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Abstract

Weighting is one of the major components in survey sampling. For a given sample survey, 
to each unit of the selected sample is attached a weight that is used to obtain estimates of 
population parameters of interest (e.g., means or totals). The weighting process usually 
involves three steps: (i) obtain the design weights, which account for sample selection; (ii) 
adjust these weights to compensate for nonresponse; (iii) adjust the weights so that the 
estimates coincide to some known totals of the population, which is called calibration.
Unfortunately, weighting is often considered as a process restricted to survey sampling and 
for the production of statistics related to finite populations. This should not be the case 
because, when using survey data, statistical analyses, modeling and index estimation 
should use weights in their calculation.
This paper tries to describe why weights are useful when dealing with survey data. First, 
some context is given about weighting in sample surveys. Second, we present the use of 
weights in statistical analysis, and we give the impact of not using the weights through an 
illustrative example. Third, the above three weighting steps are formally described.
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1. Introduction
In survey sampling, weighting is one of the critical steps. For a given sample survey, to 
each unit of the selected sample is attached a weight (also called an estimation weight) that 
is used to obtain estimates of population parameters of interest, such as the average 
income of a certain population. In some cases, the weight of a given unit may be 
interpreted as the number of units from the population that are represented by this sample 
unit. For example, if a random sample of 25 individuals has been selected from a 
population of 100, then each of the 25 sampled individuals may be viewed as representing 
4 individuals of the population.
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The decision to weight or not is clearly not an issue in survey sampling. The production of 
design-unbiased estimates of parameters of interest will be possible only with proper 
weights. As well, some properties of estimators, such as design consistency (Särndal et al., 
1992), will hold only by using weights.

In statistical analysis of survey data, the use of weights is not always followed by 
practitioners. Often, statisticians use the data without considering the weights attached to 
each unit. Unfortunately, this can seriously bias the results of the analysis, leading to 
erroneous conclusions. This is why weights should not only be used by surveys samplers to 
produce finite populations statistics (e.g., totals, averages, indicators), but also in statistical 
analysis, such as modeling.

The weighting process usually involves three steps. The first step is to obtain design 
weights (also called sampling weights), which are the weights that account for sample 
selection. For some sampling methods, the sum of the design weights corresponds to the 
population size. Coming back to the previous example, the sum of the design weights (that 
are all equal to 4) over the 25 sampled individuals gives 100, the total population size.

For any survey, nonresponse is almost inevitable. Because nonresponse reduces the 
effective size of the sample, it is necessary to adjust the weights (in fact, increasing them) 
to compensate for this loss. The adjustment of the design weights for nonresponse is the 
second step of the weighting process.

The third step of weighting is to adjust the weights to some known population totals. For 
example, the number of men and women in our population of 100 individuals might be 
known. Because of the way the sample has been selected, it is not guaranteed that the 
estimated number of men obtained by summing the weights of the sampled men will be 
equal to the true number of men in the population. The same applies to the estimated 
number of women. It might then be of interest to adjust the design weights (or the design 
weights adjusted for nonresponse) in order to make the estimates agreed to the known 
population totals. This process is called calibration. The special case of calibration that 
consists of adjusting the weights to population counts (as in the above example) is referred 
to as post-stratification.

In Section 2, some context will be given about weighting in sample surveys. In Section 3, 
we will present the use of weights in statistical analysis, and we will give the impact of not 
using the weights through an illustrative example. The above three weighting steps will be 
formally described in section 4.

2. Weighting in Sample Surveys
In survey sampling, it is often of interest to estimate descriptive parameters of a finite 
population of size . A common type of population parameter is the population total 

where  is the value of a variable of interest for the population unit . For 
a survey on tobacco use, for example, the variable of interest  could be the number of 
cigarettes smoked by individual during a given day. The total represents the total 
number of cigarettes smoked during the day in the population . An important special case 
of a population total is the domain total , where and is the
domain indicator variable; i.e., , if unit is in the domain of interest , and , 
otherwise. Continuing on the tobacco survey example, an analyst might be interested in 
estimating the total number of cigarettes smoked during the day by gender. In this case, the 
population has two domains of interest: the subpopulations of men and women.
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(1) 

(2) 

Many descriptive parameters of interest can be written as a smooth function of a vector of 
population totals, , where ,  is a vector of variables of interest for unit . In 
other words, the population parameter can be written as for some smooth 
function . The most common example is the domain mean . In the 
tobacco survey example, the analyst might be interested in estimating the average number 
of cigarettes smoked during the day for the subpopulation of men, and for the 
subpopulation of women. Another example of a population parameter is the regression 
coefficient (slope) where and are two variables of interest, and 

where and . Again, in the tobacco survey example, 
the analyst might be interested in the regression coefficient between the number of 
cigarettes smoked during the day ( ) and the number of years of smoking ( ).

It is usually too costly to collect information about the variables of interest for all population 
units. A sample is thus selected from the population and information used to derive the 
variables of interest is collected only for sample units. Sample selection is often done by 
randomly selecting certain units from a list that we call a sampling frame. In the present 
paper (except in Section 4.4), we will assume that the sampling frame is identical to the 
target population .

Formally, a sample s of size n is selected from the population using some probability 
sampling design . One of the simplest sampling designs is simple random sampling 
(SRS), without replacement, for which we have  . By dividing the 
population into subpopulations , , in which we perform an SRS, we have 
a stratified SRS. For example, for a population of 100 people containing 50 men and 50 
women, we might randomly select 10 men and 20 women, respectively. For the men 
stratum, we then have a sampling fraction of 20% (10/50), and for the women stratum, 40% 
(20/50).

The estimation of descriptive parameters of the population is achieved by using the 
variable of interest measured for each unit in sample . An estimation weight is 
attached to each sample unit and is used to obtain estimates of the parameters of 
interest. For instance, the estimator of the population total is:

The estimation of a more complex population parameter of the form can be done 
similarly by using the estimator , where . A single set of 
estimation weights, , can be used to obtain estimates for any parameter, 
variable and domain of interest as long as the estimation weight does not depend on the 
population values of the variables and domains of interest. However, it may depend on the 
sample. Coming back to the tobacco 
smoked during the day for the subpopulation of men can be estimated using 

. As well, the regression coefficient can be estimated 
using:
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(3) 

(4) 

where and .

3. The Use of Weights in Statistical Analysis
Many authors discussed the use of weights in statistical analysis. Rao and Scott (1981), 
Binder (1983), Roberts et al. (1987), Rao and Wu (1988), Pfefferman et al. (1998), Korn 
and Graubard (1999), Chambers and Skinner (2003), Stapleton (2008), Li and Valliant 
(2009) and Lohr (2009) are only a few of them. From their studies, it is becoming clear that 
the use of weights could be beneficial in statistical analysis of data coming from complex 
survey designs. By a complex survey design, we mean here any sampling design leading 
to weights that differ from one unit to the next. Based on this definition, even a basic 
sampling design such as stratified SRS is considered as a complex design.

Despite the previously published studies, as mentioned before, weights are not always 
used by practitioners for their analysis of survey data. For several reasons (one being 
simplicity), statisticians are performing their data analysis without weights, even if the data 
come from a complex survey design.

Coming back to the tobacco survey example, one might be interested in analysing the 
relationship between the number of cigarettes smoked during the day and the number of 
years of smoking. This might be, for example, in the context of a health study for measuring 
the damage caused by smoking during the life of people. It can then be hypothesised that 
the relationship between the number of cigarettes smoked during the day ( ) and the 
number of years of smoking ( ) can be represented by the linear model :

where and are unknown parameters, and where . Now, the population 
can be seen as a realisation of size from model (3). That is, the population is a 
random sample of size selected from the superpopulation represented by the model (3) 
and therefore we have , with . The finite 
population parameter can then be seen as nothing more than an 

estimator of the model parameter from the superpopulation (e.g., Särndal et al., 1992).

For the study on tobacco use, the analyst is interested in this context in the regression 
coefficient between the number of cigarettes smoked during the day ( ) and the number 
of years of smoking ( ). Now, the estimation of  can be done using the weights, or not. 
Not using the weights in the estimation of  leads to the estimator:

where  and . It is clear that in general where is 
given by equation (2), unless the weights are equal for all units in sample s. Note that 
a sampling design for which all the weights are equal for all units in is called a self-
weighted design.

As mentioned earlier, not using the weights in data analysis of complex survey data can 
seriously bias the results of the analysis, leading to erroneous conclusions. We now 
illustrate the problem using, again, the tobacco survey as an example. Let us assume that 
the population for this study contains 40 persons: 20 men and 20 women. We select a 
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sample of size 10 using a stratified SRS: 3 men are selected from the men stratum, and 7 
women are selected from the women stratum. The aim of the survey is to measure the 
increase of the number of cigarettes smoked during the day ( ) with the number of years of 
smoking ( ). In other words, we are interested in estimating the regression coefficient . 
For each of the 10 persons in sample , the variables and , are measured.

Using the data from the complete population, we are able to compute the true value of the 
regression coefficient , which is equal to 1.88. The data are 

displayed in Figure 1 below.

Figure 1: Population data from Tobacco Survey

If we separate men and women, we find out that their behaviours are different. For the men, 
we compute a regression coefficient of 1.25, and 

for the women, we obtain equal to 2.55. As we can see, women tend to increase 
their number of cigarettes smoked in a day with the number of years of smoking more than 
men. This is illustrated in Figure 2 below.

Figure 2: Population Data from Tobacco Survey for Men and Women
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Now, in practice, we do not have data for the complete population, and this is why a survey 
is conducted. Using the data obtained from the sample of size 10, we first estimate the 
regression coefficient using the unweighted estimator given by (4), and we obtain the 
estimated value 2.08. This is illustrated in Figure 3 below.

Figure 3: Survey Data from Tobacco Survey (unweighted estimator of )
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Even after accounting for errors due to sampling, the value of =2.08 is relatively far from 
the true value . The problem with the computation of the estimate  is the fact that the 
men are under-represented in the sample , in comparison to women. Although the 
population contains the same number of men and women, there are more women in the 
sample s than men. Given that the smoking behaviour of the women and men are different, 
the estimate  tends to be shifted toward the value of . Actually, the estimator  is 
biased with respect to the sampling design. Now, let us estimate the regression coefficient 

using the weighted estimator given by (2). This gives the estimated value 1.82. This is 
displayed in Figure 4 below.

Figure 4: Survey Data from Tobacco Survey (weighted estimator of .)
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As we can see, the value of =1.82  is closer to the true value =1.88 than to =2.08. 
Using an estimator that uses weights, we re-established in the estimator the proportion of 
men and women that we have in the population. Consequently, although the men are under
-represented in the sample , the weights corrected this under-representation in the 
computation of the estimate of . Actually, as opposed to , the estimator .  is almost 
unbiased (actually, asymptotically unbiased) with respect to the sampling design. Using 
weighted estimators leads to a better analysis of complex survey data.

It should be noted that if the sampling design is self-weighted, using weighted or 
unweighted estimators gives the same results. For the tobacco survey, given that the 
population sizes of men and women are both 10, the sample sizes would then simply need 
to be the same between men and women. That is, for a total sample size of 10, the sample 
s should contain 5 men and 5 women to get a self-weighted design.

Now, some statistical analysts claim that they should not use the weights because they are 
interested in estimating the parameter B of model (3), rather than the finite population 
quantity . They argue that the sampling design is irrelevant for estimating B, as the 
weights are functions of the selection probabilities used to select the sample s, and they are 
not related to the model . If the sampling design does not bring any more information in 
trying to estimate B, then their claim of not using the weights is true. We then say that the 
sampling design is not informative. Sampling designs for surveys are informative when the 
selection probabilities are correlated with the variables of interest, even after conditioning 
on explanatory variables (e.g., Eideh and Nathan, 2006).

In the case of the tobacco survey, the sampling design is clearly informative, as we see that 
the smoking behaviour of men is different from the one of women. Having selected more 
women than men, even if their respective population sizes are the same, influenced the 
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(5) 

(6) 

estimation of the regression coefficient. This means that the weights bring some information 
that is not contained in the model (3). Therefore, in some sense, the model is not “perfect” 
in trying to explain the relationship between the number of cigarettes smoked during the 
day and the number of years of smoking. In other words, the model has been misspecified. 
To correct for this misspecification, the analyst should introduce a gender parameter in 
model (3) to correctly estimate the regression coefficient of interest.

To prevent model misspecification, in order to obtain good estimates of the parameters of 
interest, the statistical analyst should use the weights in all situations when dealing with 
complex survey data. If the sampling design is not informative, using the weights or not 
should not introduce any significant differences in the estimates if the sample size is not too 
small. That is, we should have . However, if the sampling design turns out to be 
informative, the weighted estimators  will produce “better” estimates that will be nearly 
unbiased and design-consistent.

4. Standard Weighting Steps
As mentioned earlier, the weighting process usually involves three steps. The first step is to 
obtain design weights (or sampling weights), which are the weights that account for sample 
selection. The adjustment of the design weights for nonresponse is the second step of the 
weighting process. Third, the weights are adjusted to some known population totals, which 
is called calibration. We now describe these three steps in detail.

4.1 Design Weighting

Let be the probability that population unit is selected in the sample . We 
assume that for all units of the population . That is, all population units have a 
non-zero chance of being selected in the sample . For example, with the SRS of 25 
individuals from 100, we have for all . The use of 
unequal probabilities of selection is common in sample surveys. For instance, when a size 
measure is available for all population units, the population can be stratified and units in 
different strata may be assigned different selection probabilities. Another possibility is to 
select the sample with probabilities proportional to the size measure. These unequal 
probabilities of selection must be accounted for when estimating population parameters; 
otherwise, bias may result. The most basic estimator of that accounts for unequal 
probabilities of selection is the Horvitz-Thompson estimator (Horvitz and Thompson, 1952), 
also called the expansion estimator:

where is the sample selection indicator variable such that if , and , 
otherwise. The estimator is design-unbiased (or p-unbiased) for in the sense that 

. The subscript indicates that the expectation is evaluated with respect to 
the sampling design. Note that only the sample selection indicators , , are treated 
as random when taking a design expectation. The property of  to be design-unbiased 
can be shown by noting that

The Horvitz-Thompson estimator , given by (5), can be rewritten as
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(7) 

(8) 

where is the design weight of sample unit , also called the sampling weight. In 
this set-up, the design weight  of unit can be used as an estimation weight in 
the absence of nonresponse. The design weight of unit may be interpreted as the number 
of units from population represented by this sample unit. In our previous example, each 
individual has one chance out of four ( ) of being part of the sample and, therefore, 
each individual has a design weight of 4. Note that this interpretation is not always 
appropriate. For instance, consider a population of 100 units with one unit having its 
selection probability equal to 1/1000 and therefore its design weight equals to 1000. Note 
also that the design weight does not need to be an integer.

To learn more about sampling theory, the reader may consult books such as Cochran 
(1977), Grosbras (1986), Särndal et al. (1992), Morin (1993), Tillé (2001), Thompson 
(2002), Ardilly (2006) and Lohr (2009). It should be noted that Hidiroglou et al. (1995) also 
present a good overview of weighting in the context of business surveys.

Before discussing how to adjust design weights to account for nonresponse, we first 
describe the calibration technique.

4.2 Calibration

Calibration arises from a generalisation by Deville (1988), and then by Deville and Särndal 
(1992), of an idea by Lemel (1976). It uses auxiliary information to improve the quality of 
design-weighted estimates. An auxiliary variable , also called a calibration variable, must 
have the following two characteristics to be considered in calibration:

(i)     It must be available for all sample units ; and

(ii)   Its population total must be known.

Often, a vector of auxiliary variables is available along with its associated vector of 
population totals . The vector of known population totals can be obtained 
from the sampling frame, an administrative file or a (projected) census. In practice, the 
vector may be subject to errors, but we assume that they are small enough to be 
ignored. Examples of auxiliary variables are the revenue of a business or the age group of 
a person.

The main issue with the use of design weights is that they may lead to confusion since 
, may not be equal to . Calibration fixes this inequality by 

incorporating auxiliary information in the estimator. It consists of determining calibration 
weights that are as close as possible to the initial design weights  while satisfying 
the following calibration equation:

The resulting calibration estimator is denoted by .

design 
variance of the Horvitz-Thompson estimator . The latter is expected to hold when the 
calibration variables are correlated with the variable of interest . To understand this point, 
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(9) 

(10) 

(11) 

(12) 

let us take an extreme example and suppose that there is a perfect linear relationship 
between and ; i.e., , for some vector . Then, it is straightforward to show that

In this case, the calibration estimator is perfect; i.e., with a variance of zero. In 
general, a perfect linear relationship between and is unlikely and, thus, . 
However, we may expect that the calibration estimator  will be more efficient than 

 if there is a strong linear relationship between and . Note that calibration can 
also be used in practice to reduce coverage and nonresponse errors. Again, a linear 
relationship between and is required to achieve these goals.

More formally, calibration consists of determining calibration weights , for , so as 
to minimise

subject to the constraint (8). Deville and Särndal (1992) required that the distance function 
between and be such that: (i) ; (ii) is differentiable with 

respect to ; (iii) is strictly convex; (iv) is defined on an interval 
dependent on and containing (v) ; (vi) is 
continuous and forms a one-to-one relationship between and its image . It 
then follows that is strictly increasing with respect to a, and that . 
Deville and Särndal (1992) gave several examples of distance functions.

Using the method of Lagrange, the minimisation of (9) under the constraint (8) leads to the 
calibration weight

where the function is the reciprocal of that maps onto . The 
vector is the vector of Lagrange multipliers. It is obtained as the solution to the equation 

, which typically requires an iterative algorithm. Note that 
corresponds to the so-called g-weight from Särndal et al. (1992).

The most popular distance function in practice is the chi-square distance

where is a known constant giving the importance of each unit in the function to be 
minimised. The choice dominates in practice, except when the ratio estimator is 
used (see below). With this distance function, we obtain

and the calibration weight has the closed form
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(13) 

with . For a given square matrix , the matrix is the 
generalised inverse of . Recall that the generalised inverse of is any matrix 
 satisfying (Searle, 1971). If the matrix is non-singular, then   is unique, 
and furthermore  , the inverse of . The resulting calibration estimator is the 
generalised regression estimator, denoted by . It can be expressed as

where .

The generalised regression estimator has many important special cases (e.g., Estevao et 
al., 1995). In several surveys, and especially for business surveys, the ratio estimator is 
often used when there is a single auxiliary variable x. It is obtained by setting . 
This leads to the calibration weight and the calibration estimator 

. The ratio estimator is efficient if the relationship between y and x
goes through the origin. The well-known Hájek estimator is itself a special case of the ratio 
estimator when , for . It is written as , where 

.

The post-stratified estimator is another important special case of the generalised regression 
estimator. It is used when a single categorical calibration variable is available and defines 
mutually exclusive subgroups of the population, called post-strata. Examples of post-strata 
are geographical regions or age categories. Let if unit belongs to post-stratum , 
and  otherwise, for , with denoting the total number of post-strata. 
The post-stratified estimator is a special case of the generalised regression estimator 
obtained by setting and . For instance, suppose there are 

post-strata (three age categories, for example) and that unit k belongs to the second 
post-stratum. Then, we have . The calibration equations are given by

where is the set of sample units falling into post-stratum and is the population 
count for post-stratum . The calibration weight of unit in post-stratum  is given by 

, where . The calibration estimator reduces to

The above post-stratified estimator reduces to the Hájek estimator when there is only one 
post-stratum ( ).

Sometimes, two or more categorical calibration variables are available. Post-strata could be 
defined by crossing all these variables together. However, some resulting post-strata could 
have quite a small sample size or could even contain no sample units, which is not a 
desirable property. In addition, the population count of post-strata may not be known even 
though the population count of each margin is known. Then, only calibration to the known 
marginal counts is feasible. Raking ratio estimation can then be used in this scenario, which 
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(14) 

is quite common in social surveys. The reader is referred to Deville et al. (1993) for greater 
detail on raking ratio estimation.

Calibration estimators have some desirable properties. Indeed, Deville and Särndal (1992) 
proved that for all satisfying some mild conditions, the calibration estimator 

, with given by (10), is asymptotically equivalent to the 
generalised regression estimator given by (13) since 

This can be rewritten as

Under regularity conditions, and, thus, is design-
consistent. It follows that is also design-consistent with the same asymptotic design 
variance as . This means that although many distance functions are possible, they 
all lead to the same asymptotic variance as the one obtained using the chi-square distance.

4.3 Nonresponse Weighting Adjustment

Most surveys, if not all, suffer from nonresponse. Two types of nonresponse can be 
distinguished: item nonresponse and unit nonresponse. Item nonresponse occurs when 
information is collected for some but not all the survey variables. Item nonresponse is often 
treated through imputation, which is outside the scope of this paper. In the following, we will 
assume that no sample unit is subject to item nonresponse. Unit nonresponse occurs when 
no usable information has been collected for all the survey variables. It is typically handled 
by deleting the nonrespondents from the survey data file and by adjusting the design weight 
of respondents to compensate for the deletions. The resulting nonresponse-adjusted 
weights can then be calibrated, if some population totals are known.

The main issue with nonresponse is the bias that is introduced when the respondents have 
characteristics different from the nonrespondents. Also, an additional component of 
variance is added due to the observed sample size being smaller than the initially planned 
sample size n. The key to reduce both nonresponse bias and variance is to use 
nonresponse weighting methods that take advantage of auxiliary information available for 
both respondents and nonrespondents.

Let us denote by , the set of respondents. That is, the subset of containing all units for 
which we were able to measure the variable of interest . The set of respondents is 
generated from according to an unknown nonresponse mechanism . The 
response probability is assumed strictly greater than zero for all 

. Nonresponse can be viewed as a second phase of sampling (e.g., Särndal and 
Swensson, 1987) with the exception that the nonresponse mechanism  is unknown, 
unlike the second-phase sample selection mechanism in a two-phase sampling design. If 
the response probability could be known for all ., the double expansion estimator of 

could be used:

where is the adjusted design weight. The double expansion 
estimator is for in the sense that . This follows from 

and the design unbiasedness of as an estimator of . The 
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(15) 

(16) 

subscript indicates that the expectation is evaluated with respect to the nonresponse 
mechanism.

The response probability is unknown in practice unlike the second-phase selection 
probability in a two-phase sampling design. To circumvent this difficulty, the response 
probability  can be estimated using a nonresponse model. A nonresponse model is a set 
of assumptions about the multivariate distribution of the response indicators , . The 
estimated response probability of unit is denoted by and the nonresponse-adjusted 
design weight by . The resulting nonresponse-adjusted estimator is 

. It is typically not -unbiased anymore but, under certain conditions, 
it is at least -constisitent. Most methods for handling nonresponse simply differ in the 
way the response probability  is estimated. In the rest of this section, we focus on the 
modeling and estimation of .

Ideally, the expanded variable would be considered as an explanatory variable 
in the response probability model. In other words, the response probability would be 
defined as , . As pointed out above, this would ensure 
that the double expansion estimator is -unbiased. Note that if there are many 
domains and variables of interest, the number of potential explanatory variables could 
become quite large. Unfortunately, is not known for the nonrespondents, , and 
can thus not be used as an explanatory variable. The most commonly-used approach to 
deal with this issue is to replace the unknown by a vector of explanatory variables 
available for all sample units . The vector  must be associated with the response 
indicator . Ideally, it must also be associated with , as it is a substitute for . This is in 
line with the recommendation of Beaumont (2005) and Little and Vartivarian (2005) that 
explanatory variables used to model nonresponse should be associated with both the 
response indicator and the variables of interest.

Explanatory variables that are not associated with the (expanded) variables of interest do 
not reduce the nonresponse bias and may likely increase the nonresponse variance. 
Explanatory variables can come from the sampling frame, an administrative file and can 
even be paradata. Paradata, such as the number of attempts made to contact a sample 
unit, are typically associated with nonresponse but may or may not be associated with the 
variables of interest. Therefore, such variables should not be blindly incorporated into the 
nonresponse model (Beaumont, 2005).

The use of as a replacement for implies that the response probability is now defined 
as . The double expansion estimator (14) remains -
unbiased, if the following condition holds:

Condition (15) implies that the nonresponse mechanism does not depend on any 
unobserved value and, thus, that the values of the variable of interest are missing at 
random (Rubin, 1976). In addition to condition (15), it is typically assumed that sample units 
respond independently of one another. In order to obtain an estimate of , one may 
consider a parametric model. A simple parametric response probability model is the logistic 
regression model (e.g., Ekholm and Laaksonen, 1991):
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here is a vector of unknown model parameters that needs to be estimated. If we denote 
by , an estimator of then the estimated response probability is given by 

. The logistic function (16) ensures that . The maximum 
likelihood method can be used for the estimation of .

Calibration may also be directly used to adjust for the nonresponse. This is the view taken 
by Fuller et al. (1994), Lundström and Särndal (1999) and Särndal and Lundström (2005), 
among others. There is a close connection between calibration and weighting by the 
inverse of estimated response probabilities. However, we prefer the latter view because it 
states explicitly the underlying assumptions required for the -consistency of as an 
estimator of the population total , such as assumptions (15) and (16). In addition, it 
stresses the importance of a careful modeling of the response probabilities. Once 
nonresponse-adjusted weights 
to improve them further. That is, we may want to determine the calibration weights , 

, that minimise subject to the constraint . 
This is a problem very similar to the one discussed in Section 4.2.

There are two main issues with using the logistic regression model (16): (i) it may not be 
appropriate, even though careful model validation has been made; (ii) it has a tendency to 
produce very small values of yielding large weight adjustments . The latter may 
cause instability in the nonresponse-adjusted estimator . A possible solution to these 
issues is obtained through the creation of classes that are homogeneous with respect to the 
response propensity. Ideally, every unit in a class should have the same true response 
probability. The score method (e.g., Little, 1986; Eltinge and Yansaneh, 1997; or Haziza 
and Beaumont, 2007) attempts to form these homogeneous classes. Forming 
homogeneous classes provides some robustness to nonresponse model misspecifications 
and is less prone to extreme weight adjustments than using . There are other 
methods than the score method, such as the CHi-square Automatic Interaction Detection
(CHAID) algorithm developed by Kass (1980). In stratified business surveys, classes are 
sometimes taken to be the strata for simplicity and because there may be no other 
explanatory variables available.

4.4 Practical Issues

In addition to nonresponse and calibration, weights can be adjusted for other reasons. First, 
we might be interested in adjusting the set of weights globally to account for 
under- or over-coverage of the population . In this case, we assume that by some means 
(a census, administrative data, etc.) we know the true size of the target population, 
which turns out to be different from the size of the sampling frame. We then adjust the 
weights so that they no longer sum to , but rather to . One way to achieve this is by 
calibrating (or post-stratifying) on .

We might also be interested in adjusting the weights of some particular units only. One 
reason for this can be that the value of the variable of interest y is found to be an outlier. 
Outliers are values that are atypical compared to the other values of the population. 
Usually, an outlier is detected by searching for extreme large values in the sample (or in the 
population). The effect of a unit being an outlier in a sample is to produce abnormally 
large estimates of totals . Although the outlying value of within the 
sample can be a true value, the statistician might not believe that there are -1 other 
units in the population that have similar values to . In other words, it is felt that weight 
 does not correspond to the number of units from the population that are represented by the 
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sample unit . For this reason, the weight of unit .  is then trimmed, and in practice this 
reduction is often set to 1 (e.g., Potter, 1990). This means that for the outlying unit ., we 
set its weight to =1, and we adjust the other weights so that 

. The total is then estimated using 
, which aims to produce a “better” estimate than the original estimate . The 

effect of weight trimming has often a limited impact on the design variance of the Horvitz-
Thompson estimator. See Beaumont and Rivest (2009) for more on this subject. Note that 
by adjusting the weights for outliers, we are introducing a bias in the estimates, but it is 
hoped that this bias will be small compared to the gain of precision obtained.

There are several other reasons why the survey statistician might want to adjust the 
sampling weights: an outdated sampling frame, duplication of units within the frame, subject
-matter knowledge, etc.

5. Conclusion
After giving some context about weighting in sample surveys, we explained why we should 
use weights in statistical analysis of complex survey data. We concluded that in order to 
obtain good estimates of the parameters of interest, the statistical analyst should use the 
weights in all situations when dealing with complex survey data. If the sampling design is 
not informative, using the weights or not should not introduce any significant differences in 
the estimates. However, if the sampling design turns out to be informative, the use of 
weighted estimators will produce “better” results.

We also described the weighting process, which involves three steps. The first step is to 
obtain design weights. The second step of the weighting process is the adjustment of the 
design weights for nonresponse. Third, the weights are calibrated to some known 
population totals.

It is hoped that the reader has understood the importance of weights, not only in the 
production of finite population statistics, but also in the statistical analysis of survey data. As 
well, by giving some notions on how the weights are usually computed, we wanted the 
reader to understand better what weights represent.
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