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SOME ANALYTICAL FOUNDATIONS OF 
MULTIDIMENSIONAL SCALING 

FOR ORDINAL DATA 
HUBERT FEGER 

Abstract: Ingwer Borg has contributed intensively and successfully to MDS, in theory and 
applications (e.g., Borg 1981a,b; Borg & Lingoes 1987; Roskam, Lingoes & Borg 1977). 
This paper offers some notes on the foundations of MDS, based on ranks of proximities. 
Two approaches are sketched, one working with contingencies of distance ranks, repre-
sented by boundaries in a dimensional space. The other approach uses the generalized 
betweenness relation, leading to configurations of object points. Details of the procedures 
and examples for both approaches are given for the one- and two-dimensional case. A 
procedure to find an optimal solution in a given dimensionality for data with random 
error is illustrated. The role of facet theory for theory testing by MDS is emphasized. 
Using the concepts of this paper will allow a fine- grained evaluation of a MDS solution 
for ordinal data. 

Space as structured by boundaries between points 
Placing a point on a line divides the line into two parts. The point functions as a boundary 
between these parts. We will assume that a point on a line has two sides. Placing two 
points, A and B, on the same line, a third point may be found with equal distance to both, 
called by Coombs (1964) – in the context of unfolding theory – the ‘working midpoint’. 
We write this point as A|B for the interval AB between the points A and B. Generalising to 
k > 1 and, with k the number of dimensions, one may call this separating boundary the 
mid-perpendicular hyperplane. 

By N points N
2

 
 
   boundaries are created. Each boundary divides all points into two sets. 

E.g. for A|B, some points are closer to A than to B, being located on the A-side of A|B, 
written C – A|B. The other points are closer to B and thus on the B-side of A|B. In general, 
two boundaries divide all points into four sets, each point is an element in two sets. On the 
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other hand, two boundaries on a line define three intervals, two open and one closed. How 
are the two sets assigned to the three intervals? Figure 1 illustrates one example. 

 

Figure 1 Four sets of points in three intervals on a line 

 
        A    B        C    D 
 A, E B, C, F D, G 
 

On the A-side of A|B we find {A, E}, on the B-side {B, C, D, F, G}. On the C-side of C|D 
one sees {A, B, C, E, F}, and on the D-side {D, G}. Such a representation is possible only 
if one logically possible set of points does not exist. Here this empty set is defined by 
points on the A-side of A|B and simultaneously on the D-side of C|D. No interval is pro-
vided for such a location on the line in Figure 1. The distribution of the points relative to 
two boundaries may be described by a contingency table. An equivalent to Figure 1 is the 
fourfold classification in Table 1. The rows refer to the relative distance between points. A 
point is either closer to A or to B of A|B, written AB if it is closer to A. At the same time, a 
point is either closer to C or to D. The cells contain the points under consideration. Of 
course, A must be placed in the AB-row because in a metric space it is closer to itself than 
to B. If the order is A – B – C – D, the assignments in Table 1 result. 

Table 1 Contingency table for the distribution of points 

 
 CD DC 

AB A  
BA B, C D 

 

One cell, called the zero cell, is empty. In Table 1, the zero cell is specified as AB, DC. 
This is a necessary condition for representing all points on one line, i.e., to give a one-
dimensional representation or seriation: For all pairs of pairs of N points, at least one cell 
in the contingency table is empty.  

With more than two points, at least three boundaries and three pairs of boundaries exist. A 
consistent order between these boundaries must be found with respect to sequence and 
orientation to each other. The sequence may be written either from ‘left to right’ or from 
‘right to left’. The orientation of two boundaries is defined by referring to the fact that the 
other boundary is either on the one or the other side. E.g. for A|B – A|C, the other bound-
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ary of A|B is on its B-side; for A|C, it is on its A-side. The sides of the boundary defining 
the closed interval are oriented towards each other, or ‘inwards’. The other sides are ori-
ented ‘outwards’. The rule how to represent the boundaries on a line is: Let a zero cell be 
defined as AB, DC. The first element in each defining pair is placed outside. For Table 1 
we derive: A|B – C|D. 

To test the consistency of seriation and orientation of A|B, A|C, and B|C for A – B – C, 
with AB < BC, we first write the three contingency tables (see Table 2). 

Table 2 Contingency tables to test consistency of boundary orientation 

 
[1] AC CA  [2] BC CB  [3] BC CB 
AB A   AB A   AC A, B  
BA B C  BA B C  CA  C 

 

The last table shows two zero cells which lead to two solutions: A|C – B|C or C|A – C|B. 
Taking the first partial solution of [3], the order of the partial solutions from the three 
tables is consistent (see Table 3). One of the several axiomatizations of the betweenness 
relation may be used to test consistency routinely. 

Table 3 Consistency demonstration 

 
from [1] A|B - A|C 
from [2] A|B  - - - B|C 
from [3]   A|C - B|C 

 A|B - A|C - B|C 
 

This analysis corresponds to Feature Pattern Analysis (FPA, Feger 1994, Feger & Brehm 
2001) and will now be applied to an example from Borg & Groenen (1997: 4). 
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Order by boundaries, illustrated by an example 
Table 4 reports from Borg & Groenen (1997: 4) the Pearson correlations between rates of 
different crimes over 50 US states (Wilkinson 1990). The ranks (with ties) of these coeffi-
cients are given below the main diagonal. 

Table 4 Correlations between rates of different crimes (above main  
diagonal) / ranks of coefficients (below main diagonal) 

 
 A B C D E F G 

murder A - .52 .34 .81 .28 .06 .11
rape B 12.5 - .55 .70 .68 .60 .44

robbery C 16 10.5 - .56 .62 .44 .62
assault D 1 3.5 9 - .52 .32 .33

burglary E 19 5 6.5 12.5 - .80 .70
larceny F 21 8 14.5 18 2 - .55

auto theft G 20 14.5 6.5 17 3.5 10.5 -
 

Borg and Groenen provide in their Figure 1.1 a two-dimensional MDS representation of 
the correlations, see Table 4. We reproduce this solution in Figure 2. 

Figure 2 Borg & Groenen solution for the correlations in Table 4 

 
 
                                                              larceny 
                                     rape                         • 
                                           • 
                   assault                           • burglary 
       •                • 
  murder 
                                            robbery            • 
                                                  •           auto theft 
                                                  

 
 
One may gain the impression that a part of the solution is one-dimensional: A – D – B – F. 
To test this assumption, we calculate all 15 contingency tables for these four elements. We 
find that all contain at least one zero cell. The order of the 6 boundaries is consistent, as 
graphed in Figure 3. 



Feger: Some Analytical Foundations of Multidimensional Scaling for Ordinal Data 

 

19 

Figure 3 The one-dimensional order of four crimes 

 
boundaries  A|D  D|B  A|B  A|F  D|F B|F 
 
points A    |   D    |     |     |   B    |    |    F 
 

Figure 3 locates the points within their intervals. B has to be located between A|B and B|F. 
But referring to the information in Table 4, its position can be determined more precisely. 
The figure is not drawn to proportion, e.g. D – D|B ≠ B – B|D. 

Quantitative information. Knowing the orientation of two boundaries towards each other 
one can derive a comparison of the relative length of two distances. The distance between 
the points defining the inner sides of the boundaries is smaller than the distance between 
the points defining the outer sides, e.g. for A|B – C|D, we derive that BC < AD. To test the 
consistency of this quantitative information, one may use the Pyramid Criterion. In the 
example with the sequence A – D – B – F as the qualitative solution, the adjacent intervals 
are AD, BD, and BF. Combining two adjacent intervals to a longer new one, containing 
both, we derive AD + BD = AB and BD + BF = DF. Finally, the extreme points define the 
longest distance. Figure 4 represents this as a graph. 

Figure 4 Graph of the Pyramid Criterion for the A – D – B – F example 

 

 
 

In Figure 4, AD → AB means AD < AB. Transitive closure is implied. Furthermore, if  
AD < BF then AB < DF because both, AB and DF, include BD and without it correspond 
to AD or BF. In the example, the distances satisfy the pyramid criterion with AB < DF and 
AD < BF. 
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We are now ready to construct the ‘quantitative solution’ by solving a set of equations and 
inequalities derivable from the qualitative solution in Figure 3 and the ranks in Table 4: 

 AD  +  BD  =  AB (1) 
 BD  +  BF =  DF (2) 
 AD +  BD  +  BF  =  AF (3) 
 as side constraints: AD < BD < … < AF 
 
One solution is AD = 4, BD = 6, and BF = 8. The quantitative solution with these dis-
tances is given in Figure 5. The quantitative information in this figure is exact but the 
figure is not drawn to proportion. The upper part of Figure 5 shows the positions of the 
points and the interpoint distances. The lower part provides the location and orientation of 
the boundaries and the distances between the boundaries and between the points. 

 

Figure 5 A quantitative solution for A – D – B – F  

 
 A 4 D        6        B          8   F 
 2         A|D   2       | 1  A|B  2  B|D    2     A|F   1  |  1     D|F     3     B|F              4                | 
 
Even if, as in the crimes example, an acceptable k = 1 solution for all elements does not 
exist, one-dimensional partial structures may be found to support the interpretation. One 
of several such structures for the crimes data is shown in Figure 6. 

Figure 6 A partial one-dimensional structure within a k = 2 solution 

 
 A  D A  B A  G B  F 
  A  C B  E C  G 
  A  E D  C D  F 
  A  F D  E 
 A D B C E, F, G 
 

The first contrast, A|D, stresses that A (murder) is unique in comparison to all others. Clos-
est to murder is assault. These two are different from all others, separated by four polari-
ties: A to B (rape), to C (robbery), to E (burglary), and to F (larceny). One should not forget 
that this order is not based on similarity judgements but on common causes for the occur-
rence frequencies in the US states. Again, four contrasts separate A, D, and B from the 
others, all referring to violence against human beings versus violations of property rights. 
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Two-dimensional generalisation: trivariate contingencies 
Again, from Figure 2 we hypothesize that the points for D = assault, B = rape, C = rob-
bery, and E = burglary are arranged in two dimensions. If this is true, then either no zero 
cell exists in at least one contingency table, or the partial solutions derived from these 
tables are not consistent. We find that several tables require a k > 1 solution. Some of 
these tables are reported in Table 5. 

Table 5 Contingency tables requiring k > 1 

 
[1] BE EB  [2] CD DC  [3] DE ED
BD B E  BD E B  BD  B E 
DB D C  DB C D  DB D C 

 

In k = 2, boundaries are separation lines. Two lines must intersect to provide four quasi-
quadrants to locate each of the four points separately (see Figure 7, representing subtable [1] 
of Table 5). 

Figure 7 Two separation lines locating four points 

 

 
 
Referring to Table 5, it can be seen that some boundaries partition the points in the same 
way, e.g. B|C = D|C = D|E. We now turn to all points simultaneously. For N = 7 there 
exist 21 pairs of points. To every pair corresponds a boundary line, partitioning the set of 
all points into two sets. The sets are defined by their relative distances to the two points 
that define the boundary. Figure 8 shows the intersection of C|F and D|G. Then B|E is 
added to gain more information about the location of the seven points. 
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Figure 8 Intersection of boundary lines to locate all points 

 

 
 
If such a map can be drawn without inconsistency, the combination of the three bounda-
ries involved has passed the consistency test. Should such a test be failed, a way out 
would be to increase the number of dimensions. The information in Figure 8 can be writ-
ten as a 2 x 2 x 2 contingency table (see Table 6). As before, BE means: The distance of 
the column point(s) to B is shorter than to E, etc. 

Table 6 Contingency table for three boundaries 

 
    points 
 BF CF DG A, D 
   GD zero cell <1> 
  FC DG B 
   GD zero cell <2> 
 FB CF DG zero cell <3> 
   GD C, G 
  FC DG E 
   GD F 
 

This contingency table shows eight rows which are the cells of this table. In the example, 
three zero cells exist. They are represented as in the one-dimensional case with the first 
element defining a pair oriented outwards. The map in Figure 5 corresponds to 
zero cell <2>. The existence of more than one zero cell allows more than one representa-
tion or demonstrates a lack of uniqueness for the location of (too few?) points, given these 
boundaries. In general, the uniqueness increases rapidly with N.  
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Without going into constructional details, we mention that not every intersection of three 
boundary lines leads to seven (isotonic) regions. If only three points define all three 
boundaries, as in A|B, A|C, and B|C, a closed region results corresponding to points with 
distances AB < BC, BC < AC, but AC < AB, an intransitive order. Unless one wants to 
represent intransitive choices, this region can be condensed to a point. This results in a 
star-like intersection of the three boundaries, corresponding to the intersection of mid-
perpendiculars of a triangle in Euclidean space. 

In the example depicted in Table 4, with N = 7, there exist 21 boundary lines A|B … F|G. 
Table 7 lists the partitions into two sets of elements that each line achieves.  

Table 7 Partitions by boundary lines, crimes example 

 
  boundary  partition       comment 
   (1) A|B  A, D |B, C, E, F, G      same as A|C, A|E, A|F 
   (2) A|D  A |B, C, D, E, F, G 
   (3) A|G  A, B, D |C, E, F, G      same as B|E, C|D, D|E 
   (4) B|C  A, B, D, E, F |C, G 
   (5) B|D  A, C, D |B, E, F, G      same as C|E 
   (6) B|F  A, B, C, D |E, F, G      same as C|G, D|F 
   (7) B|G  A, B, D, F |C, E, G 
   (8) C|F  A, C, D, G |B, E, F 
   (9) D|G  A, B, D, E |C, F, G 
 (10) E|F  A, B, C, D, E, G |F 
 (11) E|G  A, B, C, D, E, F |G 
 (12) F|G  B, D, E, F |A, C, G 
 

As Table 7 shows, only 12 out of 21 boundary lines provide a unique partition. For the 
interpretation of a solution, the fact that A|B and A|C lead to the same partitions provides 
the information that – as far as these data are concerned – the difference between murder 
and rape creates the same set structure among the elements as the difference between 
murder and robbery. Some lines may be drawn as pseudo-parallel, i.e., the data do not 
force these lines to intersect. In the example, several collections of such lines exist, hint-
ing to one-dimensional substructures, as 

 
 A  D A  B A  G B  F 
 A D B C 
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The sets created by these partitions are not clusters as they are defined quite often in the 
literature, with the elements in a cluster being closer together and having longer distances 
to elements outside the cluster (Feger 2004). 

A boundary line is not necessarily a mid-perpendicular bisector. Depending on the density 
distribution of the object points, a boundary line may separate the points in the same way 
as a mid-perpendicular bisector but the line is not in the same position as the bisector. 
From this viewpoint, one may interpret a boundary line as a dichotomous item. To per-
form an FPA, the crimes would be the data-generating cases. Taking only the 12 non-
redundant boundary lines, this leads to a 12 x 7 matrix. One immediately sees the prob-
lem: too few cases. With a computer program, these data result in more than one hundred 
perfect two-dimensional solutions. Just for purposes of illustration, we report one solution 
with the first seven boundary lines in Figure 9. Note that this FPA-solution is compatible 
with the MDS-solution in Figure 2. The observed patterns (crimes) are printed bold. 
Could the other patterns in this solution – and they are the ones that differ between the 
solutions – be interpreted as other crimes? 

 

Figure 9 An FPA solution with boundary lines as items 

 

 
 

To the same 12 x 7 data matrix, other models can be fitted, e.g. HOMALS (see SPSS 
12.0). The Eigenwerte of the first and second dimension are 0.408 and 0.307. The solution 
is very similar to the one in Figure 2, except for the position of D, e.g. with (ADBE). 
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Space as structured by distances between points 
We now approach our problem from a different perspective (the discussion will compare 
the two approaches). Three distances are defined between three non-identical points. 
Without ties, one distance is the longest. If the points are collinear, the defining end points 
of the longest distance become the two extreme points, the third point is located between 
the other two. For each triple, this betweenness order can be derived. The properties of the 
one-dimensional betweenness relation (see, e.g. Fishburn 1985 for a review of axiomati-
zations) may be used to test consistency in the on-dimensional case.1 

Let us briefly demonstrate the procedure for the crimes A, B, D, and F. The ranks of the 
proximities between these points are contained in Table 4. We derive 

 
 triple betweenness position 
 ABD A – D – B 
 ABF A – B – F 
 ADF A – D – F 
 BDF D – B – F 

 

leading to A – D – B – F. This is the same qualitative solution as in Figure 3, which was 
derived from the contingencies approach. 

Two-dimensional generalization by using a multidimensional 
betweenness relation 
We treat the multidimensional case by generalizing the betweenness relation. For k = 2, a 
point D is located between three other points A, B, and C if its position is on the same side 
of a line through A and B as point C, of a line through A and C as B, and on the same side 
of a line through B and C as A (see Figure 10).  

On the plane, four points A … D may generate two topologically different configurations, 
either a (true) quadrilateral or a triangle with an inner point, i.e., one point between the other 
three points. Labeling the points, the seven configurations of Figure 10 result. This figure 
also reports the notational abbreviations of these configurations (see also Feger 2001). 

                                                                 

1 written by Dipl. Math. Philip Metzner 
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Figure 10 All labeled configurations of four points in a plane 

 

 
 

If the ranks of the six distances between these points are observed or derived, only some 
distance matrices are compatible with some configurations. Together with an extension to 
k = 3, Feger (1996) derived that 

(1) any pair of two opposite sides of a quadrilateral is shorter than the sum of the two 
diagonals, and 

(2) any two sides of a triangle are longer than those two inner lines originating from 
those end points which both triangle sides do not have in common.  

 
For example in Figure 10, given (ABCD), we find (AB + CD) < (AC + BD) and 
(AD + BC) < (AC + BD). For A(BCD) one derives (BC + BD) > (AC + AD), (BC + CD) > 
(AB + AD), and (BD + CD) > (AB + AC). With these results, ranked distances can be used 
to identify the set of compatible configurations; their consistency can be tested by a con-
structive procedure to find the overall solution and will be presented below. 

Testing for consistency (see Feger 2001). For the points A … E in Table 4 we list all com-
patible quadruple configurations in Table 8. 

Table 8 Compatible configurations for A … E of Table 4 
 

 quadruple configurations   
  .1 .2 .3 
1 ABCD (ABCD) D(ABC)  
2 ABCE (ABEC) B(ACE) E(ABC) 
3 ABDE (ABED) D(ABE)  
4 ACDE (ADCE) (ACED) D(ACE) 
5 BCDE (BDCE) B(CDE)  
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For quadruple A, B, C, and D two compatible configurations are derived, to be numbered 
1.1 and 1.2. The number of compatible configurations may differ from quadruple to quad-
ruple. A solution consists of one configuration per quadruple. Thus, the number of combi-
nations to be tested in this example is 2 x 3 x 2 x 3 x 2 = 72. While the sequence of this 
testing is irrelevant, we start with the combination of configurations 1.1, 2.1, 3.1, 4.1, and 
5.1. Quadruple 1.1 corresponds to (ABCD). A line can be drawn through A and B extend-
ing this side of the quadrilateral. Then the remaining points C and D must be located on 
the same side – i.e., in the same half space – created by this line (see Figure 11). 

 

Figure 11 The line through A and B creates two half spaces 

 

 
 

The AB-line is also a part of 2.1 (ABEC). Here again, the points C and E have to be on 

the same side of this AB-line. Because C already is located on one side, C, D, and E must 

all be on this side, to be tested and confirmed by 3.1 (ABED). So the result of the first part 

of the consistency test is – [AB] C, D, E. In this example N 5
2 2

   
   
   
   

= =
 
10 lines exist, each 

one to be used in the consistency test. For the line through A and C, we find 

 from 1.1 B [AC] D 
 2.1  B, E [AC] – 
 4.1 E [AC] D 
  
and in the same way one derives 

 from 1.1 − [BC] A, D 
 2.1 E [BC] A 
 5.1 E [BC] D 
 
Together, and this reveals the constructive nature of this algorithm, we may draw Figure 12. 
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Figure 12 Integrating the results of the first three parts of the  
consistency test 

 

 
 

The algorithm proceeds by using all lines and derives the solution in Figure 13, in which 
only the qualitative information counts. 

 

Figure 13 One solution for A … E 

 

 
 

The algorithm continues to find two more solutions (see Figure 14). All three qualitative 
solutions are in perfect agreement with the ranks of the distances. The first solution in 
Figure 14 is based on 1.2, 2.1, 3.1, 4.3, and 5.1, the second one on 1.2, 2.1, 3.2, 4.2, and 
5.1. Being based on three identical configurations, their similarity is high; D is either 
located on the same side of line AE as C or as B. 
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Figure 14 Two more solutions for A … E 

 

 
 

Comparing these solutions with Figure 13, (ABEC) is common to all three. The position 
of D is not well determined by this part of the data. 

The analysis of the quadruple configurations can not only be used to construct a solution 
but allows a very detailed study of the fit between solution and data. Performing this 
analysis for the solution in Figure 2, two results are mentioned. (1) Identifying by inspec-
tion of Figure 2 the configurations implied, we note that most configurations in the solu-
tion are acceptable. Only one configuration violates the status of acceptability: We ob-
serve (ACGF), but (ACFG) would be acceptable, i.e., compatible with the ranks. For a 
solution with an almost perfect fit, it is not surprising that only one configuration does not 
correspond to the limitations provided by the data. (2) In Figure 2, point D is placed on 
the line between A and E. Our analysis indicates that D could be on either side. Thus, the 
solution in Figure 2 provides a ‘compromise’ of two equally acceptable qualitative solu-
tions. The first contains D(ABE), (ADEC), D(AEF), and (ADEG,) while the second in-
cludes (ABED), D(ACE), (ADEF), and D(AEG). Thus, the quadruple analysis determines 
what is implied by the data – common over perhaps many equivalent solutions. 

Facet theory. Schönemann & Borg (1983: 333) have emphasized that theoretical assump-
tions about the structure in the data should exist when performing MDS. One prominent 
possibility to relate the statistical analysis and the theoretical assumptions is facet theory. 
We illustrate one way to use quadruple configurations in k = 2 for theory testing with a 
well known example of eight intelligence tests (Guttman 1965; see also Borg 1992; 
Borg & Groenen 1997: 73). The correlations between the tests are given in the lower 
triangular matrix of Table 9. 
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Table 9 Correlations between intelligence tests 

 
Tests (1) (2) (3) (4) (5) (6) (7) (8) 
(1) -        
(2) .67 -       
(3) .40 .50 -      
(4) .19 .26 .52 -     
(5) .12 .20 .39 .55 -    
(6) .25 .28 .31 .49 .46 -   
(7) .26 .26 .18 .25 .29 .42 -  
(8) .39 .38 .24 .22 .14 .38 .40 - 

 

The MDS solution for these data (Borg & Groenen, Figure 5.1) can be interpreted as 
being a circumplex. If this circular order exists in the data, every quadruple should exist in 
specific forms. For a circumplex without error with all points on a circle, e.g. the tests 
(1) … (4) should be represented by ((1)(2)(3)(4)). But the graph of the solution might 
suggest that test (6) deviates from a perfect simplicial structure. Testing the quadruple 
(4), (5), (6), and (7), one finds that the configuration compatible with the data is 
((4)(5)(7)(6)) and not ((4)(5)(6)(7)), as demanded by a perfect circumplex. Furthermore, 
the quadruple analysis reveals that (4) or (5) or (6) may be between the remaining object 
points of this quadruple. 

We conclude that the circumplex is not perfect and that the deviation of (6) is real and 
could deserve an explanation. We did not report the analysis of all 70 quadruple configu-
rations. This is not necessary to reach the conclusions above, because if the acceptable 
configurations for A, B, C, and D do not contain the theoretically predicted one, no analy-
sis including further object points E … N changes the list of acceptable forms for A … D. 
In this sense, the list of acceptable configurations for A … D is independent of any other 
list of quadruples from A … N. If a hypothesis is related to a subset of points, it suffices to 
analyze this subset. By the way, the solution reported in the literature is not totally sup-
ported by the data, e.g. ((4)(5)(6)(8)) does not exist. The quadruple analysis suggested 
here allows to pinpoint all deviations of a solution from the data. 

On the other hand, the eight tests are ordered by two facets, language L with N = numeric 
and G geometrical, and requirement R with A = application and I = inference. These two 
facets may be conceptualized and represented as boundary lines. Their intersection is 
provided in Figure 15. 
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Figure 15 Coding of the intelligence tests with respect to two facets 

 

 
 

It is evident that all configurations maintaining the positions of the quadrants like 
((1)(3)(4)(6)) or ((2)(3)(5)(8)) provide empirical support for the hypothesized facet struc-
ture. A configuration violating the clockwise (or anti-clockwise) order of the quadrants 
like ((1)(4)(3)(6)) would violate the assumed order. But the information that (1) is placed 
in the quadrant defined by N and A does not place (1) in an exact geometrical position. It 
is not against the information if (1)((3)(4)(6)) is derived from the data (see Figure 16). 
Thus, the violating cases are only quadrilaterals with diagonals against the quadrant order. 

 

Figure 16 A betweenness position of test (1) compatible with the  
facet structure 
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Quantification. To demonstrate the quantification, given a qualitative solution, we select 
the crimes A … E and re-rank their distances in Table 10 (taken from Table 4). 

 

Table 10 Re-ranked distances between crimes A … E 

 
 A B C D E 

A -     
B 7.5 -    
C 9 6 -   
D 1 2 5 -  
E 10 3 4 7.5 - 

 

We chose the first solution in Figure 14 for the demonstration, with D(ABC), (ABEC), 
D(ACE), and (BDCE) as the defining quadruples. For each quadruple configuration, we 
derive inequalities, e.g. for D(ABC) we derive (see paragraph 5 of this paper): 

 
   (1AD + 2BD) < (9AC + 6BC), 
   (1AD + 5CD) < (6BC + 7.5AB), 
   (2BD + 5CD) < (7.5AB + 9AC). 
 

Each of these three inequalities is trivial in the sense that for each rank in the smaller sum 
a larger rank exists – in a one to one assignment – in the larger sum. This observation 
helps to reduce the number of inequalities which increases very much with an increasing 
number of elements (crimes). These trivial inequalities are satisfied by the side constraints 
corresponding to the ranks as observed in Table 10: 1AD < 2BD < … < 9AC < 10AE. Of all 
inequalities derived from the quadruple configurations, only 

 
   (7.5AB + 7.5DE) < (10AE + 2BD) 
 
is not trivial in the sense defined above and has to be taken into account when calculating 
the quantitative solution. Furthermore, to obtain metric distances, for every triple A, B, 
and C the triangular inequality has to be satisfied. For A, B, and C, with AC as the largest 
distance in Table 10, one requires AC ≤ AB + BC. Table 11 gives one of many possible 
sets of distances satisfying all constraints. 
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Table 11 Distances between A … E 

 
 A B C D E 

A -     
B 24 -    
C 26 22 -   
D 13 14 20 -  
E 37 16 18 25 - 

 

We did not prove that the conditions and constraints imposed on the distance estimates are 
sufficient. Therefore, we test the realizability of a two-dimensional representation of the 
distance estimates in Table 11 by applying MDS. Using PROCSCAL of SPSS 12.1 with a 
ratio transformation of the dissimilarities in Table 11, we obtained a normalized raw 
stress = 0.0011 and an explained variance of 0.99889. This corresponds as close as possi-
ble to the perfect fit to be expected in this analysis. The solution shows the correct forms 
of the quadruple configurations. The coordinates of the crimes A … E are provided in 
Table 12. 

Table 12 Coordinates of A … E in the plane 

 dimension 
      1      2 
A   .845 -.029 
B -.142   .422 
C -.257 -.542 
D   .330   .055 
E -.776   .095 

 

Searching for an ‘optimal’ solution for data with error 
For researchers applying MDS and aiming at a low dimensional solution, usually only 
solutions with some error or ‘unexplained variance’ exist, but not with a perfect fit be-
tween model and data. Sometimes, it is meaningful to assume that random error has dis-
torted the size of the proximities and their ranks. Most conceptualizations of random error 
imply that small errors are more probable or frequent than large ones. For ranks, this 
means that the exchange of adjacent ranks (the first becomes the second, while the second 
becomes the first) should lead frequently to a dissolving of error, while the exchange of 
more distant ranks may not as often be necessary to find a solution. 
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We search for a solution with an optimal fit to the data. Of course, several definitions of 
‘optimal fit’ can and have been given – implied in every optimization algorithm and 
choice of a loss function (see Borg & Groenen 1997). Our approach compares the distance 
ranks implied by a solution to those observed. We start by changing the observed distance 
ranks as little as possible. This we define in accordance with Kendall’s τ as the number of 
exchanges or permutations between adjacent ranks. Kendall (1948) used the statistic S 
defined as the minimum number of exchanges of adjacent elements necessary to trans-
form one rank order into another one. We illustrate our procedure with the ranks provided 
in Table 13. 

 

Table 13 Distance ranks to demonstrate the approximation matrix 

 
 A B C D 
A -    
B 3 -   
C 1 5 -  
D 4 2 6 - 

 
For these data, no perfect one-dimensional solution exists. With N objects and N

2
 
 
   dis-

tances, there exist N
2

 
 
  –1 pairs of ranks of adjacent distances. For the example of Table 13 

we derive this list of exchanges with S = 1: 

   observed  transformed 
  [1] 1AC, 2BD, 2AC, 1BD. 
  [2] 2BD, 3AB, 3BD, 2AB. 
  [3] 3AB, 4AD, 4AB, 3AD. 
  [4] 4AD, 5BC, 5AD, 4BC. 
  [5] 5BC, 6CD, 6BC, 5CD. 
 

We write the rank of a distance as an exponent to the left. 1AC means that AC has rank 1, 
signifying the shortest distance. For each of the five exchanges with S = 1, we test 
whether a k = 1 solution exists. After exchange [1], we derive the ranks in Table 14. 
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Table 14 Distance ranks after exchange [1] 

 
 A B C D 
A -    
B 3 -   
C 2 5 -  
D 4 1 6 - 

 

From the ranks in Table 14 and the triples B – A – C, A – B – D, C – A – D, and C – B – D, 
we construct the quantitative solution 

 
 1 3 2 
 D B A C 
 
This solution perfectly fits the ranks in Table 14, and approaches with S = 1 as close as 
possible the ranks in Table 13. Because there may exist more solutions with S = 1, i.e., the 
same optimal fit, we test the effects of all exchanges [1] … [5]. For exchange [2] we find 
the same solution as for [1], noting that slightly different rank matrices may lead to identi-
cal solutions. Exchanges [3] and [5] do not provide a solution, but [4] produces 

 
 2 3 1 
 D B A C 
 
agreeing with the first solution qualitatively but not with respect to the quantification.  

As far as the example is concerned, this would end the search for optimal solutions. In 
general, larger exchanges than S = 1 will be considered, first those with S = 2. These 
exchanges are generated by combining two S = 1 exchanges, e.g. [1] with [2], [1]with [3], 
etc. from the list above. Furthermore, S = 2 is created by a permutation of the type: from 
1 – 2 – 3 to 3 – 1 – 2, illustrated as two intersections of the lines connecting the same 
ranks: 
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Discussion 
Using the perspectives as emphasized by Schönemann & Borg (1983), we here describe 
and discuss the contributions of this paper with respect to the existence, uniqueness, and 
interpretation of nonmetric MDS solutions for ordinal data. Two formal approaches are 
outlined. The first one uses contingencies and, as the geometrical realization, boundaries 
between object points. The second approach applies the generalized betweenness relation. 
The geometrical correspondence is the seriation in a triple in k = 1 and the quadruple 
configuration in k =2. For both approaches, procedures and examples in the one- and two-
dimensional case are provided. 

Starting with k = 1 for the contingency approach, the existence of a solution depends on 
the existence of at least one zero cell per contingency table, and on the consistency of the 
zero cells. This leads to a qualitative solution in the sense of Coombs, with incomplete 
information on the (relative) size of the distances between object points. The existence of 
a quantitative solution requires the solvability of a system of equations and inequalities. 
To test this, the ‘Pyramid Criterion’ is introduced. 

Using an equation system to find scale values meets some reservations (see Krantz et al. 
1971, in particular chapter 9). Indeed, a larger system of empirically derived equations 
rarely is without a contradiction, rendering the whole system not solvable. General ap-
proximation procedures are available, e.g. Mathcad (2001) with the option ‘minerr’. 

One may use the algorithm of Feature Pattern Analysis to find all qualitative and quantita-
tive solutions. The scale level of the quantitative solutions approaches the interval scale 
with an increasing number of objects rather rapidly. Thus, the question of uniqueness is 
answered by listing all solutions compatible with the data and the acceptability criteria of 
the researcher. 

For the interpretation of a solution, the concept of a boundary may be called upon. Such a 
boundary point or line or plane exists for every pair of object points and correspondents –
substantially interpreted – to a contrast between the two objects defining this boundary. In 
the crimes example, some boundary lines express the difference between crimes with 
violence against human beings vs. violations of property rights.  

In the two-dimensional case, zero cells in trivariate contingency tables establish the nec-
essary conditions for the existence of solutions. The structure implied by each zero cell 
must be compatible with the structure postulated by every other zero cell. Again, each pair 
of object points creates a boundary line, which now may intersect with other lines in the 
plane to create regions for the location of the object points. A boundary line may be inter-
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preted as an item to be analyzed by procedures such as FPA or HOMALS. As in the one-
dimensional case, all qualitative and quantitative solutions of a desired fit can be found. 

The second approach, using proximity ranks in a one- or multidimensional betweenness 
relation, orders in k = 1 all triples of object points according to one of the various be-
tweenness axiomatizations, and if that is possible simultaneously for all object points, a 
qualitative solution exists. The quantitative solution can be found in the same way as for 
the first approach. For the interpretation, each triple stipulates a comparison of the middle 
or central element with the two outer ones: The climate in the Netherlands (NL) differs 
from those of Sweden (S) and Portugal (P), but S and NL as well as P and NL have more 
or perhaps more important properties in common than S and P. 

The two-dimensional case introduces the powerful concept of the quadruple configura-
tion. Two topological variants exist in k = 2. The quadrilateral represents four object 
points, none of which is located between the others. The triangle with an inner point 
represents one object point between the other three. For more than four points, one may 
differentiate between the hull and the kernel of the constellation of points. Multiple 
imbedding of hulls and kernels allows for a detailed substantial interpretation. In Figure 2, 
for example, D (assault) and E (burglary) are contained in or surrounded by all other 
points, forming a hull for them. E also is contained in D, F, and G. With more points, the 
number of (relative) hulls with their kernels, forming overlays, tunnel, and other struc-
tures, provide a rich basis for interpretation, as the lines of the contingency approach do. 

The positioning of co-ordinate axes is arbitrary, as in most MDS models. To support a 
dimensional substantial interpretation in k = 2, one of many possibilities is to use two sets 
of boundary lines. Each set intersects (only) with the other one. The sets should partition 
the point localizations in two different ways. These partitions should be as independent as 
the data allow. Independence may be defined, e.g. by Kendall’s τ. Figure 17 reports one of 
many possibilities for the crimes data. The partitions in the last row and the last column 
(with many ties) correlate τb = 0.344, which is not significant. 
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Figure 17 A two-dimensional representation of the crimes example 

 

 
 
 
The two approaches lead to the same results, while using different ways. From the contin-
gencies, zero cells are derived and geometrically realized as a set of boundaries (see Fig-
ure 1). From pairs of boundaries, one may then derive the positions of the object points in 
one of the regions. Quantitative information is provided by a zero cell as well. Using the 
betweenness relation on the distances, triple (in k = 1), quadruple (in k = 2) or quintuple 
configurations (k = 3; a tetrahedron with an inner point or two tetrahedra with a common 
triangular base) are the analytical units to be used when constructing a spatial representa-
tion. While the configurations immediately provide the localizations of the object points, 
the positions of the boundaries can be derived from them. Thus, in a different sequence, 
both approaches offer the same information on the location of points and of boundaries, 
starting both from ordinal data. 

There exist, of course, other possibilities to provide a mathematical foundation for MDS. 
For metric MDS, several bases are already given (see Mathar 1997). Borg & Groenen 
(1977: 16) offer a “ruler-and-compass approach to ratio MDS”. The assumed properties of 
the data require different approaches. Other achievements are discussed in Schönemann & 
Borg (1983). 
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