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CLIOMETRICS 

A Survey on Cycles and Chaos (part I) 

Claude Diebolt  &  Catherine Kyrtsou∗  

Abstract: There are two contracting viewpoints concerning 
the explanation of observed fluctuations in economic and 
financial markets. According to the first view (Newclassi-
cal) the main source of fluctuations is to be found in exoge-
nous, random shocks to fundamentals. According to the 
second view (Keynesian) a significant part of observed fluc-
tuations is caused by non-linear economic laws. Even in the 
absence of any external shocks, non-linear market laws can 
generate endogenous business fluctuations. The discovery 
of chaotic, seemingly random looking dynamical behaviour 
in simple deterministic models sheds important new light on 
this debate. In order to detect non-linear structures in eco-
nomic and financial data a certain number of tests, some 
based on chaos theory, have been developed. In this paper, 
we will briefly discuss several statistical techniques devised 
to detect independence and non-linearity in time-series data 
(Part I). In a next issue of the journal, we shall also try to 
make a simple presentation of the basic notions of chaos, 
and then describe the related econometric tools (Part II). 
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1. Introduction 

A generally accepted definition of business cycles is one presented by Arthur 
F. Burns and Wesley C. Mitchell in their work Measuring Business Cycles. 
According to Burns and Mitchell: 

«Business cycles are a type of fluctuation found in the aggregate eco-
nomic activity of nations to organize their work mainly in business en-
terprises: a cycle consists of expansions occurring at about the same 
time in many economic activities, followed by similarly general reces-
sions, contractions, and revivals which merge into the expansion phase 
of the next cycle; this sequence of changes is recurrent but not periodic; 
in duration business cycles vary from more than one year to ten or 
twelve years; they are not divisible into shorter cycles with amplitudes 
approximating their own.» (Burns & Mitchell, 1946, p. 3). 

The definition of business cycles advanced by Burns and Mitchell emphasises 
that cycles are recurrent but not periodic. For some, the term business cycles 
implies a certain rhythm of business activity. To describe the cycle as recurrent 
means that it possesses a repetitive pattern of development   a pattern of 
expansion, recession, contraction, and revival, followed by renewed expansion. 
The cycle, however, is uniform neither in time periods nor in amplitude. We 
cannot say that the expansion phase always lasts X months and measures of 
aggregate activity rise Y per cent above the preceding low point. There is a 
high degree of uniformity from one cycle to the next in the forces of cumula-
tion. Upswings and downswings are self-reinforcing; they feed on themselves, 
possess similar characteristics, and show approximately concurrent movements 
in many different series. However, there is no evidence that they recur again 
and again in virtually the same form and amplitude. The completion of a cycle 
from trough to trough or peak to peak may take from approximately two to 
more then ten years, and the proportions of the upswing and downswing may 
vary all the way from mild to catastrophic. 

By the late seventies and early eighties, the debate concerning the main 
source of business cycle fluctuations seemed to have been settled in favour of 
the exogenous shock hypothesis. An important critique on this hypothesis has 
been that it does not provide an economic explanation of observed fluctuations, 
but rather attributes these fluctuations to external, non-economic forces. 

Due to the discovery of deterministic chaos however, a renewed interest in 
endogenous economic dynamics emerged. This notion captures exactly what at 
first sight seems to be a paradox. A deterministic, and thus perfectly predictable 
world becomes unpredictable when the initial states can only be measured with 
finite precision or when the system is subject to small disturbances. So, because 
of sensitive dependence on initial conditions, long run prediction of a chaotic 
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system is impossible. Therefore, this does not mean that we cannot forecast 
such systems over short time periods. 

A number of the early chaotic business cycle models are due to Day. Day 
(1982) showed that a version of Solow’s (1956) familiar growth model, can 
generate chaotic output fluctuations around an unstable steady state growth 
path, that seemed much closer to real business cycles than the earlier endoge-
nous business cycle models in the fifties1 (Kaldor (1940), Hicks (1950), and 
Goodwin (1951)). These early examples were criticised, because the models 
had not been derived from underlying microeconomic foundations with profit 
or utility maximising agents. However, Benhabib and Day (1982) and Grand-
mont (1985) showed that in the overlapping generations model, the conflict 
between substitution and income effects, may lead to chaotic output fluctua-
tions. 

All examples discussed above are or can be reduced to an one-dimensional 
difference equation, and many of these examples apply the well known “Period 
three implies chaos” theorem of Li and Yorke (1975), for one-dimensional 
systems. From a qualitative point of view, the time series generated by these 
chaotic business cycle models are closer to actual, observed business cycles 
than the series generated by the early non-linear business cycle models. There-
fore, quantitatively the chaotic time series are still quite different from actual 
observed business cycles. In particular, chaotic time series form an one-
dimensional model frequently exhibit extremely large jumps, where a price or a 
quantity presents large decreases during one single period. Obviously, this is an 
unrealistic feature, which has never been observed in a yearly change of a 
capital stock or in aggregate output, or even in the fall of stock prices after a 
market crash. In addition, in one-dimensional model unrealistically strong non-
linearities are needed to generate chaotic dynamics. 

In order to generate time series that mimic more closely actual data, one has 
to look at higher dimensional models. Only very recently economists have 
started to build and explore the rich dynamical behaviour in two and higher 
dimensional non-linear endogenous business cycle models. For example, Me-
dio and Negroni (1996) and De Vilder (1996) have shown that a two-
dimensional version of the overlapping generations model can generate chaotic 
equilibrium paths, even when the two goods, current leisure and future con-
sumption are gross substitutes. 

The recent burst in non-linear dynamics has also led to a number of innova-
tive approaches concerning the empirical and theoretical analysis of financial 
markets. In fact, the idea that what is going on in those markets is generated by 
high-dimensional chaotic processes, seems to be intuitively so attractive that 
many introductory pages of textbooks on non-linear dynamics cite financial 

                                                           
1  See for example Lorenz (1993) or Day (1996) for a survey of other endogenous business 

cycle models generating chaos. 
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markets as a standard example governed by chaotic motion. Early works of 
Brock and Hommes (1998), Lux (1995, 1998), Malliaris and Stein (1999), 
Gaunersdorfer (2000), and Chiarella et al. (2000) show that structural non-
linear financial markets models may lead to market instability and chaos. In 
these non-linear models, complex asset-price fluctuations are triggered by an 
interaction between a stabilising force driving prices back towards their funda-
mental value when the market is dominated by fundamentalists and a destabi-
lising force driving prices away from their fundamental value when the market 
is dominated by speculative noise traders. The distribution of series derived 
from chaotic trajectories of the models (e.g., Lux (1998), Lux and Marchesi 
(1998), Iori (1999)) share important characteristics of true data: volatility clus-
tering, high peaks around the mean, and reduced leptokurtosis under time ag-
gregation. The introduction of endogenously transitions probabilities (Lux, 
1998) or modelling using noisy chaotic systems (Malliaris and Stein (1999), 
Kyrtsou and Terraza (2001), Gaunersdorfer and Hommes (2000)), give a new 
dimension to high-dimensional chaos applications in finance. 

As we have previously underlined, according to the chaotic approach, fluc-
tuations are the results of endogenous changes. This statement, does not only 
mean that economic cycles or even stock prices are generated by a non-linear 
deterministic (or high-dimensional) chaotic system. The nature of economic 
agents’ beliefs play also a very important role. According to the rational expec-
tations hypothesis all agents hold the same belief and this is common knowl-
edge. However, in reality agents have different interpretations of the available 
information. This endogenous heterogeneity may lead to market instability and 
complicated dynamics, such as cycles or even chaotic fluctuations, in financial 
markets (e.g Chiarella (1992), Day and Huang (1990), DeGrauwe et al. (1993), 
Lux (1995) and Sethi (1996)). Heterogeneity and social interactions are very 
natural non-linear effects which can play a key role in explaining fluctuations 
in real markets. 

Recent non-linear stochastic modelling was applied by Skalin and Teräsvirta 
(1996) to study Swedish business cycles. They found that a certain number of 
Swedish macroeconomic series are non-linear and this non-linearity is charac-
terised by STAR models. Cyclical variation at business cycle frequencies does 
not seem to be constant over time for all series, and it is difficult to find a Swe-
dish business cycle. Only two series may be regarded as having genuinely 
asymmetric cyclical variation. 

In order to detect non-linear structures in economic and financial data a cer-
tain number of tests, some based on chaos theory, have been developed. In the 
following sections, we will briefly discuss several statistical techniques devised 
to detect independence and non-linearity in time-series data. We shall also try 
to make a simple presentation of the basic notions of chaos, and then describe 
the related econometric tools. 
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2. Methodology 

2.1 The White test (1989) 
In White’s test (1989), the time series is fitted by a single hidden-layer feed-
forward neural network, which is used to determine whether any non-linear 
structure remains in the residuals of an autoregressive (AR) process fitted to the 
same time series. The null hypothesis for the test is linearity in the mean2 rela-
tive to an information set. 

The rationale for White’s test can be summarised as follows: under the null 
hypothesis of linearity in the mean, the residuals obtained by applying a linear 
filter to the process should not be correlated with any measurable function of 
the history of the process. White’s test uses a fitted neural net to produce the 
measurable function of the process’s history and an AR process as the linear 
filter. Then, we test the hypothesis that the fitted function does not correlate 
with the residuals of the AR process. The resulting test statistic has an asymp-
totic χ2 distribution under the null of linearity in the mean. 

2.2 The Kaplan test (1994) 
We begin the presentation of Kaplan’s test (1994) by reviewing its origins in 
the chaos literature, although the test is currently being used as a test of linear 
stochastic process against general non-linearity, whether or not noisy or cha-
otic. In the case of chaos, a time series plot of the output of a chaotic system 
may be very difficult to distinguish visually from a stochastic process. How-
ever, plots of the solution paths in phase space (xt+1 plotted against xt and 
lagged values of xt) often reveal deterministic structure that was not evident in 
a plot of xt versus t. A test based upon continuity in phase space has been pro-
posed by Kaplan (1994).  

The idea of Kaplan’s test (Kaplan, 1994) is, that iterations from a determi-
nistic processes should be closer to the preceding values than those from a 
purely stochastic dynamics. More formally, this amounts to testing whether for  
pairs of data points which are within some small distance dij = ji yy − < r, the 
average of the differences of their iterations 11 ++ −= jiij yyε  is found to be smaller 
than some threshold value. The procedure involves producing linear stochastic  
process surrogates for the data and determining whether the surrogates or a 
noisy continuous non-linear dynamical solution path better describe the data. In 
general, we perform 20 replications with surrogate data and adopt two variants 
of this test: in the first, we compute the test statistic K as the average εij from 
                                                           
2  For a formal definition of linearity in the mean, see Lee, White and Granger (1993). Note 

that a process that is not linear in the mean is said to exhibit “neglected non-linearity”. 
Also, a process that is linear is also linear in the mean, but the converse need not be true. 
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the 500 smallest distances dij, while in the second variant, we perform a linear 
regression on these smallest pairs (dij, εij) and consider the intercept at dij=0. In 
both cases, the resulting test statistic K is compared to the minimum K from 20 
time series of surrogate data. Linearity is rejected, if the value of the test statis-
tic K from the surrogates is never small enough relative to the value of the 
statistic computed from the data. 

2.3 The BDS test (1987) 
The BDS test provides a preliminary step to determine whether a time series 
process does or does not have observations which are independently and iden-
tically distributed (i.i.d). In 1987 Brock, Dechert and Scheinkman (henceforth 
BDS) proposed a test of the i.i.d hypothesis based on the Grassberger and Pro-
caccia correlation integral. We test the null hypothesis that a series is i.i.d 
against the alternative hypothesis that a series is linearly or non linearly corre-
lated. 
For a time series {Xt} t=1,…T, we first consider the m-histories Xm

t = (Xt,Xt-

1,...,Xt+m-1), and then calculate the correlation integral : 

C(ε,m) = )1(
1

−mTmT )
1,

(∑

≠
=

−
mT

ji
ji

m
jXm

iXH . (2.3.1) 

Here Tm = T-m+1 is the number of m-histories Xm
t = (Xt, Xt-1,…,Xt+m-1) con-

structed from the sample of length  

T; H( YX − )= ∏
=

−
m

s
sYsXH

1
)( ,  

and m the embedding dimension.  
H is the Heaviside function given by:  

H( jXiX − ) = {1   if   jXiX − < ε and   0   if   jXiX − ≥ε}. 

Brock, Dechert and Scheinkman (1987) show the following theorem: Let Xt an 
i.i.d series and suppose that σ2

m > 0 ; in that case 

2/1
mT [ C(ε,m,Tm) - (C(ε,m,Tm))m ] → d N(0,σ2

m) with Tm→∞ 

where the expression « → d N(0,σ2
m)» means: «convergence in distribution 

to N(0,σ2
m)» and N(0,σ2

m) denotes the normal distribution with mean 0 and 
variance , σ2

m. 



 214

Considering that m
Tm CC )]1,([)1,( εε  → ∞→ [i.e. Denker et Keller (1986, theorem 1 

and (3,9))], equation (2.3.1) can be written as: 

W(ε,m) = 2/1
mT [C(ε,m) - (C(ε,1 ))m] /σm(ε). (2.3.2) 

Under the null hypothesis, Xt is i.i.d. and N(0,1). Note that W(ε, m ) is a func-
tion of two unknowns: the embedding dimension m, and the radius ε. There is 
an important relation between the choice of m and ε concerning the properties 
of a small sample for the BDS statistic. For a given m, ε cannot be too small, 
because in the opposite case there are not enough pairs of points Xi, Xj which 
would make the maximum of distance between them to be inferior or equal to ε 
(necessary condition for the calculation of the correlation integral). These small 
values of ε yield a slope systematically equal to m, because of the problem of 
noise (noisy chaos)[Brock et Dechert (1987)]. Inversely, ε must not be too 
large because the correlation integral contains too many observations. 

Barnett and Choi (1989) suggest selecting a small value for ε, without al-
lowing it to reach zero. This implementation of a lower limit guards against 
noise in the data. Hsieh (1989) defines ε in terms of multiples of the series 
standard deviation. These multiples are 0.50, 0.75, 1.00, 1.25, 1.50. The same 
multiples given by Girerd-Potin and Taramasco (1994) are 0.25, 0.50, 0.75, 
1.00, 2.00, and 4.00. Brock, Hsieh and LeBaron (1992) use instead the 0.25, 
0.50, 1.00, 1.50, 2.003. As Liu et al. (1993) indicate, the choice of ε is crucial 
insofar as different selected ranges of values of ε can lead to different conclu-
sions. The authors suggest selecting m to belong to the interval [2,5]. 
Whatever the choice of ε and given the value of m, we calculate the W statistic. 
The obtained values of W are to be compared with the theoretical value 1.96 
of the normal distribution at the 5% level. If the estimated value is higher than 
1.96, then the null hypothesis of data independence is rejected. This rejection 
can result from: 

- either a non stationarity of the considered series, or  
- a structure of dependence issued from a stochastic linear process (e.g. 

ARMA), or 
- a structure of dependence issued from a nonlinear stochastic process (e.g. 

TAR, STAR, NMA, ARCH, GARCH, EGARCH), or 
- a structure of dependence issued from a nonlinear deterministic process 

(e.g. tent map, Mackey-Glass equation). 

In order to use the BDS test as a test of non-linearity (BDSL), it is necessary in 
the first place for the data to be stationary and to lack any linear structure. It is 
possible to eliminate any linear dependence by filtering the data and applying 

                                                           
3  They have reached the best results when the ratio ε/σ varies between 0.50 and 2. 
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the BDS test to the residuals of an autoregressive model estimated from the 
initial stationary series. 

2.4 The Mizrach test (1995) 
This test proposed by Mizrach (1995) is a simple nonparametric method for 
independence, which we can use in small samples. Mizrach defines a stochastic 
process to be locally independent of order p if the realisation Xt provides no 
information about the process p periods ahead. Therefore, we obtain the equal-
ity of the conditional and unconditional distributions. Let (p1,…,pm-1) be a set 
of increasing integers on [1, L], L < T-m+1.  
 
Local independence then implies: 

Prob[ εεε <<< +−+ tptmpt XXX ,,..., 11 ] = (Prob[Xt< ε ])m .  (2.4.1) 

To estimate the joint, F( m
tX ), and marginal, F(Xt), distributions in (2.4.1), 

introduce the kernel function h: R → R: 


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>
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       0
          1][ tXH

otherwise
tXif

tXHtXh . 

The joint unconditional probability that m leads of the X’s are less than ε is 
given by 

( ) 




















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iptXH
X

m
im εεθ ,1

0, .4 (2.4.2) 

A consistent estimator of (2.4.2) is the following U statistics: 

*/),(
*

1
1

0),*,( T
iptXH

T

t
m
iTm εεθ +∑

=
−

=∏=  

where T*= T – max[pi] and T the number of observations. 
The simple test for local independence is constructed using consistent estima-
tors of the first two moments of this U-statistics. 
Proposition: Let {Xt} be locally independent for any pi ∈  [1,L], i = 1,…, m-1, 
L<Tm, then if ( )εθ ,m >0, 

                                                           
4  Mizrach uses po = 0 for notational convenience. 
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where « → d N(0,1)» means that the SNT statistic converges in distribu-
tion to N(0,1) as T*→∞. 
The SNT tests the null hypothesis of independence versus the alternative of 
linear or non-linear dependence in the process.  
An application of the SNT in stock exchange returns series by Kyrtsou and 
Terraza (1998) has shown that even if we use short time series BDS remains 
robust. Thus, given the power of the BDS test, the SNT can be applied as a 
joint test. 

2.5 The Granger, Maasoumi and Racine test (2000) 
Granger et al. (2000) consider using the Sp statistic for testing serial independ-
ence of a time series against alternatives of dependence which can be of a gen-
eral and non-linear nature.  
The estimated value for this statistic is given as follows: 
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where f̂ (α,b) is the kernel estimator of the bivariate density of the random 
variables A and B evaluated at the point (α,b) based upon a sample of observa-
tions of size n. f̂ (α) and f̂ (b) are the marginal densities evaluated at the 
points α and b. K(.) is a pth order univariate kernel function, where hα and hb 
are bandwidths. The critical values for the test are given by Granger et al. 
(2000). If ρŜ < critical value, then we accept the zero hypothesis for serial 
independence. If ρŜ > critical value, then we reject the zero hypothesis.  

                                                           
5  Proof in Mizrach’s (1995) working paper. 
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Granger et al. (2000) apply this test to a certain number of stochastic and cha-
otic models. For all series pS  statistic detects well linear or non-linear depend-
encies Nevertheless, it is important to note its power against chaotic dynamics. 
For example the logistic equation has autocorrelation function (ACF) and par-
tial ACF which behave like white noise. The ACF incorrectly leads us to con-
clude that there is no dependence in the series, while the Sp metric correctly 
identify dependence in the series. 
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