time periods: The regional
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Table 3: Beta and sigma convergence

Type of convergence Two time periods More than two time periods

Beta convergence absolute

and estimation type NLS NLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α− [
(1−e−βT )

T
] ln(Yi,t1) + ε α− [

(1−e−βT )
T

] ln(Yi,t1) + ε

OLS OLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α+ β ln(Yi,t1) + ε α+ β ln(Yi,t1) + ε

conditional

NLS NLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α− [
(1−e−βT )

T
] ln(Yi,t1) + θXi + ε α− [

(1−e−βT )
T

] ln(Yi,t1) + θXi + ε

OLS OLS

1
T

ln(
Yi,t2
Yi,t1

) = 1
T

∑T

t=1
ln(

Yi,t+1

Yi,t
) =

α+ β ln(Yi,t1) + θXi + ε α+ β ln(Yi,t1) + θXi + ε

β < 0 β < 0

Convergence speed: λ =
− ln(1+β)

T

Half-life: H =
ln(2)
λ

Sigma convergence σt =
√

1
n

∑n

i=1
(Yi,t − Ȳt)2 or

cvt = σt
|Ȳt|

σt1
σt2

> 1 or σ = a+ bt+ ε or

cvt1
cvt2

> 1 cv = a+ bt+ ε

Test statistic:
σ2
t1

σ2
t2

b < 0

Notes: Yi,t is the regional output (e.g. GDP per capita) of region i at time t, Ȳt is the arithmetic mean
of Yi,t for all regions at time t, T is the number of regarded time periods (e.g. years), Xi is a set of
other variables (conditions), σt is the standard deviation of the regional output of all regions, cvt is the
corresponding coefficient of variation, α, β, θ, a and b are estimated coefficients, ε is an error term and
n is the number of regions.
Compiled from: Allington, McCombie (2007); Barro, Sala-i Martin (2004); Furceri (2005); Schmidt
(1997)

inequality between all regions at time t is measured using the standard deviation, σt, or
the coefficient of variation, cvt, for the GDP per capita in its original or natural-logged
form. If only two years are regarded, the quotient of both parameters is computed. If
e.g. σt1 > σt2, the regional inequality has declined from t1 to t2. A significance test can
be applied with a simple ANOVA (analysis of variance), where the test statistic is the
quotient of the underlying variances (σ2) (Furceri, 2005; Schmidt, 1997; Young et al.,
2008). Within a time series, the dispersion parameter is regressed (and plotted) against
time. If the slope coefficient of time is negative, there is sigma convergence (Goecke,
Hüther, 2016; Huang, Leung, 2009; Schmidt, 1997).

3.2 Application in REAT

3.2.1 REAT functions for beta and sigma convergence

Table 4 shows the functions for beta and sigma convergence as implemented in REAT.
The analysis of beta convergence is provided by the functions betaconv.ols() and
betaconv.nls() for OLS and NLS estimation, respectively. Speed of convergence and
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Table 4: REAT functions for beta and sigma convergence

Convergence REAT function Mandatory arguments Optional arguments Output

Beta betaconv.ols() vectors Yi,t1 and Conditions, visible: model
convergence Yi,t2, ..., Yi,T , scatterplot estimates, invisible:

t1 and tT list with model
estimates and

regression data,
optional: plot

betaconv.nls() vectors Yi,t1 and Conditions, visible: model
Yi,t2, ..., Yi,T , scatterplot estimates, invisible:
t1 and tT list with model

estimates and
regression data,
optional: plot

betaconv.speed() values β matrix with
and T λ and H

Sigma sigmaconv() vectors Yi,t1 and Sigma measure, visible: estimates,
convergence (when T = 2) Yi,t2, t1 and tT log, weighting, invisible: matrix

normalization with estimates

sigmaconv.t() vectors Yi,t1 and Sigma measure, visible: model
(when T > 2) Yi,t2, ..., Yi,T , log, weighting, estimates, invisible:

t1 and tT normalization, matrix with
line plot model estimates,

optional: plot

All at once:
Beta and rca() vectors Yi,t1 and Beta estimation, visible: model
sigma Yi,t2, ..., Yi,T , conditions, estimates, invisible:
convergence t1 and tT scatterplot, list with model

sigma measure, estimates and
log, weighting, regression data,

line plot optional: plot

Source: own compilation.

half-life can be computed with the function betaconv.speed(). The ratio test of sigma
convergence for two time periods can be done using the function sigmaconv(), while
a trend regression over time is implemented into the function sigmaconv.t(). Both
convergence types can be analyzed at once with the function rca(), which is a wrapper
for all functions mentioned above.

The functions require (at least) two numeric vectors, containing the regarded vari-
able Y (e.g. GDP per capita) for at least two different time periods, e.g. from the same
data frame. Also the start and end time periods (t1 and tT ) have to be stated. Op-
tionally, a graphical output can be generated (scatterplot for beta convergence, line plot
for sigma convergence with respect to longitudinal data). Furthermore, when analyzing
sigma convergence, the user can choose whether Y should be log-transformed or not
and/or which sigma measure is computed (variance, standard deviation or coefficient of
variation; weighted or non-weighted).

Note that, unlike the functions for regional inequality indicators (Section 2), the REAT
functions for regional convergence distinguish between a visible and an invisible output.
The latter can be saved as a new R object. While the visible output shows the main
results, the invisible output goes beyond that: betaconv.ols(), betaconv.nls() and
rca() return a list, which is the most flexible data type in R, because it consists of a
non-predetermined number of different data objects. Apart from the model results, e.g.
the (transformed) regression data is returned in this invisible output.

3.2.2 Application example: Beta and sigma convergence in Germany on the county level

In this example, we look at regional convergence in Germany. The REAT package includes
the example dataset G.counties.gdp with the GDP (gross domestic product), the pop-
ulation and the GDP per capita for the 402 counties (“Kreise”) in Germany 1992 to 2014
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(complete data only for 2000-2014). First, we load the dataset:

data (G.counties.gdp)

In our case, we prevent scientific notation of numbers in R and set a limit of 4 digits:

options(scipen = 100, digits = 4)

We need the columns named gdppcxxxx, containing the GDP per capita for each
year, e.g. G.counties.gdp$gdppc2010 contains the GDP per capita for 2010. In the
first step, we test absolute beta convergence comparing the years 2010 and 2014 with
OLS estimation using the function betaconv.ols():.

betaconv.ols (G.counties.gdp$gdppc2010, 2010, G.counties.gdp$gdppc2014,

2014, output.results = TRUE)

# Two years, no conditions (Absolute beta convergence)

The output is:

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.104159 0.018934 5.501 0.00000006743

Beta -0.007373 0.001848 -3.990 0.00007867475

Lambda 0.001850 NA NA NA

Halflife 374.640507 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.03827 15.92 1 400 0.00007867

We see that both regression coefficients, α and β, are statistically significant (t ≈ 5.50
and −3.99, respectively, both p < 0.001) and the linear regression model is significant
as a whole (F ≈ 15.92, p < 0.001). The negative sign of β shows that, on average, the
higher the initial GDP per capita, the lower its growth, which indicates absolute beta
convergence. However, the convergence process is very slow: The speed of convergence,
represented by λ, shows a harmonization by 0.185% per year. This implies that the
output gap will be reduced by 50% in approximately 375 years.

Now we check sigma convergence for the same time using the function sigmaconv().
We choose the coefficient of variation as measure, while using the GDP per capita values
in their original form:

sigmaconv (G.counties.gdp$gdppc2010, 2010, G.counties.gdp$gdppc2014,

2014, sigma.measure = "cv", output.results = TRUE)

# Using the coefficient of variation

The output is:

Sigma convergence for two periods (ANOVA)

Estimate F value df1 df2 Pr (>F)

CV 2010 0.03416 NA NA NA NA

CV 2014 0.03316 NA NA NA NA

Quotient 1.03004 1.038 401 401 0.7117

The coefficient of variation is a little smaller in 2014, which means the spatial in-
equality declined between 2010 and 2014. The quotient of the variances is slightly above
one (F = σ2

2010/σ
2
2014 ≈ 1.04), but not statistically significant (p ≈ 0.71).

When analyzing regional convergence with REAT, it is preferable (and more conve-
nient) to use the wrapper function rca(). Instead of repeating the results above, we
test for (absolute) beta and sigma convergence between 2000 and 2014. The analysis of
sigma convergence uses trend regression (function argument sigma.type = "trend") for
the coefficient of variation (sigma.measure = "cv"). We also want plots for both con-
vergence types (beta.plot = TRUE and sigma.plot = TRUE, respectively) with specific
axis labels (e.g. beta.plotX = "Ln (initial GDP p.c.)"). Our code is:

REGION : Volume 6, Number 3, 2019



R12 T. Wieland

rca (G.counties.gdp$gdppc2000, 2000, G.counties.gdp[55:68], 2014,

conditions = NULL, sigma.type = "trend", sigma.measure = "cv",

beta.plot = TRUE, beta.plotLine = TRUE, beta.plotX =

"Ln (initial GDP p.c.)", beta.plotY = "Ln (av. growth GDP p.c.)",

beta.plotTitle = "Beta convergence of German counties 2000-2014",

sigma.plot = TRUE, sigma.plotY = "cv of ln (GDP p.c.)",

sigma.plotTitle = "Sigma convergence of German counties 2000-2014")

# 14 years: 2000 (column 55) to 2014 (column 68)

# no conditions (Absolute beta convergence)

# with plots for both beta and sigma convergence

This results in the following output:

Regional Beta and Sigma Convergence

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0954564 0.0099087 9.634 0.00000000000000000006845

Beta -0.0071323 0.0009885 -7.215 0.00000000000271925822550

Lambda 0.0005113 NA NA NA

Halflife 1355.7282963 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1152 52.06 1 400 0.000000000002719

Sigma convergence (Trend regression)

Estimate Std. Error t value Pr(>|t|)

Intercept 0.5523659 0.03084855 17.91 0.0000000001526

Time -0.0002579 0.00001537 -16.78 0.0000000003446

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.9558 281.4 1 13 0.0000000003446

This function also produces the plots in Figures 2a and 2b, both showing a declining
curve, which is a first indication of both beta and sigma convergence. The beta conver-
gence model is statistically significant (F ≈ 52.06, p < 0.001), as well as the coefficients α
(t ≈ 9.63, p < 0.001) and β (t ≈ −7.21, p < 0.001). Again, we find evidence for absolute
beta convergence because of a negative slope (β ≈ −0.007). The trend regression model
for sigma convergence is significant (F ≈ 281.4, p < 0.001). The slope is significant
and negative (b ≈ −0.00026, t ≈ 17.91, p < 0.001), which indicates sigma convergence.
However, both types of convergence can be regarded as very slow processes: The half-life
value shows that, resulting from the beta convergence model, the regional disparities in
GDP per capita will be halved in approximately 1,356 years. When looking at the trend
regression, we see that the coefficient of variation declines only by 0.00026 per year. An-
other aspect is that we only regarded absolute beta convergence, ignoring other spatial
effects or the impact of regional policy. The latter is also not considered in neoclassical
regional growth theory.

Remembering German reunification, we want to test if there are average growth differ-
ences between West Germany and East Germany (former German Democratic Republic),
which leads to conditional beta convergence. The dataset G.regions.emp contains the
column regional, where the counties are attributed either to West or East Germany,
expressed as character string ("West" or "East"). We need to include our condition
into the convergence equation. Thus, we use the REAT function to.dummy() to create
dummy variables (1/0) out of (nominal scaled) variables, and add the indicator for West
Germany (1, otherwise 0) to our data:

regionaldummies <- to.dummy(G.counties.gdp$regional)

# Creating dummy variables for West/East

# regionaldummies[,1] = East (1/0), regionaldummies[,2] = West (1/0)

G.counties.gdp$West <- regionaldummies[,2]

# Adding the dummy variable for West
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(a) Absolute beta convergence (b) Sigma convergence

Figure 2: Regional convergence in Germany 2000-2014 (n = 402 counties)

Now, we test for conditional beta and sigma convergence, including the condition
“West”, again using the rca() function, but without plots and using the standard devi-
ation (default setting) instead of the cv for sigma convergence. This time, we save the
results in an object:

converg_results <- rca (G.counties.gdp$gdppc2000, 2000,

G.counties.gdp[55:68], 2014, conditions = G.counties.gdp[c(70)],

sigma.type = "trend")

# condition variable "West" in column 70

# Store results in "converg_results"

The output is:

Regional Beta and Sigma Convergence

Absolute Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0954564 0.0099087 9.634 0.00000000000000000006845

Beta -0.0071323 0.0009885 -7.215 0.00000000000271925822550

Lambda 0.0005113 NA NA NA

Halflife 1355.7282963 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1152 52.06 1 400 0.000000000002719

Conditional Beta Convergence

Model coefficients (Estimation method: OLS)

Estimate Std. Error t value Pr (>|t|)

Alpha 0.0754412 0.0102354 7.371 0.0000000000009872

Beta -0.0047020 0.0010517 -4.471 0.0000101720129094

West -0.0053559 0.0009745 -5.496 0.0000000693910790

Lambda 0.0003366 NA NA NA

Halflife 2058.9555949 NA NA NA

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.1774 43.04 2 399 0.00000000000000001192

Sigma convergence (Trend regression)

Estimate Std. Error t value Pr(>|t|)

Intercept 3.895236 0.3267817 11.92 0.00000002264

Time -0.001764 0.0001628 -10.84 0.00000007041

Model summary

Estimate F value df 1 df 2 Pr (>F)

R-Squared 0.9003 117.4 1 13 0.00000007041
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In the rca() output, we can compare the results of absolute and conditional beta
convergence. In the conditional model, the explained variance increases from R2 ≈ 0.12
to R2 ≈ 0.18, which indicates an increased explanatory power of the model due to the
added condition variable. Both models are statistically significant, also the β values are
negative and significant (p < 0.001 in both cases). The condition “West” is significant
(t ≈ −5.50, p < 0.001) and negative, which means that, on average, the GDP per capita
in West German counties grew slower than in East Germany. These results seem to
support the convergence hypothesis from growth theory, but one should not forget that
e.g. political aspects (such as the German and/or EU regional policy) are not considered
in this simple analysis.

As we have saved the invisible function output, we can access specific parts of our
analysis, such as the regression data for the absolute convergence model:

converg_results$betaconv$regdata

# All results in list converg_results

# converg_results contains list betaconv (beta convergence results)

# betaconv contains data frame regdata (regression data)

ln_initial ln_growth

1 11.002 0.01997436

2 10.552 0.02980133

3 10.283 0.01794207

4 10.090 0.01763444

5 10.287 0.02361006

...

If we want to look at the single sigma values, we can address them via:

converg_results$sigmaconv$sigma.trend

# All results in list converg_results

# converg_results contains list sigmaconv (sigma convergence results)

# sigmaconv contains data frame sigma.trend (sigma values)

years sigma.years

gdp1 2000 0.3646

gdppc2001 2001 0.3662

gdppc2002 2002 0.3618

gdppc2003 2003 0.3606

gdppc2004 2004 0.3592

...

4 Specialization of regions and spatial concentration of industries

4.1 Indicators of regional specialization and industry concentration

Specialization of regions or countries and the spatial concentration of industries or firms
are phenomena linked to several research fields in regional economics and economic ge-
ography: Specialization is a key point in traditional theories of international trade with
respect to comparative advantages (Ricardo, 1821) as well as in the generation of the
“New Trade Theory” (introduced by Krugman 1979). Spatial clustering of firms or in-
dustries due to agglomeration economies is a perennial issue in all spatial economic fields.
It especially reemerged in the context of the “New Economic Geography” (e.g. Krugman
1991; Fujita et al. 2001) as well as through the work of Porter (1990) regarding clusters.
The common indicators are broadly discussed in Farhauer, Kröll (2014) or Nakamura,
Morrison Paul (2009). For studies comparing some different indicators, see e.g. Goschin
et al. (2009); Moga, Constantin (2011); Palan (2017).

When looking at the family of indicators of regional specialization and industry con-
centration, we have to distinguish between indicators for aggregate data, such as regional
employment data, and those requiring individual firm data. The first group, compiled in
Table 5, can be differentiated into indicators of specialization and indicators of spatial
concentration. As both types of agglomeration are closely linked to each other, so are the
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Table 5: Coefficients of regional specialization and industry concentration

Indicator Specialization of region j Spatial concentration of industry i

Hoover/Balassa LQij =
eij/ei
ej/e

≡MRCAij =
eij/ej
ei/e

LQj = 1
I

∑I

i=1
LQij LQi = 1

J

∑J

j=1
LQij

Extensions:

O’Donoghue-Gleave SLQij =
LQij−LQi
sd(LQi)

Tian SLLQij =
log(LQij)−log(LQi)

sd(log(LQi))

Hoen-Oosterhaven ARCAij =
eij
ej
− ei

e

Hoover Hj = 1
2

[
∑I

i=1
| eij
ej
− ei

e
|] Hi = 1

2
[
∑J

j=1
| eij
ei
− ej

e
|]

0 ≤ Hj ≤ 1 0 ≤ Hi ≤ 1

Gini Gj = 2
I2R̄

∑I

i=1
λi(Ri − R̄) Gi = 2

J2C̄

∑J

j=1
λj(Cj − C̄)

0 ≤ Gj ≤ 1 0 ≤ Gi ≤ 1

where: Ri =
eij/ej
ei/e

, where: Cj =
eij/ei
ej/e

,

R̄ = 1
I

∑I

i=1
Ri and C̄ = 1

J

∑J

j=1
Cj and

λi = 1, ..., I (λi < λi+1) λj = 1, ..., J (λj < λj+1)

Krugman Kjl =
∑I

i=1
|ssij − s

s
il| Kiu =

∑J

j=1
|scij − s

c
uj |

(J = 2, I = 2) 0 ≤ Kjl ≤ 2 0 ≤ Kiu ≤ 2

where: ssij =
eij
ej

and ssil =
eil
el

where: scij =
eij
ei

and scuj =
euj
ei

Extensions:

Midelfart et al., Kj =
∑I

i=1
|ssij − s̄

s
il| Ki =

∑J

j=1
|scij − s̄

c
uj |

Vogiatzoglou 0 ≤ Kj ≤ 2 0 ≤ Ki ≤ 2

(J > 2, I > 2) where: ssij =
eij
ej

and where: scij =
eij
ei

and

s̄sil = 1
J−1

∑J

i
ssil, s̄cuj = 1

I−1

∑I

u
scuj ,

l 6= j u 6= i

Duranton-Puga RDIj = 1∑I

i=1
|ss
ij
−si|

where: ssij =
eij
ej

and si = ei
e

Litzenberger-Sternberg CIij =
ISijIDij
PSij

where ISij =
eij/aj
ei/a

, IDij =
eij/pj
ei/p

and PSij =
eij/bij
ei/bi

Notes: eij and eil equal the employment of industry i in regions j and l, respectively, ei is the total
employment in industry i, euj ist the employment of industry u in region j, ej is the total employment in
region j, e is the total employment in the whole economy, I is the number of industries, J is the number
of regions, aj is the area of region j, a is the total area in the whole economy, pj is the population in
region j, p is the total population, bij is the number of firms of industry i in region j and bi is the
number of firms in industry i.
Compiled from: Farhauer, Kröll (2014); Hoen, Oosterhaven (2006); Hoffmann et al. (2017); Nakamura,
Morrison Paul (2009); O’Donoghue, Gleave (2004); Tian (2013); Schätzl (2000); Störmann (2009)

corresponding indicators. The empirical basis of all those measures is the employment
e in industry i in region j, eij . This employment stock is compared to some reference,
mostly including the total employment in region j, ej , and/or the total employment in
industry i, ei, as well as the all-over employment e. The individual firm level indicators
in Table 6 can be segmented into indicators for agglomeration of one industry due to
localization economies and indicators for the coagglomeration of different industries due
to urbanization economies.
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Table 6: Coefficients of agglomeration and coagglomeration using individual firm data

Indicator Agglomeration Coagglomeration

Ellison-Glaeser γi =
Gi−(1−

∑J

j=1
s2j )HHI i

(1−
∑J

j=1
s2
j
)(1−HHI i)

γc =
G/(1−

∑J

j=1
s2j )−HHIU−

∑U

i=1
γis

2
i (1−HHI i)

1−
∑U

i=1
s2
i

where: Gi =
∑J

j=1
(scij − sj)

2, where: G =
∑J

j=1
(xj − sj)2,

scij =
eij
ei

, sj =
ej
e

and xj =
∑U

i=1

eij
ei

, sj =
ej
e

, si = ei
e

HHI i =
∑K

k=1
(
eik
ei

)2 and HHIU =
∑U

i=1
s2iHHI i

z-standardization:

zi =
Gi−(1−

∑J

j=1
s2j )HHI i

√
var(Gi)

where: var(Gi) = 2

{
HHI 2

i

[∑J

j=1
s2j

−2
∑J

j=1
s3j + (

∑J

j=1
s2j )

2

]
−∑K

k=1
z4
ik

[∑J

j=1
s2j − 4

∑J

j=1
s3j

+3(
∑J

j=1
s2j )

2

]}
Howard et al. CLab =

∑Ka

k=1

∑Kb

l=1
Ckl

KaKb

XCLab = CLab − CLRNDab

where: Ckl = 1 if firms k and l are located
in the same region and Ckl = 0 otherwise

Notes: eij is the employment of industry i in region j, ei is the total employment in industry i, ej is the
total employment in region j, e is the total employment in the whole economy, eik is the employment of
firm k from industry i, k and l are indices for single firms, I is the number of industries, J is the number
of regions, U is a subset of all I industries (U ≤ I), K is the number of firms and Ka and Kb are the
numbers of firms in industry a and b.

Compiled from: Farhauer, Kröll (2014); Howard et al. (2016); Nakamura, Morrison Paul (2009)

The most popular indicator is the Location Quotient (LQ), which is attributed to
Hoover (1936) and mathematically equivalent to the Revealed Comparative Advantage
(RCA) index, developed by Balassa (1965) in the context of international trade. The LQ
is utilized in many studies (e.g. Bai et al. 2008; Kim 1995) as well as in the OECD Ter-
ritorial Reviews (OECD, 2019). Following O’Donoghue, Gleave (2004) and Tian (2013),
the original formulation can be extended: As the location quotient is not normalized,
there is no cut-off value for defining a cluster, which leads to a standardization of the
computed values via z -transformation. Hoen, Oosterhaven (2006) developed an additive
alternative to the RCA index. The original LQ provides the main mathematical basis for
several indicators developed later, such as the spatial Gini coefficients described below.

Some indicators which are known from the context of regional inequality (see Section
2) are also used for the analysis of agglomeration: A modification of the Gini coefficient
is used for the spatial concentration of industries as well as regional specialization (e.g.
Ceapraz 2008; Wieland, Fuchs 2018). As we can see in the calculation of Ri and Cj , re-
spectively, the spatial Gini coefficient is based on the LQ. Another popular option for an-
alyzing agglomeration is the Hoover coefficient, comparing the structure of an industry/a
region to a reference structure of all industries/regions (e.g. Dixon, Freebairn 2009; Jiang
et al. 2007). Both indicator types range between zero (no specialization/concentration)
and one (total specialization/concentration). Also the Herfindahl-Hirschman index and
its derivates are used to measure concentration, specialization and diversification (e.g.
Duranton, Puga 2000; Goschin et al. 2009; Lehocký, Rusnák 2016).

Another type of specialization/concentration indicator was introduced by Krugman
(1991), originally designed for comparing the specialization of two regions. An extension
of this indicator was established by Midelfart-Knarvik et al. (2000) for the comparison
of regional specialization/industry concentration with respect to the sum or mean of all
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regions/industries (furthermore used e.g. by Haas, Südekum 2005; Vogiatzoglou 2006).
Unlike the Gini- or Hoover-type measures, the Krugman coefficients range between zero
(no specialization/concentration) and two (total specialization/concentration).

The cluster index developed by Litzenberger, Sternberg (2006) goes beyond employ-
ment data and includes additional information about the industry-specific firm size, pop-
ulation density and region size. It is composed of three parts: the relative industrial stock
with respect to industry i and region j, ISij , the relative industrial density, IDij , and
the relative firm size, PSij . All three components are modified location quotients. This
is done to control for small and monostructural regions, which are identified as clusters
otherwise (which is a problem in the original LQ). The cluster index CIij has a potential
range from zero to infinity. This extended indicator is used e.g. by Hoffmann et al. (2017)
for the German food processing industry.

The cluster indicators by Ellison, Glaeser (1997) compare the empirical distribution
of firms to an arbitrary location pattern where agglomeration economies are absent (often
referred to as a dartboard approach). Ellison, Glaeser (1997) differentiate between the
clustering of firms from one industry (agglomeration) due to localization economies and
the clustering of multiple industries (coagglomeration) due to urbanization economies.
Their indices also take into account the industry-specific structure of the firms by includ-
ing the Herfindahl-Hirschman index, HHI i, for the employment concentration in industry
i. This is the reason why individual firm-level data is required for the computation. The
Herfindahl-Hirschman indicator is included to control the raw measures of spatial con-
centration, Gi and G, for firm employment concentration, which occurs especially when
there are just a few firms with many employees. The Ellison-Glaeser (EG) index for
agglomeration, γi, is designed for identifying the clustering of industry i, while the coag-
glomeration index, γc aims at the clustering of a set of U industries, where U ≤ I. Values
of γ equal to zero imply the absence of agglomeration economies, while values above zero
indicate positive effects due to spatial clustering. When γ is negative, firm locations are
less spatially concentrated than expected on condition of the dartboard approach, which
indicates negative agglomeration economies. The EG index is used in several current
regional economic studies (e.g. Dauth et al. 2015, 2018; Yamamura, Goto 2018).

In contrast, Howard et al. (2016) argue that agglomeration economies should not
be analyzed regarding employment but the firms itself. Their colocation index, CLab,
sums the colocation of Ki and Kq firms from two industries, i and q, controlling for all
possible combinations. This colocation measure is compared to a counterfactual location
structure constructed via bootstrapping; specifically the arithmetic mean of a number of
(e.g. 50) random assignments of the regarded firms to the locations. The value of the
resulting excess colocation index, XCLab, ranges between -1 and 1.

4.2 Application in REAT

4.2.1 REAT functions for regional specialization and industry concentration

Table 7 shows the REAT functions for agglomeration measures based on aggregate (em-
ployment) data. All functions require at least information about the employment in
one or more regions j in one or more industries i, eij . The Herfindahl-Hirschman index
(function herf()) for measuring regional diversity is not displayed as it is used exactly
in the same way as described in Section 2, replacing xi with eij .

Location quotients for one region and one or more industries are computed by the
function locq(), including the option for an additive indicator instead of the multiplica-
tive. When calculating the LQ for a set of J regions and I industries, one can use function
locq2(), which is a kind of batch processing extension of locq(). As the dimension of
the Litzenberger-Sternberg cluster index is the same as in the LQ (a single value for
each combination of region j and industry i), the related functions litzenberger() and
litzenberger2() work in the same way. When using locq2() or litzenberger2(),
the user may choose the type of function output: either a matrix with I columns and J
rows or a data frame with I ∗ J rows.

The Hoover-, Gini- and Krugman-type indicators require the same kind of input
data. The hoover() function was already explained in Section 2, as it can be also
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Table 7: REAT functions for regional specialization and industry concentration

Indicator REAT function Mandatory arguments Optional arguments Output

Hoover LQ/ locq() vectors or single LQ method, Single value or
Balassa RCA values of eij and ei, plot matrix with LQij
incl. extensions single values of

ej and e

locq2() vectors of eij , normalization, matrix or data
industry ID i output type, frame with I ∗ J

and region ID j remove NAs values of LQij

Hoover hoover() vectors of eij remove NAs value: Hj
specialization/ (see Section 2) and reference or Hi
concentration vector ei or ej

Gini gini.spec() vectors eij plot LC value: Gj ,
specialization and ei optional: LC plot

concentration gini.conc() vectors eij plot LC value: Gi,
and ej optional: LC plot

Krugman krugman.spec() vectors eij value: Kjl
specialization (regions j and l) and eil

krugman.conc2() vector eij and matrix value: Kj
(all J regions) or data frame eil

concentration krugman.conc() vectors eij value: Kiu
(industries i and u) and euj

krugman.conc2() vector eij and matrix value: Ki
(all I industries) or data frame euj

All at once:
specialization spec() vectors of eij , remove NAs matrix with Hj , Gj

industry ID i and Kj (columns)
and region ID j for J regions (rows)

concentration conc() vectors of eij , remove NAs matrix with Hi, Gi
industry ID i and Ki (columns)

and region ID j for I industries (rows)

Duranton- durpug() vectors eij value: RDIj
Puga and ei

Litzenberger- litzenberger() single values of value: CIij
Sternberg eij, ei, aj , a,

pj , p, bij and bi

litzenberger2() vectors of eij , output type, matrix or data
industry ID i, remove NAs frame with I ∗ J
region ID j, values of CIij
aj , pj and bij

Source: own compilation.

used for measuring spatial concentration of industries or the specialization of regions
with all-over employment vectors, ei and ej , respectively, as reference distributions. The
spatial Gini coefficients are available through functions gini.spec() for regional spe-
cialization and gini.conc() for spatial concentration. The Krugman coefficients are
divided into functions for the comparison of two regions/industries (krugman.spec()
and krugman.conc(), respectively) and for applying all regions/industries as reference
(krugman.spec2() and krugman.conc2(), respectively). The functions spec() and
conc() are wrapper functions providing a convenient way to compute Hoover, Gini and
Krugman coefficients of a given set of J regions and I industries at once, e.g. originating
from official statistics on regional employment.

Table 8 shows the functions operating on the level of individual firm data. The
Ellison-Glaeser (EG) indices are available through the functions ellison.a() (agglom-
eration index for industry i) and ellison.a2() (agglomeration indices for I industries)
as well as ellison.c() (coagglomeration index for U industries) and ellison.c2() (co-
agglomeration indices for I ∗ I− I industry combinations). All functions require the firm
size (e.g. no. of employees) for the k-th firm from industry i (numeric vector) and the
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Table 8: REAT functions for agglomeration and coagglomeration using firm data

Indicator REAT function Mandatory arguments Optional arguments Output

Ellison-Glaeser ellison.a() vectors of eik, ej visible: value γi,
agglomeration and region ID j invisible: matrix with γi,

Gi, zi, Ki and HHI i

ellison.a2() vectors eik, visible: values γi,
industry ID i and invisible: matrix with γi,

region ID j Gi, zi, Ki and HHI i,
for I industries (rows)

coagglomeration ellison.c() vectors eik, vectors ej and value: γc

industry ID i and U industries
region ID j

ellison.c2() vectors eik, vector ej matrix with γc for
industry ID i and I ∗ I − I industry

region ID j combinations (rows)

Howard et al. howard.cl() firm ID k, value: CLab
colocation industry ID i,

and region ID j,
industries a and b

excess howard.xcl() firm ID k, value: XCLab
colocation industry ID i

and region ID j,
industries a and b,

no. of samples

howard.xcl2() firm ID k, matrix with XCLab for
industry ID i I ∗ I − I industry

and region ID j combinations (rows)

Source: own compilation.

region j the firm is located in. The functions incorporating more than one industry (all
except for ellison.a()) require a vector containing the industry i. The data could e.g.
be stored in a data frame with at least three columns (firm size, region, industry). Like
some of the convergence functions (see Section 3), the EG agglomeration index functions
in REAT also distinguish between a visible and an invisible output: ellison.a() and
ellison.a2() show the value(s) auf γi but return an invisible matrix including the raw
measure of concentration (Gi), the z-standardized results (zi) and the related Herfindahl-
Hirschman index for industry-specific firm concentration (HHI i) as well as the number
of firms in industry i (Ki).

The Howard-Newman-Tarp coagglomeration measure is distributed over the functions
howard.cl() (calculation of the colocation index for one pair of industries a and b),
howard.xcl() (calculation of the excess colocation index for industries a and b) and
howard.xcl2() (calculation of the excess colocation index for I ∗ I− I combinations of I
industries). As this cluster index works with firms instead of employment, we only need
a vector containing the IDs of the firms k, the corresponding industry i and the region
j where the firm is located. When calculating this measure for one pair of industries, the
user must state the IDs of industries a and b. Note that calculation time for this index
increases heavily with the number of firms and/or industries.

4.2.2 Application example 1: Regional specialization of Göttingen

We use the German classification of economic activities (WZ2008) on the level of 21
sections (A-U) for the classification of industries in the following examples (see Table 9).

Starting with a simple example, we analyze the regional specialization of Göttingen, a
city with a population of about 134,000 in Niedersachsen, Germany. The example dataset
Goettingen, which is included in REAT, contains the dependent employees in Göttingen
and Germany for 2008 to 2017 in industries A to R (rows 2 to 16; row 1 contains the
all-over employment). First, we load the data:
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Table 9: Classification of economic activities in Germany, edition 2008 (WZ 2008)

WZ2008
Code Title

A Agriculture, forestry and fishing
B Mining and quarrying
C Manufacturing
D Electricity, gas, steam and air conditioning supply
E Water supply; sewerage, waste management and remediation activities
F Construction
G Wholesale and retail trade; repair of motor vehicles and motorcycles
H Transportation and storage
I Accommodation and food service activities
J Information and communication
K Financial and insurance activities
L Real estate activities
M Professional, scientific and technical activities
N Administrative and support service activities
O Public administration and defence; compulsory social security
P Education
Q Human health and social work activities
R Arts, entertainment and recreation
S Other service activities
T Activities of households as employers; undifferentiated goods-and services-producing

activities of households for own use
U Activities of extraterritorial organisations and bodies

Source: own compilation based on Statistisches Bundesamt (2008).

data(Goettingen)

Using the REAT function locq(), we calculate a location quotient for Göttingen with
respect to the manufacturing industry (”Verarbeitendes Gewerbe”), which is represented
by letter C:

locq (Goettingen$Goettingen2017[4], Goettingen$Goettingen2017[1],

Goettingen$BRD2017[4], Goettingen$BRD2017[1])

# Industry: manufacturing (letter C) in row 4

# row 1 = all-over employment

[1] 0.5369

The output is simply the LQ value (LQij , where i is manufacturing and j is Göttingen).
We see that the LQ is very low, indicating that manufacturing is underrepresented in
Göttingen as compared to Germany. Now, we calculate LQ values for all industries
(A-R), including a simple plot (function argument plot.results = TRUE):

locq (Goettingen$Goettingen2017[2:16], Goettingen$Goettingen2017[1],

Goettingen$BRD2017[2:16], Goettingen$BRD2017[1],

industry.names = Goettingen$WZ2008_Code[2:16], plot.results = TRUE,

plot.title = "Location quotients for Göttingen 2017")

# all industries (rows 2-16 in the dataset)

The output is a matrix with one row for each industry:

Location quotients

I = 15 industries

LQ

A 0.08407652

BDE 0.40085663

C 0.53687366

F 0.34366928

G 0.74603541

H 0.67117311
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Figure 3: Location quotients for 15 industries in Göttingen

I 0.98141916

J 0.91654277

K 0.82650178

M 1.53027645

N 0.95843423

O 1.03509027

P 2.77790858

Q 1.67459967

R 0.35317012

The result is plotted in Figure 3. The function plots a vertical line at LQij = 1
automatically. This is the (only) reference value for the LQ. It indicates a stock of the
related industry equal to the whole economy. The highest LQ values can be found for
the industries with letters P (education) and Q (health). This is because Göttingen
is mainly characterized by a large university (about 30,000 students) with a university
hospital with about 7,000 employees.

Now, we want to measure the specialization of Göttingen with a single indicator.
First, we simply use the Herfindahl-Hirschman coefficient for both Göttingen and Ger-
many using the function herf():

herf(Goettingen$Goettingen2017[2:16])

[1] 0.127314

herf(Goettingen$BRD2017[2:16])

[1] 0.1104567

The HHI for Göttingen is slightly larger than for Germany, which indicates a higher
specialization (or lower economic diversity) of the region. To combine this information
in one indicator, we calculate the Hoover coefficient of specialization using the function
hoover(), where the reference distribution is the German industry structure:

hoover(Goettingen$Goettingen2017[2:16], ref = Goettingen$BRD2017[2:16])

[1] 0.2254234

We finish our analysis of Göttingen’s regional specialization by calculating both the
Gini and the Krugman coefficient of regional specialization with the same data, using
the REAT functions gini.spec() and krugman.spec(), respectively. Note that, here,
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we use the Krugman coefficient to compare the industry structure of Göttingen to the
structure of whole Germany (instead of another region within the country, for which this
coefficient was originally formulated):

gini.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])

[1] 0.359852

krugman.spec(Goettingen$Goettingen2017[2:16], Goettingen$BRD2017[2:16])

[1] 0.4508469

There seems to be some specialization in Göttingen, but, unfortunately, we do not
have any real reference value to interpret the results.

4.2.3 Application example 2: Identifying clusters in Germany using aggregate data

In this example, we will compute indicators of regional specialization and industry con-
centration for a set of J regions and I industries at once. We load the included test
dataset G.regions.industries containing employment and firms on the level of I = 17
industries (WZ2008 codes B-S) and J = 16 regions (“Bundesländer”) in Germany:

data(G.regions.industries)

The number of employees in the column emp_all includes dependent employees and
self-employed persons. The classification code of industries (see Table 9) can be found
in column ind_code, while the region code (abbreviation of the region’s official name)
is in column region_code. First, we want to detect the spatial concentration of the
17 industries in Germany by calculating Hoover, Gini and Krugman coefficients for all
industries at once, applying the REAT function conc() which is a wrapper function for
the mentioned indicators. We save our output in the matrix object conc_i:

conc_i <- conc (e_ij = G.regions.industries$emp_all,

industry.id = G.regions.industries$ind_code,

region.id = G.regions.industries$region_code)

The output is:

Spatial concentration of industries

I = 17 industries, J = 16 regions

H i G i K i

WZ08-B 0.22959050 0.42334831 0.45675385

WZ08-C 0.09933363 0.17047620 0.26813759

WZ08-D 0.07754576 0.12509360 0.16260016

WZ08-E 0.11972072 0.16742909 0.20369011

WZ08-F 0.07676634 0.15357575 0.16996098

WZ08-G 0.03034962 0.05471323 0.07977056

WZ08-H 0.06006957 0.11921850 0.10076748

WZ08-I 0.05177262 0.09939075 0.11450791

WZ08-J 0.10230712 0.22605802 0.24450967

WZ08-K 0.08982871 0.17610712 0.20565974

WZ08-L 0.09798632 0.16784764 0.17472656

WZ08-M 0.06490185 0.14760918 0.14931991

WZ08-N 0.06714816 0.08575299 0.09053327

WZ08-P 0.03019678 0.05053848 0.07043586

WZ08-Q 0.04679962 0.06170335 0.06406058

WZ08-R 0.09424708 0.16748405 0.17023603

WZ08-S 0.04507988 0.07246697 0.06441360

The function returns a matrix with 17 rows (one for each industry) and three columns:
H i is the Hoover coefficient, G i is the Gini coefficient and K i is the Krugman coeffi-
cient for industry i. We cannot interpret or compare all of these results, but we may pick
out some findings: The strongest spatial concentration is found with respect to mining
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and quarrying (WZ08-B), no matter which indicator is regarded, which may be inter-
preted with “natural advantages” due to the spatial distribution of mineral resources
in Germany. Services (such as retailing) as well as education and health are least con-
centrated, as these industries are bound to regional demand and/or their locations are
regulated by policy and planning authorities.

At a first glance, the three indicators seem to produce similar results. Now, we want
to test the similarity between Hoover, Gini and Krugman coefficients of concentration.
As we saved our result matrix, we now calculate Pearson correlation coefficients (r) for
each pair of indicators using the basic R function cor(), which is implemented in the
stats package (included automatically in any R release). The function is applied to the
three columns of conc_i, producing a 3 ∗ 3 correlation matrix:

cor(conc_i[,1:3])

H i G i K i

H i 1.0000000 0.9676518 0.9527747

G i 0.9676518 1.0000000 0.9681770

K i 0.9527747 0.9681770 1.0000000

As we can see, each combination of the three indicators shows a strong positive cor-
relation (Hi vs. Gi: r ≈ 0.97, Hi vs. Ki: r ≈ 0.95, Gi vs. Ki: r ≈ 0.97). At least in this
context, we may conclude that these indicators are interchangeable. However, we have
to recognize that the analysis presented here is on a large-scale regional level (German
“Bundesländer”) and all of the mentioned indicators are affected by the modifiable areal
unit problem, which means that the results depend on the aggregation unit in the analysis
(see e.g. Dapena et al. 2016 for a discussion of this effect).

Now, we do exactly the same with respect to regional specialization of the 16 regions,
using the same data. Analogously, we use the wrapper function spec() for calculating
Hoover, Gini and Krugman coefficients of regional specialization, also saving the resulting
matrix:

spec_j <- spec (e_ij = G.regions.industries$emp_all,

industry.id = G.regions.industries$ind_code,

region.id = G.regions.industries$region_code)

The output is:

Specialization of regions

I = 17 industries, J = 16 regions

H j G j K j

BB 0.11530353 0.20632682 0.18555259

BE 0.17891265 0.29040841 0.34552331

BW 0.08024011 0.10300695 0.22675612

BY 0.05008135 0.07659148 0.16019603

HB 0.09502615 0.18563500 0.17467291

HE 0.05494422 0.12160142 0.11282696

HH 0.16413456 0.22616814 0.33190321

MV 0.13270849 0.18974606 0.22056868

NI 0.03772799 0.08237225 0.07972852

NW 0.02940091 0.05997505 0.07181569

RP 0.04793147 0.07432361 0.12036513

SH 0.08901907 0.11384295 0.15994524

SL 0.05726933 0.11921727 0.15071159

SN 0.05400855 0.10643512 0.10341280

ST 0.08821395 0.21120287 0.15280711

TH 0.08234046 0.13902924 0.17720208

The strongest specialization can be found in the city states Berlin (BE) and Hamburg
(HH), while Niedersachsen (NI) and Nordrhein-Westfalen (NW) show the lowest values
in all three indicators. As already mentioned in the concentration example, we have to
remember the large-scale aggregation unit. If we used smaller scale units (e.g. counties
like in Section 3.2.2), our results would surely be more differentiated. Again, we check
the correlation between the indicators:
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cor(spec_j[,1:3])

H j G j K j

H j 1.0000000 0.9179127 0.9322604

G j 0.9179127 1.0000000 0.7907841

K j 0.9322604 0.7907841 1.0000000

Again, we find a strong positive correlation between the Hoover coefficient and both
Gini and Krugman coefficient (Hj vs. Gj : r ≈ 0.92, Hj vs. Kj : r ≈ 0.93), while the
third Pearson correlation coefficient is a little lower, but still showing the same direction
(Gj vs. Kj : r ≈ 0.79).

Now we check for clusters in a combination of a specific industry and a specific region.
First, we calculate location quotients for the dataset G.regions.industries using the
REAT function locq2(). Here, the optional function argument LQ.norm could be used for
computing z-standardized location quotients according to O’Donoghue, Gleave (2004)
(LQ.norm = "OG") or z-standardized values of the natural-logged LQs according to Tian
(2013) (LQ.norm = "T"). However, we produce the original LQs, since we need exactly
the same columns as in the examples above:

locq2(e_ij = G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code)

The output is a matrix with J rows and I columns:

Location quotients

I = 17 industries, J = 16 regions

BB BE BW BY HB HE

WZ08-B 2.5314363 0.04030901 0.6607950 0.8078054 0.0000000 0.3735773

WZ08-C 0.6857231 0.37224900 1.3968652 1.1902785 0.7863570 0.8580352

WZ08-D 1.1736475 0.46721079 1.0861988 0.8343784 0.9179718 0.9627955

WZ08-E 1.7945685 1.30128835 0.5896526 0.7137388 1.2393228 0.8532203

WZ08-F 1.5997778 0.77160121 0.9070096 1.0280409 0.6212923 0.8927681

WZ08-G 0.9550127 0.83133221 0.9492523 0.9879826 0.9013193 1.0006321

WZ08-H 1.3212794 0.87982228 0.8189666 0.8664163 1.7692815 1.2208728

WZ08-I 1.0379426 1.35561299 0.9132949 1.0390886 0.9904308 0.9571339

WZ08-J 0.5625876 1.78334039 1.0316114 1.1550764 1.0577107 1.1407078

WZ08-K 0.6529329 0.76630600 0.9329930 1.1058890 0.7825178 1.6710583

WZ08-L 1.1088846 2.13220960 0.7310014 0.8633894 1.3254723 1.1132939

WZ08-M 0.7366238 1.39880205 1.0337139 1.0265993 1.1202532 1.1457770

WZ08-N 1.2571301 1.24261162 0.7977054 0.8486971 1.2938161 1.0525912

WZ08-P 0.9052976 1.38842157 0.9649289 0.9252245 1.0563169 1.0085207

WZ08-Q 1.1540423 1.09329902 0.8695241 0.9079679 0.9544891 0.8980680

WZ08-R 1.0656945 2.55595102 0.8518192 0.8220540 1.3196613 0.8651451

WZ08-S 1.1409373 1.32596177 0.8626829 0.9092125 1.1396616 1.0528184

HH MV NI NW RP SH

WZ08-B 0.6029388 0.6235796 1.4987086 1.4595767 1.0371236 0.5078145

WZ08-C 0.4781934 0.6230156 0.9512438 0.9312325 1.0822678 0.7082513

WZ08-D 0.4332870 1.0118838 0.9932719 1.2139740 0.9349679 1.1248685

WZ08-E 1.1442005 1.5642257 1.0645497 1.0408356 0.9886860 1.0707585

WZ08-F 0.5432163 1.2716537 1.0969756 0.8735506 1.1134885 1.1043449

WZ08-G 1.0654315 0.9485377 1.0758977 1.0612190 1.0111274 1.2456100

WZ08-H 1.4958610 1.1243732 1.0409143 0.9961224 0.9633972 1.0112557

WZ08-I 1.0634066 1.7574637 1.0227196 0.8750205 1.1121264 1.2483966

WZ08-J 1.9266913 0.4751473 0.6716376 0.9830609 0.8122058 0.7496925

WZ08-K 1.5175078 0.5383900 0.9108456 1.0205798 0.8879292 0.8355178

WZ08-L 1.5871838 1.3034074 0.8040270 0.9928161 0.7774500 1.1980553

WZ08-M 1.6293913 0.6897571 0.8693026 1.0366589 0.7764558 0.7905498

WZ08-N 1.2530608 1.2484353 0.9675147 1.0659893 0.8026181 0.9727871

WZ08-P 0.9422739 0.9966228 1.0888054 0.9846351 1.0976178 0.9540262

WZ08-Q 0.8564604 1.2893168 1.0728412 1.0595648 1.0418460 1.1662290

WZ08-R 1.4914564 1.0500685 0.9204586 0.9611539 0.8498053 1.0418794

WZ08-S 0.8055128 1.1158184 0.9965451 1.0283571 1.1658852 1.1455178
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SL SN ST TH

WZ08-B 0.2826284 1.2746172 2.4654331 0.7140637

WZ08-C 1.1752810 0.9867417 0.9297172 1.1849897

WZ08-D 1.1465539 1.0637093 1.2642787 0.8607578

WZ08-E 0.9555581 1.4457486 1.8251853 1.6042935

WZ08-F 0.9016858 1.3794286 1.4104724 1.3481005

WZ08-G 1.0370901 0.8787739 0.9172598 0.8661184

WZ08-H 0.8851047 1.0476688 1.2012430 0.8944907

WZ08-I 0.9111877 0.9496370 0.9020582 0.8644257

WZ08-J 0.7133587 0.7717704 0.4874344 0.6869177

WZ08-K 1.0082983 0.6620719 0.6133933 0.6316347

WZ08-L 0.7018816 1.1395422 1.0111694 0.8511896

WZ08-M 0.8060753 0.8459317 0.6627301 0.6814339

WZ08-N 1.0751749 1.1656467 1.2796548 1.1093251

WZ08-P 0.9147874 0.9658590 0.9798932 0.9710576

WZ08-Q 1.0760969 1.0475595 1.1401680 1.0628602

WZ08-R 0.7631263 1.1419135 0.8329295 0.8582919

WZ08-S 0.8840741 0.9774726 0.9257397 1.0923137

These I ∗ J = 17 ∗ 16 = 272 coefficients are too much information. Thus, we cal-
culate them again using the optional argument LQ.output = "df", which produces a
data frame with I ∗ J rows and three columns (j_region: ID of region j, i_industry:
ID of industry i and LQ: location quotient LQij). We save the results in the object lqs:

lqs <- locq2(e_ij = G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

LQ.output = "df")

As we forego an inspection of these singe values, the results are not displayed here.
Instead, we only deal with the five highest LQs in our results (the “top five”). We sort
the resulting data frame decreasing and take a look at the first five rows:

lqs_sort <- lqs[order(lqs$LQ, decreasing = TRUE),]

# Sort decreasing by size of LQ

lqs_sort[1:5,]

j_region i_industry LQ

33 BE WZ08-R 2.555951

1 BB WZ08-B 2.531436

239 ST WZ08-B 2.465433

28 BE WZ08-L 2.132210

111 HH WZ08-J 1.926691

The highest LQ is found for the arts, entertainment, and recreation sector (WZ08-R)
in the German capital Berlin. Note that this result is congruent with several studies
about the “creative class”, showing a large stock of “creative” employment in Berlin
(e.g. Martin 2015). We also find a strong concentration of mining and quarrying in
two Eastern regions, Brandenburg and Sachsen-Anhalt. Note that the LQ is a relative
measure with respect to the total regional employment as well as the total industry-
specific employment and the employment in the whole economy, not considering other
aspects of industry or spatial structure.

These deficiencies should be overcome with the Litzenberger-Sternberg cluster index,
also taking into account area, population and firm size. This additional data is also
included in our current dataset (columns area_sqkm, pop and firms). The functions
litzenberger() and litzenberger2() work equivalently to locq() and locq2(). To
compute cluster indices for all I ∗J combinations, we use the function litzenberger2():

litzenberger2(G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

G.regions.industries$area_sqkm, G.regions.industries$pop,

G.regions.industries$firms)
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Like in locq2(), the default output is a matrix with I rows and J columns:

Litzenberger-Sternberg cluster indices

I = 17 industries, J = 16 regions

BB BE BW BY HB HE

WZ08-B 0.5736692 0.05611505 0.8041813 1.1073446 NaN 0.4745084

WZ08-C 0.1610679 3.24717820 2.6250805 1.2043415 5.119669 1.0603087

WZ08-D 0.2213627 1.37720778 1.7043505 1.4178208 4.172162 0.8541359

WZ08-E 0.8810260 10.14891585 0.8235517 0.6890213 6.705744 1.1427285

WZ08-F 0.7142888 11.36434353 1.2372108 0.9442221 3.498921 1.1225087

WZ08-G 0.2707787 12.10626625 1.3903532 0.9404677 7.136205 1.3361060

WZ08-H 0.4386878 13.26265081 1.0955747 0.7982074 22.656924 1.8358272

WZ08-I 0.2672336 26.60020727 1.4098657 0.9633029 8.481338 1.2880210

WZ08-J 0.1130326 59.24931837 1.4342037 1.2393579 8.683998 1.9024826

WZ08-K 0.1524825 10.28664194 1.4774980 1.1692461 6.650213 2.4739044

WZ08-L 0.2564814 56.65943460 0.9594093 0.8695636 11.839900 1.6099929

WZ08-M 0.1685895 39.30149403 1.5306799 1.0110472 9.410498 1.7302434

WZ08-N 0.4232166 26.91532975 1.0228326 0.7471872 10.796027 1.5265846

WZ08-P 0.2043023 25.30839556 1.3656409 0.9509028 7.322709 1.4627871

WZ08-Q 0.3445630 21.86956483 1.1770297 0.7873877 7.850886 1.2163624

WZ08-R 0.2450932 104.73565741 1.0839767 0.7821779 10.555369 1.0489672

WZ08-S 0.2891132 24.71310833 1.3435576 0.9594882 9.893688 1.5421903

HH MV NI NW RP SH

WZ08-B 2.319611 0.16000177 1.5004530 2.074735 1.1951266 0.3119091

WZ08-C 4.000104 0.11993714 0.5036838 2.010757 0.9646351 0.4008598

WZ08-D 1.679371 0.20954802 0.8848956 2.001708 0.6016715 1.2989105

WZ08-E 11.129156 0.44055556 0.6476797 1.915196 0.8616891 0.8101087

WZ08-F 5.526083 0.45291220 0.6276791 1.656384 0.8973162 0.8055662

WZ08-G 15.627090 0.22665565 0.6898359 2.377365 0.8115817 0.9008287

WZ08-H 44.371836 0.32192237 0.6420146 1.980491 0.7087341 0.7205961

WZ08-I 14.795885 0.59842705 0.6335126 1.731963 1.0572996 1.0361389

WZ08-J 59.720584 0.05895184 0.2905769 2.139796 0.5142953 0.4427180

WZ08-K 26.189623 0.12112900 0.5648050 1.953963 0.7104929 0.5758818

WZ08-L 33.175443 0.25167830 0.5228248 2.223854 0.5349641 0.8587588

WZ08-M 44.433527 0.11657637 0.4440959 2.297308 0.4961611 0.4456119

WZ08-N 23.255195 0.31231467 0.5271293 2.413351 0.5537510 0.7348068

WZ08-P 14.294075 0.24008982 0.7203953 2.022971 0.9704975 0.6937792

WZ08-Q 13.211918 0.38626491 0.6877487 2.260518 0.7770980 0.8426253

WZ08-R 44.256214 0.20066782 0.4508862 2.190752 0.5287290 0.6694273

WZ08-S 14.195156 0.27631480 0.5364848 1.941470 0.7996291 0.9238816

SL SN ST TH

WZ08-B 0.3673090 1.1179110 1.49064630 0.4562730

WZ08-C 1.8348713 1.0311722 0.32128528 0.7892360

WZ08-D 0.9643263 0.4534029 0.29391783 0.2086042

WZ08-E 1.9939461 1.5554125 1.09973945 1.1815726

WZ08-F 1.3245152 1.8167263 0.68075807 1.0313749

WZ08-G 1.7528078 0.7644695 0.31005922 0.4313306

WZ08-H 1.1099151 0.9297053 0.42973342 0.4881643

WZ08-I 1.7871163 0.7119567 0.29998391 0.4012910

WZ08-J 0.8984679 0.4927030 0.08046178 0.2087174

WZ08-K 1.5505928 0.5980588 0.21942805 0.3160432

WZ08-L 0.8170723 0.8226773 0.21044244 0.2886068

WZ08-M 1.0137151 0.6489868 0.15797219 0.2493458

WZ08-N 1.3940298 1.2492658 0.42285503 0.5935329

WZ08-P 1.2331390 0.7800531 0.31406013 0.4389675

WZ08-Q 1.8551266 1.0749000 0.48353914 0.5854787

WZ08-R 0.8477702 0.8666478 0.21562997 0.2919300

WZ08-S 1.6138955 0.8600519 0.34624522 0.5369766

Note that there is a value equal to NaN, which means “not a number”, due to a division
by zero; this is because there is no mining and quarrying (WZ08-B) in Bremen (HB).
However, we take a look at the “top five” again:
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lss <- litzenberger2(G.regions.industries$emp_all,

G.regions.industries$ind_code, G.regions.industries$region_code,

G.regions.industries$area_sqkm, G.regions.industries$pop,

G.regions.industries$firms, CI.output = "df")

lss_sort <- lss[order(lss$CI, decreasing = TRUE),]

lss_sort[1:5,]

j_region i_industry CI

33 BE WZ08-R 104.73566

111 HH WZ08-J 59.72058

26 BE WZ08-J 59.24932

28 BE WZ08-L 56.65943

114 HH WZ08-M 44.43353

Again, we find the largest cluster value for the arts and entertainment sector in
Berlin. Also the other four highest indicators are discovered in the largest city states
Berlin and Hamburg, especially with respect to the information and communication
industry (WZ08-J) and other knowledge-intensive services. Obviously, the results of the
Litzenberger-Sternberg index differ in a noticeable way from those of the LQ, which can
be attributed to the consideration of other spatial aspects, especially controlling for the
size of the regions.

4.2.4 Application example 3: Identifying clusters using micro-data

In our last example about agglomerations, we use the Ellison-Glaeser indices and the
Howard-Newman-Tarp colocation index, which both require individual firm data. As
this kind of micro-data is sensitive and, of course, not available in official statistics, we
have to use fictional data from the textbook by Farhauer, Kröll (2014).

At first, we compute the Ellison-Glaeser agglomeration index for one industry i, γi.
We use the REAT function ellison.a(), which is designed for this purpose and requires
three vectors: the size (employment) of firm k, eik, the IDs of the regions j each firm is
located in, and the total regional employment, ej . The numerical example in Farhauer,
Kröll (2014), Table 14.11, contains ten firms in three regions (Wien, Linz, and Graz).
We simply compile the data from the original table into separate vectors:

region <- c("Wien", "Wien", "Wien", "Wien", "Wien", "Linz",

"Linz", "Linz", "Linz", "Graz")

# regions (Austrian cities)

emp_firm <- c(200,650,12000,100,50,16000,13000,1500,1500,25000)

# employment of the ten firms

emp_region <- c(500000,400000,100000)

# employment of the three regions

Now, we apply ellison.a() to this data:

ellison.a (emp_firm, emp_region, region)

[1] 0.05990628

The EG agglomeration index of γi ≈ 0.06, which is, by the way, the same result as in
the textbook, indicates a stronger clustering than expected from a dartboard approach.
Since this data is fictional, we refrain from interpreting this result.

The REAT package contains the dataset FK2014_EGC, which is compiled from the nu-
merical example in Farhauer, Kröll (2014), Tables 14.14 to 14.17. There are k = 42
firms from I = 4 industries (clothing trade, forestry, textiles dyeing and textiles trade)
in J = 3 regions (1, 2 and 3). We load this example data:

data(FK2014_EGC)

We compute γi for all industries in the dataset. This can be done with the function
ellison.a2(), which requires vectors containing the size of firm k, the corresponding
industry i, and region j. We save the results in the object ega:
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ega <- ellison.a2 (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region)

Here, we see the output of the function:

Ellison-Glaeser Agglomeration Index

K = 42 firms, I = 4 industries, J = 3 regions

Gamma i

Clothing trade -0.09379384

Forestry 0.16838003

Textiles dyeing -0.08012539

Textiles trade -0.13040134

We see a strong clustering of the forestry industry, which is attributed to localization
economies, but spatial avoidance in the three other industries. The visible output of
ellison.a2() contains the γi values only, but the invisible matrix output also includes
the other information referring to the EG agglomeration index:

ega

Gamma i G i z i K i HHI i

Clothing trade -0.09379384 0.017909653 -0.5025978 11 0.13124350

Forestry 0.16838003 0.088262934 1.3660878 13 0.09240553

Textiles dyeing -0.08012539 0.027764811 -0.3801644 9 0.14559983

Textiles trade -0.13040134 0.002734966 -0.7663541 9 0.12208059

When looking at the forestry industry, we also see a high standardized value (zi ≈
1.37) and a relatively low firm concentration (HHI i ≈ 0.09).

In the next step, we compute the EG coagglomeration index, γc, for the same
data using the function ellison.c(). This function requires the same information as
ellison.a2() plus the total employment in the regarded regions (column emp_region):

ellison.c (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region, FK2014_EGC$emp_region)

[1] 12.0729

Congruent with the calculation in Farhauer, Kröll (2014), the function returns γc ≈
12.07. This value is very large, which indicates urbanization economies in this fictional
example.

If we want to analyze the coagglomeration of industry pairs instead, we may use the
function ellison.c2(), which requires the same data:

ellison.c2 (FK2014_EGC$emp_firm, FK2014_EGC$industry,

FK2014_EGC$region, FK2014_EGC$emp_region)

The output is a matrix with I ∗ I − I rows (one for each industry pair, omitting the
combination of the same industry i):

Ellison-Glaeser Co-Agglomeration Index

K = 42 firms, I = 4 industries, J = 3 regions

Gamma c

Forestry-Clothing trade 1.382257

Textiles dyeing-Clothing trade 2.465609

Textiles trade-Clothing trade 2.067766

Clothing trade-Forestry 1.382257

Textiles dyeing-Forestry 1.570292

Textiles trade-Forestry 1.336020

Clothing trade-Textiles dyeing 2.465609

Forestry-Textiles dyeing 1.570292

Textiles trade-Textiles dyeing 2.294259

Clothing trade-Textiles trade 2.067766

Forestry-Textiles trade 1.336020

Textiles dyeing-Textiles trade 2.294259
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If we want to focus on firm numbers instead of employment size, we may compute the
Howard-Newman-Tarp excess colocation index, which is included in REAT through the
functions howard.cl() for one colocation index for one pair of industries, howard.xcl()
for the corresponding excess colocation index and howard.xcl2() for all combinations of
I ∗ I industries. Subsequent to the numerical example above, we calculate XCLab for all
industry pairs in the dataset FK2014_EGC, where the firm ID of k is stored in the column
firm:

howard.xcl2 (FK2014_EGC$firm, FK2014_EGC$industry,

FK2014_EGC$region)

# this takes some seconds

The output has the same structure as the output from ellison.c2():

Howard-Newman-Tarp Excess Colocation Index

K = 42 firms, I = 4 industries, J = 3 regions

XCL

Forestry-Clothing trade 0.01902098

Textiles dyeing-Clothing trade 0.02909091

Textiles trade-Clothing trade 0.02020202

Clothing trade-Forestry 0.02377622

Textiles dyeing-Forestry 0.03282051

Textiles trade-Forestry 0.03589744

Clothing trade-Textiles dyeing 0.02707071

Forestry-Textiles dyeing 0.02666667

Textiles trade-Textiles dyeing 0.02814815

Clothing trade-Textiles trade 0.02101010

Forestry-Textiles trade 0.01743590

Textiles dyeing-Textiles trade 0.03012346

We see that the index by Howard et al. (2016) is structured differently than the
indicators presented above: Although they are based on exactly the same data, the value
for forestry and clothing trade (XCL ≈ 0.019) is not equal to the value for clothing trade
and forestry (XCL ≈ 0.024). Why? The XCLab is the difference between the colocation
index, CLab, and the mean of a set of bootstrap samples, CLRNDab (see Table 6). These
random samples are drawn again each time a XCL value is computed, consequently, also
the XCL value changes.

5 Proximity and accessibility

5.1 Distance-based measures of accessibility and proximity using individual point-level
data

In this chapter, we mix two different concepts of indicators, accessibility and spatial prox-
imity (see Table 10), both frequently used especially in the context of GIS (geographic
information systems). Both concepts are discussed together because they have two as-
pects in common: 1) they are based on the geographical distance between point locations,
in particular, the distance between an origin point i or several origin points (i = 1, ..., n)
and one or more destination points j (j = 1, ...,m), and 2) for the calculation, they
require geocoded (with geographical coordinates) individual point data.

One popular indicator of accessibility is the Hansen accessibility, developed by Hansen
(1959) in the context of land use theory. The basic idea is that “accessibility” equals the
sum of opportunities outgoing from a specific origin i. These opportunities are spread
over a set of m locations (j = 1, ...,m). The summation is weighted with the distance
between i and the j-th location. This distance, no matter how measured (e.g. street
distance, Euclidean distance, driving time) is assumed to be perceived in a nonlinear
way, which is operationalized by a nonlinear distance decay function (a.k.a. distance
impedance function or response function), e.g. power, exponential or logistic. A similar
concept was introduced by Harris (1954) attempting to model the market potential of
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Table 10: Accessibility and proximity indicators using point-level data

Indicator Non-normalized Normalized

Accessibility/Market potential

Harris Mj =
∑n

i=1
Oid
−1
ij

0 ≤Mj ≤ ∞

Hansen Ai =
∑m

j=1
Ojf(dij) A∗i =

∑m

j=1
Ojf(dij)∑m

j=1
Oj

i 6= j i 6= j
0 ≤ Ai ≤ ∞ 0 ≤ A∗i ≤ 1

where: f(dij) = d−λij or f(dij) = e−λ∗dij

or f(dij) = 1

1+e
−λ1+λ2dij

Proximity

Count within buffer Ni =
∑n

i=1
I(dij ≤ t)

i 6= j

Weighted count within buffer Nw
i =

∑n

i=1
I(dij ≤ t)Oj

i 6= j

Ripley Kt = 1
λ

∑n

i=1

I(dij≤t)
n

Lt =
√

Kt
π

Ht = Lt − t
i 6= j i 6= j i 6= j

E(Kt) = πt2 E(Lt) = t E(Ht) = 0

where: λ = n
A

Notes: dij is the distance from origin location i (i = 1, ..., n) to destination location j (j = 1, ...,m), Oj
is a variable quantifying the size of destination j, t is a maximum search radius and I(dij ≤ t) is the
indicator function taking the value of I = 1 if dij ≤ t, and I = 0 otherwise.
Compiled from: Kiskowski et al. (2009); Krider, Putler (2013); Peña Carrera (2002); Pooler (1987);
Reggiani et al. (2011); Smith (2016)

locations. If we replace the inverse distance weighting in the Harris indicator with another
type of distance weighting, we see that both concepts are mathematically equivalent.
The only difference is that the Harris indicator is conceptualized from the supplier’s
perspective j (e.g. market potential of a retail store) and the Hansen accessibility takes
the demand location i as a starting point (Pooler, 1987; Reggiani et al., 2011). As these
indicators are dimensionless and range from zero to infinity, a normalization with a range
from zero to one can be computed by weighting the results with the opportunities without
distance correction.

This accessibility/potential concept can be used in the regional economic context e.g.
to quantify the over-regional job potential (e.g. Wieland, Fuchs 2018) or the clustering
of point locations of a specific type, such as retail stores (e.g. Larsson, Öner 2014). The
most common application of these indicators may be the context of transport economics
and transport geography (e.g. Albacete et al. 2017).

In the GIS context, spatial proximity can be measured using concentric zones within
a radius of t (buffers) around point i, where the number of the j points within this
radius is counted (Longley et al., 2005). A systematic analysis of spatial proximity
or cluster patterns is possible using Ripley’s K function (Ripley, 1976). It compares
empirical point counts with expected values from a random spatial point process based
on a Poisson distribution. Ripley’s K computes empirical values for each distance band
with a maximum distance of t, which can be compared to the expected value. A more
comprehensible (and linear) interpretation is provided when normalizing the K function
in the form of the L or H function. Also, confidence intervals for the expected values
can be calculated by bootstrapping (Kiskowski et al., 2009; Smith, 2016). All of these
measures are based on a simple indicator function, I(dij ≤ t), which takes the value
of I = 1 if point j is within a distance of t from point i or not (I = 0). Originating
from natural sciences, especially Ripley’s K is frequently used when analyzing location
patterns in spatial economic contexts, such as the clustering of retail stores (e.g. Krider,
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Table 11: REAT functions for accessibility and proximity on the point level

Indicator REAT function Mandatory arguments Optional arguments Output

Distance dist.mat() data frame(s) with start i 6= j data frame with
matrix points i (ID, lat, lon) and from, to, from-to

end points j (ID, lat, lon), and distance dij
distance unit (distance matrix)

Buffer dist.buf() data frame(s) with start i 6= j, sum Oj list with distance
points (ID, lat, lon) and at endpoints matrix (data frame)
end points (ID, lat, lon), and count table

max. distance t, (data frame)
distance unit

Hansen/ hansen() distance matrix (data distance constant, data frame with
Harris frame with start points i max. distance t, origins i and

and end points j as well i 6= j accessibility Ai
as distance dij and Oj),

weighting functions,
parameters λ and γ

Ripley ripley() data frame with points local K values, visible: matrix with t, Kt,
(ID, lat, lon), total area confidence E(Kt), Kt − E(Kt), Lt
A, max. distance t, intervals and Ht for each distance
number of distance no. of samples, interval, invisible: matrix

intervals significance level, (as described above)
plot (K, L or H) and optional: matrices

with local K values and
confidence intervals

Source: own compilation.

Putler 2013) or other types of firms assumed to be connected in a network (e.g. Espa
et al. 2010).

5.2 Application in REAT

5.2.1 REAT functions for accessibility and proximity on the point level

Table 11 shows the REAT functions for the accessibility and proximity methods described
above. A simple Euclidean distance matrix for georeferenced points (data frame with
latitude and longitude) can be calculated using the function dist.mat(). The function
dist.buf() computes a “count points within buffer”, where also a weighting, Oj , can
be summarized (e.g., if the destination points are cities of a given population, one could
count the number of cities within 50 kilometers and their corresponding population).
The latter function uses dist.mat(), thus, it is not necessary to create a distance matrix
before.

The same is the case for the function ripley(), which calculates Ripley’s K function
for georeferenced data (data frame with lat/lon) and a given number of distance intervals
up to a maximum distance of t. The differences between the empirical values, Kt, and
the expected values, E(Kt), as well as the normalizations (Lt and Ht) are calculated
and returned automatically. Optionally, local K values for each distance interval and
corresponding confidence intervals are computed. These confidence intervals are based
on bootstrapping with a given number of samples (default: 100) on a given significance
level (the default value is α = 0.05, which leads to confidence intervals of a range from
α/2 = 2.5% to 1−α/2 = 97.5%). Note that the plot of the K function (or, when desired,
L or H function) provides a graphical and more intuitive interpretation of the analyzed
point pattern, especially when including confidence intervals.

When calculating the Hansen accessibility (or the Harris market potential) with
hansen(), a distance matrix including the opportunities, Oj , is required. This can be, of
course, done with dist.mat() (if straight-line distances are sufficient), but also with any
other software creating distance matrices (and any type of transport costs indicator). In
hansen(), the user may choose between a power, exponential or logistic distance decay
function. Optionally, the normalized Hansen accessibility is returned additionally.
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5.2.2 Application example 1: Location analysis of medical practices

In the example in Section 2.2.2, we dealt with small-scale regional inequality in health
care in South Lower Saxony, Germany. We have seen that e.g. psychotherapists are more
spatially clustered than general practitioners (GPs). Returning to this topic, we want
to use proximity and accessibility measures for determining the market potential (in the
sense of the Harris model) of these health care locations. Obviously, there are differ-
ent location patterns of general practitioners and psychotherapists. In the related study,
there was evidence that psychotherapists are not just clustered but clustered within some
districts of larger cities (Wieland, Dittrich, 2016). In the German health care planning
system, the market potential of medical practices is the main determinant of the official
authorization to be included into the allocation system of health insurance, while psy-
chotherapists are assumed to need quite larger market areas than GPs (Kassenärztliche
Bundesvereinigung, 2013). Consequently, our research hypothesis is that the population
potential of psychotherapists is larger than that of general practitioners.

We use the same test data as in the mentioned example, containing the health lo-
cations (GoettingenHealth1) and the corresponding settlements (GoettingenHealth2).
We load both R datasets:

data(GoettingenHealth1)

data(GoettingenHealth2)

Table GoettingenHealth1 contains 617 locations, whose ID is stored in the column
location. Columns lat and lon contain the latitude and longitude, respectively, while
the corresponding location type can be found in column type (phys_gen: general prac-
titioners, psych: psychotherapists, pharm: pharmacies). As the following applications
may be time-consuming, we extract the general practitioners from GoettingenHealth1

and draw a random sample of ten doctor’s practices:

physgen <- GoettingenHealth1[GoettingenHealth1$type == "phys_gen",]

# general practitioners: column "type" is equal to "phys_gen"

physgen_sample <- physgen[sample(nrow(physgen),10),]

# random sampling of ten general practitioners

Now, we want to summarize the population potential of these health locations in a 1,000
meters buffer. We apply the function dist.buf() to the sample data physgen_sample

and sum up the local population of the districts within this distance (column pop in
GoettingenHealth2):

physgen_pot <- dist.buf (physgen_sample, "location", "lat", "lon",

GoettingenHealth2, "district", "lat", "lon", bufdist = 1000,

ep_sum = "pop")

# counting all districts within a radius of 1000 meters

# and summing the corresponding population

We calculate the arithmetic mean of all ten potentials:

mean2(physgen_pot$count_table$sum_pop)

[1] 8027.7

On average, the ten GP practices have a population potential of about 8,028 inhabi-
tants. One problem related to the buffer technique is the lack of distance weighting: All
origin points up to a given distance are included completely, while all points above 1,000
meters are ignored. Thus, we repeat estimating the population potential using the Hansen
accessibility. At first, we need an origin-destination matrix (distance matrix) from the
origin points to the sampled GP locations. We use the function dist.mat() and merge
the returned distance matrix with the population values from GoettingenHealth2:
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physgen_od <- dist.mat(GoettingenHealth2, "district", "lat", "lon",

physgen_sample, "location", "lat", "lon")

# creating OD matrix from all districts to the

# sampled general practitioners

physgen_od <- merge (physgen_od, GoettingenHealth2,

by.x = "from", by.y = "district")

# merging with GoettingenHealth2 to include the

# population values of the districts

Then, we use the function hansen() to calculate the Hansen accessibility (used in
the sense of the Harris market potential model) for each GP location in physgen_od.

The required columns in this dataset are the IDs of the GP locations (to), the IDs
of the districts (from) and the population of the districts (pop) as well as the distances
calculated above (distance). Finally, we have to set a distance weighting (which has an
important influence in all types of spatial interaction models like this). For this purpose,
we fall back on the results of a study by Fülöp et al. (2011): Based on empirical patient’s
choice of doctor, they estimated distance decay functions in spatial interaction models
(Huff model) for several types of physicians. For GPs, an exponential distance decay
function with λ = −0.28 was found to fit the empirical data best. To set a distance
decay function type and the related weighting(s), the function arguments dtype and
lambda must be used. We save the results under the name physgen_hansen:

physgen_hansen <- hansen (physgen_od, "to", "from", "pop",

"distance", dtype = "exp", lambda = -0.28)

# calculating Hansen accessibility for the ten

# sampled general practitioners

The output of the hansen() function is:

Hansen Accessibility

J = 420 locations with mean attractivity = 1138.486

I = 10 origins with mean transport costs = 28.07581

Attractivity weighting (pow) with Gamma = 1

Distance weighting (exp) with Lambda = -0.28

to accessibility

1 1103 24267.054

2 1171 17629.564

3 1206 9581.732

4 1220 9213.407

5 197 10023.854

6 301 6489.571

7 600 69676.232

8 755 66921.123

9 966 13154.921

10 974 3666.171

Again, we calculate the arithmetic mean of the distance-weighted market potentials:

mean2(physgen_hansen$accessibility)

[1] 23062.36

The average population potential of the ten GPs is equal to 23,063 inhabitants.
As we want to compare the market potential of GPs and psychotherapists, we repeat

the same analysis for them, now in the “fast mode”, leaving out most comments, as the
functions and commands are exactly the same as above, only applied to psychotherapists.
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psychgen <- GoettingenHealth1[GoettingenHealth1$type == "psych",]

psych_sample <- psychgen[sample(nrow(psychgen),10),]

psych_pot <- dist.buf (psych_sample, "location", "lat", "lon",

GoettingenHealth2, "district", "lat", "lon", bufdist = 1000,

ep_sum = "pop")

mean2(psych_pot$count_table$sum_pop)

[1] 12245.88

The calculation of Hansen accessibility is different from the one for GPs with respect
to the assumed distance reaction of the (potential) clients: For psychotherapists, Fülöp
et al. (2011) found a distance impedance which is considerably smaller than for GPs
(and any other type of doctor), resulting in a weighting parameter of λ = −0.11 in the
exponential decay function:

psych_od <- dist.mat(GoettingenHealth2, "district", "lat", "lon",

psych_sample, "location", "lat", "lon")

psych_od <- merge (psych_od, GoettingenHealth2,

by.x = "from", by.y = "district")

psych_hansen <- hansen (psych_od, "to", "from", "pop",

"distance", dtype = "exp", lambda = -0.11)

Hansen Accessibility

J = 420 locations with mean attractivity = 1138.486

I = 10 origins with mean transport costs = 25.56756

Attractivity weighting (pow) with Gamma = 1

Distance weighting (exp) with Lambda = -0.11

to accessibility

1 1031 43415.63

2 1213 39226.26

3 179 33491.41

4 313 51228.41

5 506 147887.43

6 786 147969.39

7 791 147971.80

8 811 148021.51

9 872 147475.57

10 922 42424.51

mean2(psych_hansen$accessibility)

[1] 94911.19

We see that the average population potential of the sampled psychotherapists on the
1,000 meters buffer level is equal to 12,246 inhabitants, which is about one third more
than for GPs. The Hansen/Harris market potential of psychotherapists of about 94,911
persons is a fourfold increase compared to the GPs. We have to remember that the last
result is not only a matter of location but also due to a lower assumed distance decay.
However, the population potential of the sampled psychotherapists is obviously higher
than the potential of the GPs, which can be attributed to a different location pattern,
where psychotherapists are more clustered within larger city districts.

5.2.3 Application example 2: Clustering of health service providers

We stick to the example of health care locations. As we have found different degrees
of regional inequality with respect to suppliers (Section 2.2.2) and of market potentials
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(Section 5.2.2), we now analyze the clustering patterns of health service providers. In
South Lower Saxony there is nearly the same number of psychotherapists (118) and
pharmacies (120), but we should not expect their location patterns to be similar or
even equal. Following the results above, we hypothesize that psychotherapists are more
spatially clustered than pharmacies (as we already know about clustering with respect to
districts in the former case and we can expect an avoidance tendency in the latter case
due to a high degree of substitutability).

For this analysis, we compute Ripley’s K with the REAT function ripley(). Before
going on, we have to prepare two things: First, we load the required dataset. Then, we
must calculate the total area of the study area manually (here: in square meters).

data (GoettingenHealth1)

area_goe <- 1753000000

# area of Landkreis Goettingen (sqm)

area_nom <- 1267000000

# area of Landkreis Northeim (sqm)

area_gn <- area_goe+area_nom

Now, we compute Ripley’s K for the pharmacies only, which means processing only
those locations in GoettingenHealth1 which are pharmacies (type == "pharm"). We
set our maximum search radius equal to t = 30000 (function argument t.max), divided
into 300 distance intervals (t.sep), resulting in distance steps of 100 meters. As we
want to check for a significant deviation from a random spatial pattern, we instruct the
function to construct confidence intervals (ci.boot = TRUE) using the default settings
(α = 0.05, 100 bootstrapping samples). We also plot the results (default function ar-
gument: K.plot = TRUE) to inspect our results graphically. Here, we plot Kt, which is
also the default setting (if the user wants to plot Lt or Ht instead, the function argument
Kplot.func has to be changed to “L” or “H”, respectively):

ripley(GoettingenHealth1[GoettingenHealth1$type == "pharm",],

"location", "lat", "lon", area = area_gn, t.max = 30000, t.sep = 300,

K.local = TRUE, ci.boot = TRUE, ci.alpha = 0.05, ciboot.samples = 100,

plot.title = "Ripley’s K: Clustering of pharmacies")

The output is a matrix with six columns and one row for each distance interval.
Thus, we skip the full output here:

Ripley’s K

n = 120 points

t <= K t exp K t Kt-Kt exp L t H t

1 100 31415.93 3355556 3324140 1033.492 933.49238

2 200 125663.71 12583333 12457670 2001.349 1801.34940

3 300 282743.34 25586111 25303368 2853.824 2553.82412

4 400 502654.82 32297222 31794567 3206.326 2806.32580

5 500 785398.16 39008333 38222935 3523.739 3023.73923

...

We repeat the computation of Ripley’s K for the psychotherapists:

ripley(GoettingenHealth1[GoettingenHealth1$type == "psych",],

"location", "lat", "lon", area = area_gn, t.max = 30000, t.sep = 300,

K.local = TRUE, ci.boot = TRUE, ci.alpha = 0.05, ciboot.samples = 100,

plot.title = "Ripley’s K: Clustering of psychotherapists")
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(a) Pharmacies (n=120) (b) Psychotherapists (n=118)

Figure 4: Plots of the Ripley-K function with confidence intervals

The output is (also truncated):

Ripley’s K

n = 118 points

t <= K t exp K t Kt-Kt exp L t H t

1 100 31415.93 30798621 30767205.2 3131.055 3031.055025

2 200 125663.71 48583740 48458076.6 3932.516 3732.516350

3 300 282743.34 80249928 79967184.8 5054.141 4754.141421

4 400 502654.82 132737719 132235064.2 6500.133 6100.132940

5 500 785398.16 202143062 201357664.2 8021.480 7521.479612

...

The graphical output is shown in Figures 4a (pharmacies) and 4b (psychotherapists),
respectively. The expected value of Kt is plotted as blue line, while the empirical Kt

values are red and the corresponding confidence intervals are colored in green (These
colors are the default values in ripley() and can be changed by the function argu-
ments lcol.exp and lcol.emp, respectively). As we have nearly the same number of
points in both cases within the same field area, a direct comparison seems reasonable.
Obviously, both types of locations show a significant spatial clustering: Also the phar-
macies are more clustered than expected on condition of complete spatial randomness
up to a distance of about 15,000 meters. We have to remember that also the population
is already clustered (see Section 2.2.2) and the spatial distribution of pharmacies may
follow this pattern. However, the clustering of psychotherapists exceeds this level enor-
mously, especially within smaller distances up to about 8,000 meters. In conclusion, the
psychotherapists are more spatially clustered than pharmacies.

6 Analysis and prognosis of regional growth

6.1 Tools and models concerning regional growth

6.1.1 Analyzing regional growth: shift-share analysis and portfolio matrix

Aspects of regional growth have already been discussed in the context of regional conver-
gence in Section 3. The identification of clusters was the topic of Section 4. Combining
some aspects of both, this section presents a collection of tools and models concerning re-
gional growth with respect to industries. Like the indicators in Section 4, these techniques
are of high significance especially in the context of local economic policy and municipal
business promotion activities, aiming at e.g. strengthening a city’s or region’s compet-
itiveness, defining its profile or increasing the number of jobs (Dinc, 2015; Nischwitz
et al., 2017). Inspired by Farhauer, Kröll (2014) and congruent with the mathematical
formulations in Section 4, we calculate on the basis of local/regional employment, eij ,
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(a) Regional growth portfolio (b) Regional growth & specialization port-
folio

Figure 5: Regional economic portfolio matrix

which is the number of employees of industry i in region j. Its growth from time t to time
t + y can be operationalized as an absolute value (∆eij = eijt+y − eijt) or as a relative
growth (∆ergij = eijt+y/eijt) or as a (percentage) growth rate (∆egrij = eijt+y/eijt − 1).

The first technique described is the regional economic portfolio matrix, originating
from the portfolio matrix in marketing, developed by the Boston Consulting Group
(BCG) for the identification of growing and declining business fields of firms (Henderson,
1973). However, this technique can also be applied to several regional economic contexts
(Baker et al., 2002; Howard, 2007). Here, we present a portfolio matrix which compares
the growth in one region with the growth in a superordinate reference region (e.g. whole
economy). When using the matrix in this way, it is a plot of the growth rate with
respect to industry i in the region (∆egrij ) on the x axis and the corresponding growth
in the reference region (∆egri ) on the y axis (see Figure 5a). The size of the points
for each industry may be the total size of employment in the region (eij) to reflect
the absolute relevance of the i-th industry. The plot is segmented into four quadrants,
differentiated with respect to positive or negative growth rates. As implied by the colors
of the quadrants, they can be interpreted as follows: Quadrant I (top right) contains
the industries growing in both the region and the whole economy (or any other reference
region). Quadrant II (top left) shows all industries growing in the whole economy but
shrinking in the regarded region, which may indicate significant locational handicaps.
Quadrant III (bottom left) includes all industries shrinking in the region as well as in the
whole economy. Quadrant IV (bottom right) shows the special case of “star” industries,
indicating that these industries grow in the regarded region while shrinking in the whole
economy. Note that this segmentation (and the corresponding interpretation) differs
from the original BCG matrix.

Another variant of the portfolio matrix, which was developed in the context of de-
signing the REAT package, is shown in Figure 5b. Combining the aspects of regional
specialization (see Section 4) and regional growth, we can plot the location quotient
as an indicator of local specialization on the x axis, while plotting an industry-specific
growth indicator on the y axis. For identifying “growing” industries, there are at least
three options of operationalization: We can plot the industry-specific regional growth
rate (∆egrij ) on the y axis (which is on the x axis in the portfolio matrix in Figure 5a) or
the industry-specific national rate (∆egri ) or, if we want to show regional growth in re-
lation to national growth, the quotient of industry-specific regional and national growth
rates (∆egrij /∆e

gr
i ). In quadrant I, we see now all industries overrepresented in the re-

gion (in terms of the location quotient) as well as growing on the regional/national level.
Quadrant II shows all industries underrepresented in the region but growing as well. In
quadrants III and IV, we can identify all industries with negative growth rates, which
are underrepresented or overrepresented, respectively.
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Table 12: Shift-share analysis: Dunn and Gerfin type

Component Dunn-type (absolute) Gerfin-type (index)

∆ej = ejt+y − ejt =

njt,t+y +mjt,t+y + cjt,t+y

Net total shift tt+y = ejt+y − ejt − njt,t+y = tt+y = mjt,t+y cjt,t+y =

ejt+y
ejt
et+y
et

mjt,t+y + cjt,t+y

static (two time periods t and t+ y)

National share njt,t+y = ejt
et+y
et
− ejt njt,t+y = 1 (omitted)

Industrial mix mjt,t+y =
∑I

i=1
eijt

eit+y
ei
− ejt

et+y
et

mjt,t+y =

∑I

i=1
eijt

eit+y
ei

ejt
et+y
et

Regional share cjt,t+y =
∑I

i=1
eijt (

eijt+y
eijt

−
eit+y
eit

) cjt,t+y =

eijt+y
eijt∑I

i=1
eijt

eit+y
ei

dynamic (T time periods, while T > 2)

National share njt,T =
∑T

t=1
ejt

et+1

et
− ejt

Industrial mix mjt,T =
∑T

t=1

∑I

i=1
eijt

eit+1

ei
− ejt

et+1

et

Regional share cjt,T =
∑T

t=1

∑I

i=1
eijt (

eijt+1

eijt
−
eit+1

eit
)

industry-specific

National share nijt,t+y
= eijt

eit+y
eit

− eijt

Regional share cijt,T
= eijt (

eijt+y
eijt

−
eit+y
eit

)

prognosis for time period z

Employment ∆eijt+z = eijt+y (
ePit+z
eit+y

)cjt,t+y

Notes: ejt is the employment in region j at time t, eijt is the employment of industry i in region j
at time t, et is the total employment in the whole economy at time t, eit is the total employment in
industry i, y and z are numbers of time periods added to t (z > y), T is the number of regarded time
periods and I is the number of industries.
Compiled from: Farhauer, Kröll (2014); Haynes, Parajuli (2014); Schätzl (2000); Schönebeck (1996);
Spiekermann, Wegener (2008); Barff, Knight (1988)

A well-established model of regional growth is the shift-share analysis, which is, al-
though developed independently from the portfolio matrix, closely linked to the concept
presented above. The original shift-share analysis was introduced by Dunn Jr. (1960)
and given a theoretical foundation by Casler (1989). Parallelly and independently, Gerfin
(1964) developed a variant of shift-share analysis, which is more popular in the German-
speaking regional economic science. Both concepts have been extended in several ways.
Table 12 shows the basics of shift-share analysis with respect to “Dunn” and “Gerfin”
type. As there are several ways of formulating the shift-share formulae and calling the
particular elements of the shift-share analysis, the description here is based on the math-
ematical formulations in Farhauer, Kröll (2014) and the terms used in Haynes, Parajuli
(2014).

The basic idea of shift-share analysis is the decomposition of regional growth into
components, recognizing that single economic regions are embedded into and influenced
by a larger regional system, normally the whole economy, just called “the nation” here-
inafter: The (employment or e.g. gross value added) growth of industry i in region j
from time t to time t + y can be attributed to 1) a national trend, which means the
economic climate in the whole system of regions, 2) the all-over growth or decline of
the regarded industries and 3) the industry-specific performance of the region, which is
linked to locational advantages or disadvantages. The first component is called national
share and reflects the growth in region j that would have occurred if region j would have
developed exactly as the nation. The second component is the industrial mix, represent-
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ing the aggregated industry-specific growth in region j if the regarded industries would
have developed like in the whole economy, adjusted by the national effect. The third
component is the regional share, which is the “residuum” of the first two components;
this share of growth is attributed to locational advantages (or disadvantages), showing
the regional growth adjusted by national and industry effects (Farhauer, Kröll, 2014;
Haynes, Parajuli, 2014).

The Dunn-type models deal with absolute growth (∆eij or ∆ej), which is the sum of
all shift-share components, and a net total shift, which is the sum of the industrial mix
and the regional share (as these components are region-specific). Thus, this technique
is also called the “difference method”. The Gerfin-type approaches express growth in
terms of indices, while the net total shift for region j is the result of a multiplication
of the industrial mix index and the regional share index, resulting in the alternative
denomination “index method” (Schätzl, 2000).

Several extensions have been developed for the Dunn-type shift-share analysis (Haynes,
Parajuli, 2014). One regular application calculates a shift-share analysis for each indus-
try i in region j (instead of computing components for the whole region), while skipping
the industrial mix effect. A main contribution was the dynamic shift-share analysis by
Barff, Knight (1988). It extended the Dunn model by dealing with growth within a lon-
gitudinal cut of T years. Other extensions of the Dunn-type technique provide a deeper
differentiation of the three components, which are regarded as correlated (e.g. Arcelus
1984; Esteban-Marquillas 1972).

6.1.2 Commercial area prognosis

Also developed independently in the context of German urban planning, a commercial
area prognosis deals with an absolute (assumed) employment growth (∆eij) over T years,
which is used to forecast the required commercial area within a city or region j up to
time T . Note that “commercial area” represents the type of urban area which is used
by specific economic activities, especially industrial plants, and/or designated for this
purpose in municipal land-use plans. This technique is a demand-side approach, as it
derives the required commercial area from the (expected) demand for it (Bonny, Kahnert,
2005). See Table 13 for the calculation of two types of commercial area prognosis based
on employment growth.

The basic model called GIFPRO (German abbreviation for “Gewerbe- und Indus-
trieflächenbedarfsprognose”, roughly translated: prognosis of future demand of commer-
cial area) was developed by Stark et al. (1981). The usual procedure is to estimate –
starting from the current employment – the future industry-specific employment in re-
gion j. This number of employees is weighted by the industry-specific shares of workers
usually located in commercial areas and multiplied by a resettlement rate (sqij percent
of employees from industry i are resettled in one time period) and a relocation rate
(rqij percent of employees from industry i are relocated in one time period) as well as
a reutilization rate (ruij percent of employees from industry i will be located at reused
commercial area). This “commercial area-relevant” employment is weighted with an
areal index, aij (commercial area per employee), to compute the commercial area for
industry i in region j for one time period t. The expected commercial area is summed
over all I industries (Ajt) and, finally, over all T years and I industries (AjT ) (Bonny,
Kahnert, 2005; Planungsgruppe MWM, 2009).

A significant extension was developed in the context of establishing a land-use plan
for Dresden: The TBS-GIFPRO (German abbreviation for “Trendbasierte und standort-
spezifische Gewerbe- und Industrieflächenbedarfsprognose”, roughly translated: trend-
based and location-specific prognosis of future demand of commercial area) technique
(Deutsches Institut für Urbanistik GmbH, Spath + Nagel (GbR), 2010). It includes a
stochastic approach for forecasting employment as well as other region-specific data. The
employment prognosis is done using a trend regression model (employment against time)
based on past empirical employment data for region j (mostly from official employment
statistics) which are used for forecasting future employment. For each i industry, a single
regression model is estimated, where the function type is not pre-defined but chosen e.g.
based on the explained variance (R2) and/or plausibility considerations.

REGION : Volume 6, Number 3, 2019



R40 T. Wieland

Table 13: Commercial area prognosis

Prognosis GIFPRO TBS-GIFPRO

Employment eAijt =

[(
eijt0

ai
100

sqij
100

)
+

(
eijt0

ai
100

rqij
100

)]
eAijt =

[(
eijt

ai
100

sqij
100

)
+

(
eijt

ai
100

rqij
100

)]
−
(
eijt0

ruij
100

)
−
(
eijt

ruij
100

)
where: eijt = f(t) = a+ bt or

f(t) = atb or f(t) = aebt or

f(t) =
eMAXij

1+e−a+bt

Areal index pre-defined: aiij empirical estimation: aiij =
Aij
eij

Commercial area Aijt = eAijtaiij

Ajt =
∑I

i=1
Aijt

AjT =
∑I

i=1

∑T

t=1
Aijt

Notes: eAijt is the (expected) number of employees of industry i in region j which is located in commercial

areas at time t, eijt0 is the employment of industry i in region j at start time t0 (empirical value), eijt is
the (expected) employment of industry i in region j at time t, ai is the share of employees in industry i
which is located in commercial areas, sqij is the resettlement rate with respect to industry i in region j in
one time period, rqij is the relocation rate with respect to industry i in region j in one time period, ruij
is the reutilization rate with respect to industry i in region j in one time period, aiij is the areal index
with respect to industry i in region j (commercial area per employee), Aijt is the (expected) commercial
area for industry i in region j at time t, Ajt is the (expected) commercial area in region j at time t and
AjT is the sum of the (expected) commercial area in region j over all T time periods.
Compiled from: Bonny, Kahnert (2005); CIMA Projekt + Entwicklung GmbH et al. (2011); Deutsches
Institut für Urbanistik GmbH, Spath + Nagel (GbR) (2010); Planungsgruppe MWM (2009); Mulligan
(2006); Vallée et al. (2012)

The function may be linear (which seems unrealistic) or not: Deutsches Institut für
Urbanistik GmbH, Spath + Nagel (GbR) (2010) use linear and exponential functions.
However, from the growth perspective, also a logistic function may be applied (see Mul-
ligan 2006 for a discussion of logistic growth with respect to population). If possible, the
areal index and, maybe, other parameters are also estimated empirically for the specific
region j (e.g. via firm-level surveys and/or official statistical data).

6.2 Application in REAT

6.2.1 REAT functions for analyzing and forecasting regional growth

Table 14 shows the functions for the analysis of regional growth as implemented in REAT.
Table 15 presents the functions related to commercial area prognosis. All of these func-
tions require at least current employment data for each industry in the regarded region
j, eij , which may be a single numeric vector or the column of a data frame or matrix.
Another similarity of all mentioned functions is the optional argument of the industry
names (or codes). If no industry names are stated by the user (default function argument:
industry.names = NULL), the industries are numbered consecutively. With respect to
the function output, all regional growth functions distinguish between a visible and an
invisible output (see e.g. Section 3), where the main results are returned automatically
and the details are included in the invisible output (mostly a list with several entries
of type matrix).

The portfolio matrix (growth portfolio and growth-specialization portfolio, respec-
tively) can be plotted using the functions portfolio() and locq.growth(), respec-
tively. The different techniques of shift-share analysis are distributed over five functions
(shift(), shiftd(), shifti(), shiftid() and shiftp()). The usage of portfolio and
shift-share functions is similar: In any case, the user needs industry-specific employment
data for the regarded region and the reference region (e.g. whole economy) for at least
two time periods (e.g. years).
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Table 14: REAT functions for analyzing regional growth

Model REAT function Mandatory arguments Optional arguments Output

Growth portfolio() vectors of eijt and eijt+y point size visible: plot,

portfolio and vectors of eit and factor, invisible: growth
matrix eit+y or matrix/data industry names rates (matrix)

frame with eijt and
eit for T years,

point size (e.g. eijt+y )

Growth and locq.growth() vectors of eijt and eijt+y point size visible: plot,

specialization and vectors of eit and factor, invisible: list with
portfolio eit+y or matrix/data industry names portfolio data

matrix frame with eijt and (matrix), LQij
eit for T years, (matrix) and

point size (e.g. eijt+y ) growth rates

(matrix)

Shift-share shift() vectors of eijt and eijt+y , shift-share visible: matrix

analysis vectors of eit and eit+y method with components,

(default: Dunn), invisible: list with
industry names, components (matrix),
plot components, growth (matrix) and

plot portfolio shift method (char),
optional: plot(s)

dynamic shiftd() vectors of eijt0 and eit0 , shift-share visible: matrix
matrix/data frame with method with annual
eijt and eit for T years (default: Dunn), components,

industry names, invisible: list with
plot components, components (matrix),

plot portfolio annual components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

industry- shifti() vectors of eijt and eijt+y , shift-share visible: matrix

specific vectors of eit and eit+y method with industry

(default: Dunn), components,
industry names, invisible: list with
plot components, components (matrix),

plot portfolio industry components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

industry- shiftid() vectors of eijt0 and eit0 , shift-share visible: matrix
specific and matrix/data frame with method with industry
dynamic eijt and eit for T years (default: Dunn), components,

industry names, invisible: list with
plot components, components (matrix),

plot portfolio industry components
(matrix), growth

(matrix) and shift
method (char),

optional: plot(s)

prognosis shiftp() vectors of eijt and eijt+y , industry names, visible: matrix

vectors of eit and eit+y , plot with industry

vector of ePit+z
components,

invisible: list with
industry employment
prognosis (matrix),

components (matrix),
industry components

(matrix), growth
(matrix) and shift

method (char),
optional: plots

Source: own compilation.
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Table 15: REAT functions for commercial area prognosis

Model REAT function Mandatory arguments Optional arguments Output

GIFPRO gifpro() vectors of eij , ai, vector of ruij , visible: total
sqij , rqij and aiij , industry names, commercial area and

time interval, type of output (optional) annual values,
time base invisible: list with

components (matrices),
annual and all-over

results (list with two
matrices)

TBS-GIFPRO gifpro.tbs() vectors of eijt for T vector of ruij , visible: total
years, ai, sqij , rqij industry names, commercial area and

and aiij , time interval, type of output, (optional) annual values,
time base, trend employment invisible: list with
function types forecast only components (matrices),

annual and all-over
results (list with two
matrices), industry-

specific forecast
model results (list
with I matrices)

Source: own compilation.

All functions for shift-share analysis (except for shift-share prognosis with shiftp())
provide three variants of calculation of the components: The classical Dunn method
(default function argument shift.method="Dunn"), the Dunn extension by Esteban-
Marquillas (1972) (shift.method="Esteban") producing four components instead of
three, and the Gerfin method (shift.method="Gerfin"). When calculating a dynamic
shift-share analysis, the user must choose the function shiftd(). Industry-specific
components are returned by the function shifti(). With shiftid() one can com-
bine both approaches. Here, it is important to recognize that the function structure
allows a combination of e.g. industry-specific and dynamic components while calcu-
lating the components from the Esteban-Marquillas extension of shift-share analysis.
Additionally, the shift-share functions may plot a portfolio matrix (function argument
plot.portfolio = TRUE), allowing portfolio and shift-share analysis at once.

Both functions for commercial area prognosis (gifpro() and gifpro.tbs()) require
vectors of employment data as well as the coefficients for resettlement etc. When fore-
casting commercial area using the trend-specific technique with gifpro.tbs(), the user
needs time series data of previous industry-specific employment and has to specify a
trend function type (linear, power, exponential or logistic) for each industry. The “best”
function type may be examined visually by regarding the employment forecasting out-
put (optional function argument prog.plot = TRUE) and the related R2 values which
is part of the invisible function output. Note that this function uses the REAT function
curvefit(), which is a simple tool for bivariate regression, similar to the curve fitting
functions in other spreadsheet or statistics software.

6.2.2 Application example 1: Analysis of regional growth in Göttingen

Referring to the example in Section 4.2.2, we perform a regional growth analysis for the
German city Göttingen. We use the same dataset Goettingen as before, that contains
industry-specific employment data for Göttingen and Germany from 2008 to 2017. We
load our example data:

data(Goettingen)

In the first step, we want to examine the industry-specific growth in Göttingen visu-
ally. Using the function portfolio(), we plot a regional growth matrix with respect to
the 15 industries (rows 2 to 16). We also set a plot title (argument pmtitle) and axis
labels (arguments pmx and pmy, respectively) as well as industry-specific colors (argument
pcol):
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(a) Growth portfolio matrix for Göttingen (b) Growth-specialization matrix for Göttingen

Figure 6: Portfolio matrix analysis for 15 industries in Göttingen

portfolio (Goettingen$Goettingen2008[2:16],

Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

psize = Goettingen$Goettingen2017[2:16], psize.factor = 15,

pmtitle = "Growth of 15 industries in Göttingen",

industry.names = Goettingen$WZ2008_Code[2:16],

pmx = "Growth Göttingen 2008-2017 [%]",

pmy = "Growth Germany 2008-2017 [%]",

pcol.border = "grey",

pcol = c("darkgreen", "powderblue", "chocolate", "darkred",

"orange", "cadetblue1", "chartreuse1", "red", "coral",

"coral4", "cyan", "darkcyan", "yellow", "green", "deeppink"),

leg = TRUE, leg.x = -90)

Similarly, we plot a growth-specialization portfolio matrix using locq.growth() with
the same options (colors etc.). On the y axis, we put the industry-specific regional growth
which is stated by the function argument y.axis = "r" (if we would like to see the
national growth instead, we had to set y.axis = "n"; for the quotient of regional and
national growth, use y.axis = "rn"):

locq.growth (Goettingen$Goettingen2008[2:16],

Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

psize = Goettingen$Goettingen2017[2:16], psize.factor = 15,

y.axis = "r", industry.names = Goettingen$WZ2008_Code[2:16],

pmtitle = "Growth and specialization in Göttingen",

pmx = "Regional specialization Göttingen",

pmy = "Growth Göttingen 2008-2017 [%]", pcol.border = "grey",

pcol = c("darkgreen", "powderblue", "chocolate", "darkred",

"orange", "cadetblue1", "chartreuse1", "red", "coral",

"coral4", "cyan", "darkcyan", "yellow", "green", "deeppink"),

leg = TRUE, leg.x = 0.1)

The resulting growth portfolio matrix is shown in Figure 6a, the growth-specialization
portfolio in Figure 6b. The size of the points (or bubbles) is equal to the current
industry-specific employment (eij) for 2017 (rows 2 to 16 of column Goettingen2017

in the example data), normalized with respect to a maximum point size of 15 (argument
psize.factor = 15). As we can see, the health sector (industry code Q, green bubble)
has the highest absolute relevance, which can be attributed to the local university hos-
pital (see Section 4.2.2). The axes in the growth portfolio are segmented at x = 0 and
y = 0, respectively, which means a differentiation between positive and negative growth.
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As we can see, most industries have grown from 2008 to 2017 in both the region and the
whole economy (see quadrant I) with similar growth rates. There is one outlier: Industry
R (arts, entertainment, and recreation) shows a regional growth of more than 75 percent,
while the national growth is about 10 percent. Note that we see percentage growth rates
from 2008 to 2017 here (if average growth rates are desired, use the function argument
time.periods).

Looking at the growth-specialization portfolio, we can identify absolute relevance and
growth rate as well as regional specialization of the industries (The colors and bubble
sizes are equal to those in Figure 6a). In quadrant I, we find the industries which
are overrepresented in Göttingen (specialization) and growing at this regional level. As
expected in this university city and related to our results in Section 4.2.2, the “stars”
in Göttingen are education (code P), health (code Q) and professional, scientific and
technical services (code M).

While the portfolio matrix analysis tells us about the industry-specific growth, the
shift-share analysis decomposes this growth into the national, industrial and regional
components. In the first step, we perform a static shift-share analysis in the sense of
Dunn Jr. (1960) for the same data as in the portfolio analysis by applying the function
shift():

shift(Goettingen$Goettingen2008[2:16], Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16])

# rows 2-6: 15 industries

# columns Goettingen2008 and Goettingen2017:

# employment Goettingen 2008 and 2017, respectively

# columns BRD2008 and BRD2017:

# employment Germany 2008 and 2017, respectively

This is our (visible) output:

Shift-Share Analysis

Method: Dunn

Shift-share components

Components

Growth (t1-t) 10411.0000

National share 9178.1916

Industrial mix 2204.8202

Regional share -972.0118

Net total shift 1232.8084

Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

In this cross-sectional analysis, we see that the overall employment in Göttingen
increased by 10,411 persons from 2008 to 2017. However, a large share of this growth
is due to the growth in the national economy (njt,t+y ≈ 9, 178 employees), which is
only a bit lower than Göttingen. The industrial mix component (mjt,t+y ) shows that
approximately 2,205 additional employees must be attributed to an overrepresentation
of growing industries in Göttingen. The regional share is negative (cjt,t+y ≈ −972),
which indicates locational disadvantages. When interpreting the industrial mix also as a
regional aspect (which seems plausible), we can look at the sum of the industrial mix and
the regional share: The net total shift (tt+y) is equal to 1,233 employees, representing
the growth difference between the region and the whole economy.

We confirm our results using the Gerfin technique. We request it by setting the
argument shift.method of the shift() function equal to "Gerfin":

shift(Goettingen$Goettingen2008[2:16], Goettingen$Goettingen2017[2:16],

Goettingen$BRD2008[2:16], Goettingen$BRD2017[2:16],

shift.method = "Gerfin")
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The output is:

Shift-Share Analysis

Method: Gerfin

Shift-share components

Components

Industrial mix 1.0333810

Regional share 0.9857591

Net total shift 1.0186647

Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

In the index method, there is no national share component (implicitly, it is equal to
one), thus, we only take a look at the industrial mix and the regional share as well as
the net total shift. The industrial mix component is above one (njt,t+y ≈ 1.03), showing
a more advantageous sector structure in Göttingen compared to Germany. While the
regional share in the Dunn-type shift-share analysis was negative, this component in the
Gerfin analysis is slightly below one (cjt,t+y ≈ 0.99), indicating locational disadvantages.

These traditional techniques only regard the overall growth with respect to cross-
sectional data. To gain a deeper insight and take into account also seasonal effects,
we perform a dynamic shift-share analysis in the sense of Barff, Knight (1988) which
distinguishes between the 15 industries simultaneously. This can be done via the REAT

function shiftid(), requiring data for the initial time period and at least for two fol-
lowing periods. In the Goettingen dataset, the rows 2 to 16 represent the industries
and the columns represent the years (2008 to 2017). Data for the regarded region and
the whole economy is arranged successively. We also use the industry codes in column
WZ2008_Code. In this function, we have to define the start and end periods explicitly:

shiftid(Goettingen$Goettingen2008[2:16], Goettingen[2:16,3:12],

Goettingen$BRD2008[2:16], Goettingen[2:16,13:22],

time1 = 2008, time2 = 2017,

industry.names = Goettingen$WZ2008_Code[2:16])

# columns 3-12: employment in Göttingen 2009-2017

# columns 13-22: employment in Germany 2009-2017

The result is:

Dynamic Shift-Share Analysis

Method: Dunn

Shift-share components

A BDE C F G

Growth (t1-t) -3.000000 29.00000 -1117.0000 -255.0000 -51.0000

National share 6.103502 -9.46377 254.5217 160.0638 561.7436

Regional share -9.103502 38.46377 -1371.5217 -415.0638 -612.7436

Net total shift -9.103502 38.46377 -1371.5217 -415.0638 -612.7436

H I J K M

Growth (t1-t) 524.0000 470.00000 274.00000 -465.000000 2229.000

National share 368.2053 515.03493 286.32383 6.356612 1821.392

Regional share 155.7947 -45.03493 -12.32383 -471.356612 407.608

Net total shift 155.7947 -45.03493 -12.32383 -471.356612 407.608

N O P Q R

Growth (t1-t) 1178.0000 268.0000 1272.0000 4211.000 363.00000

National share 977.9869 167.9118 1138.5383 3556.692 47.50353

Regional share 200.0131 100.0882 133.4617 654.308 315.49647

Net total shift 200.0131 100.0882 133.4617 654.308 315.49647
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Calculation for 15 industries

Regional employment at time t: 56872, at time t+1:

67283 (10411 / 18.30602 %)

National employment at time t: 27695398, at time t+1:

32164973 (4469575 / 16.13833 %)

The visible output is a matrix containing one row for each component (the number of
components depends on the selected shift-share method, here: Dunn) and I columns (one
for each industry). As we calculate industry-specific components, there is no industrial
mix effect, which means that the calculations are on the level of single industries. Again,
we detect large absolute growth for industries P (education) and Q (health) (see Table
9). Interestingly, this growth can be mainly attributed to effects in the whole economy.
The corresponding regional shares are small but positive, showing locational advantages
with respect to these industries in Göttingen.

The logic of shift-share analysis can also be regarded in two other examples: If in-
dustry C (manufacturing) had developed as in the national trend, the absolute growth
in Göttingen would be equal to 255 employees. In fact, there was a decline of 1,117 em-
ployees, resulting in a negative regional share of -1,372 employees, indicating locational
disadvantages with respect to the manufacturing sector. The opposite is true for the
industries with code BDE (including electricity, gas, water supply, etc.): The absolute
growth of 29 employees would not have occurred if this sector had developed as in the
whole economy (negative national share equal to -9 employees). The residuum (regional
share) is equal to 38 employees, indicating a trend contrary to the national.

6.2.3 Application example 2: Commercial area prognosis for Göttingen

Using the same data, we now perform a commercial area prognosis for Göttingen. We
load our data:

data(Goettingen)

When using the GIFPRO-based commercial area prognosis techniques, several param-
eters have to be defined (employment shares in commercial areas ai, resettlement rate
sqij , relocation rate rqij and areal index aiij ; a reutilization rate ruij is optional, thus,
we ignore the reutilization of commercial area in this example). These parameters have
to be defined for each industry. In our example, we use the employment shares as well
as the resettlement and relocation rates from Deutsches Institut für Urbanistik GmbH,
Spath + Nagel (GbR) (2010). Note that some sectors are, per definition, not located
within commercial areas (e.g. agriculture), resulting in an employment share of ai = 0.
As we want to reuse the sets of parameters, we save them as single numeric vectors:

ca_share <- c(0, 0, 100, 90, 70, 100, 10, 20, 20, 20, 20, 0, 0, 0, 0)

# industry-specific shares of employees in commercial areas

sq_quote <- c(0.77, 0.77, 0.15, 0.15, 0.77, 0.15, 0.77, 0.77,

0.77, 0.77, 0.77, 0.77, 0.77, 0.77, 0.77)

# industry-specific resettlement quote

rq_quote <- rep(0.7, 15)

# industry-specific relocation quote (0.7 for each of the 15 industries)

area_index <- c(0, 0, 200, 75, 250, 250, 50, 100, 100, 100, 100,

50, 50, 50, 50)

# industry-specific area index (sqm commercial area per employee)

Now, we compute the traditional commercial area prognosis using the gifpro() func-
tion and the Goettingen data as well as the parameters defined above. We forecast the
commercial area for five years (tinterval = 5). Our base is 2017 (time.base = 2017),
as this is the last year empirical data is available for. We save the (invisible) output in
the list object gifpro_goettingen:

gifpro_goettingen <- gifpro (e_ij = Goettingen$Goettingen2017[2:16],

a_i = ca_share, sq_ij = sq_quote, rq_ij = rq_quote, tinterval = 5,

ai_ij = area_index, time.base = 2017,

industry.names = Goettingen$WZ2008_Code[2:16], output = "full")
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As we have set output = "full", the visible function output contains overall as well
as annual values:

GIFPRO

Method: GIFPRO

Employment and commercial area changes (allover)

Employment Commercial Area

Sum 1113.8785 212981.94

Average 222.7757 42596.39

Employment and commercial area changes (per time unit)

Employment CommercialArea

2018 222.7757 42596.39

2019 222.7757 42596.39

2020 222.7757 42596.39

2021 222.7757 42596.39

2022 222.7757 42596.39

Calculation for 15 industries

In all 15 industries, 1,114 new employees are predicted for the year 2022, resulting in
212,928 square meters required for new commercial area. As the employment prognosis
is not based on (nonlinear) trend regression but on constant growth, the absolute em-
ployment growth and the required commercial area are equal in each year (223 employees
and 42,596 sqm, respectively).

The object gifpro_goettingen contains a list called components containing the
single components of prognosis as well as the results already shown in the visible output
(results). To understand the GIFPRO technique and the related REAT function, we
take a look at the single components:

gifpro_goettingen$components

$resettlement

2018 2019 2020 2021 2022

A 0.00000 0.00000 0.00000 0.00000 0.00000

BDE 0.00000 0.00000 0.00000 0.00000 0.00000

C 11.81100 11.81100 11.81100 11.81100 11.81100

F 1.80090 1.80090 1.80090 1.80090 1.80090

G 38.00489 38.00489 38.00489 38.00489 38.00489

H 3.72150 3.72150 3.72150 3.72150 3.72150

I 1.73327 1.73327 1.73327 1.73327 1.73327

J 3.12928 3.12928 3.12928 3.12928 3.12928

K 2.67806 2.67806 2.67806 2.67806 2.67806

M 12.18910 12.18910 12.18910 12.18910 12.18910

N 7.50750 7.50750 7.50750 7.50750 7.50750

O 0.00000 0.00000 0.00000 0.00000 0.00000

P 0.00000 0.00000 0.00000 0.00000 0.00000

Q 0.00000 0.00000 0.00000 0.00000 0.00000

R 0.00000 0.00000 0.00000 0.00000 0.00000

$relocation

2018 2019 2020 2021 2022

A 0.0000 0.0000 0.0000 0.0000 0.0000

BDE 0.0000 0.0000 0.0000 0.0000 0.0000

C 55.1180 55.1180 55.1180 55.1180 55.1180

F 8.4042 8.4042 8.4042 8.4042 8.4042

G 34.5499 34.5499 34.5499 34.5499 34.5499

H 17.3670 17.3670 17.3670 17.3670 17.3670

I 1.5757 1.5757 1.5757 1.5757 1.5757

J 2.8448 2.8448 2.8448 2.8448 2.8448

K 2.4346 2.4346 2.4346 2.4346 2.4346
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M 11.0810 11.0810 11.0810 11.0810 11.0810

N 6.8250 6.8250 6.8250 6.8250 6.8250

O 0.0000 0.0000 0.0000 0.0000 0.0000

P 0.0000 0.0000 0.0000 0.0000 0.0000

Q 0.0000 0.0000 0.0000 0.0000 0.0000

R 0.0000 0.0000 0.0000 0.0000 0.0000

$reuse

2018 2019 2020 2021 2022

A 0 0 0 0 0

BDE 0 0 0 0 0

C 0 0 0 0 0

F 0 0 0 0 0

G 0 0 0 0 0

H 0 0 0 0 0

I 0 0 0 0 0

J 0 0 0 0 0

K 0 0 0 0 0

M 0 0 0 0 0

N 0 0 0 0 0

O 0 0 0 0 0

P 0 0 0 0 0

Q 0 0 0 0 0

R 0 0 0 0 0

$employment

2018 2019 2020 2021 2022

A 0.00000 0.00000 0.00000 0.00000 0.00000

BDE 0.00000 0.00000 0.00000 0.00000 0.00000

C 66.92900 66.92900 66.92900 66.92900 66.92900

F 10.20510 10.20510 10.20510 10.20510 10.20510

G 72.55479 72.55479 72.55479 72.55479 72.55479

H 21.08850 21.08850 21.08850 21.08850 21.08850

I 3.30897 3.30897 3.30897 3.30897 3.30897

J 5.97408 5.97408 5.97408 5.97408 5.97408

K 5.11266 5.11266 5.11266 5.11266 5.11266

M 23.27010 23.27010 23.27010 23.27010 23.27010

N 14.33250 14.33250 14.33250 14.33250 14.33250

O 0.00000 0.00000 0.00000 0.00000 0.00000

P 0.00000 0.00000 0.00000 0.00000 0.00000

Q 0.00000 0.00000 0.00000 0.00000 0.00000

R 0.00000 0.00000 0.00000 0.00000 0.00000

As we defined some industries as not relevant for commercial areas (ai = 0), they do
not contribute any employees neither resettled nor relocated (such as A - agriculture, B
- mining and quarrying or R - arts, entertainment, and recreation). We see that e.g. in
the manufacturing sector (code C), there is an annual increase of about 12 employees
attributed to resettlement and 55 employees related to relocation each year (see row
3 in resettlement and relocation, respectively). As we ignored the reutilization of
commercial area, the matrix containing the commercial area-relevant employment related
to reutilization (reuse) contains only zeros. The sum of all three components is stored
in the fourth matrix, employment. There is an annual increase of nearly 67 employees
in the manufacturing sector. The contents of the results list is the same as shown in
the visible output.

In the next step, we apply the trend-based commercial area prognosis (TBS-GIFPRO)
to the Goettingen data. In the gifpro.tbs() function, we use the employment data
from 2008 to 2017 (columns 3 to 12), and assume an exponential function for employ-
ment prognosis (function argument prog.func, repeating the argument "exp" for each
industry). The employment prognosis is plotted (prog.plot = TRUE), showing all 15
plots in one (plot.single = FALSE):
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Figure 7: Employment prognosis for 15 industries in Goettingen (TBS-GIFPRO)

gifpro.tbs (e_ij = Goettingen[2:16,3:12],

a_i = ca_share, sq_ij = sq_quote, rq_ij = rq_quote, tinterval = 5,

prog.func = rep("exp", nrow(Goettingen[2:16,3:12])),

ai_ij = area_index, time.base = 2008,

industry.names = Goettingen$WZ2008_Code[2:16],

prog.plot = TRUE, plot.single = FALSE, output = "full")

The visible function output is similar to the output above:

GIFPRO

Method: TBS-GIFPRO

Employment and commercial area changes (allover)

Employment CommercialArea

Sum 1139.6592 216012.46

Average 227.9318 43202.49

Employment and commercial area changes (per time unit)

Employment CommercialArea

2018 224.9565 42945.53

2019 226.2904 43054.76

2020 227.7755 43182.97

2021 229.4169 43330.70

2022 231.2199 43498.50

Calculation for 10 industries

The resulting plot containing the employment forecasting functions is shown in Figure
7. The black vertical lines divide the plots into the esimation segment (2008 to 2017) and
the prognosis segment (2018 to 2022). Four function types are supplied: linear (blue),
power (green), exponential (yellow) and logistic (red). Note that a linear trend seems
unrealistic as it implies continuous growth and may result in negative employment if
the slope is negative. At this point, we should normally discuss and find the “best”
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forecasting model for each industry and rerun our analysis a few times. In our example,
we skip this step and just take a look at the prognosis functions: In most cases, an
exponential growth (or decline) seems to be an appropriate approximation. The power
functions (green lines) are nearly invisible as their data fit is nearly the same as that
of the exponential functions. Thus, we could choose them instead. In our case, the
exponential function seems sufficient.

As expected, a nonlinear industry growth results in a nonlinear overall employment
growth and, consequently, the commercial area-relevant employment also grows in a
nonlinear way. As we can see from the gifpro.tbs() output, employment increases by
about 228 employees per year on average and by about 1,140 employees over the five years
regarded (2018 to 2022). The annual commercial area required ranges from 42,946 sqm
(2018) to 43,499 sqm (2022), all in all 216,012 sqm up to 2022. In our case, the estimated
commercial area exceeds the prognosis derived from the simple GIFPRO analysis, which
can be attributed to the positive differences between the exponential prognosis and a
linear prognosis (see Figure 7). We skip the inspections of the components, which could
be addressed by saving the results in an object (list), as we did in the first GIFPRO
example.

7 Final remarks

This paper has shown how R and specifically the package REAT can be used for regional
economic analysis. It should be noted that this package aims at width with respect
to the treated analysis subjects rather than depth. The subsections provide the basic
analysis methods regarded as most important from the package developer’s point of view
(with respect to usage in current papers and discussion in current textbooks as well as
application in own research projects), while there are several other approaches as well as
extensions of the basic methods. A more detailed survey of the common methods can be
found in the cited literature, especially in review articles (e.g. Nakamura, Morrison Paul
2009; Portnov, Felsenstein 2010) and textbooks (e.g. Farhauer, Kröll 2014).

Finally, we have to keep in mind that this package (like nearly any other free software)
was developed in a non-commercial context (and published under the GNU General
Public License). All functions have been tested several times using various real data and
single functions have already been used in a few research projects. However, there is no
warranty that all functions always work perfectly. Like nearly any other R package, REAT
is continuously refined, which means extending functions as well as correcting errors.
This requires attentive usage and, of course, constructive feedback from the package
users. It can be easily transmitted using the contact information on the CRAN package
website.
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forschung, NORD/LB Regionalwirtschaft, Planquadrat Dortmund GbR (2011) Gewer-
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