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INTRODUCTION

The discussion of vagueness and approximation in empirical
and especially physical theories - as far as it is intended as a
part of meta-science - faces the following problem. There are
practically no utterances of practising scientists about the re-
lation of theory and approximation which could serve as 'data’
against which the meta-discussion might be 'tested'. This is not
to say that approximation is not relevant for physics: the very
first laboratory courses in physics prove the contrary. The cal-
culation of errors in measurement and the 'theory of disturbances'
are essential for physical methodology. But these achievements are
not suited to clarify the relation between theories and reality.

Consequently the meta-discussion cannot proceed 'empirically’,
i.e. by formulating hypotheses for which 'real life' examples are
presented. Rather the discussion is 'analytic' in the sense that
it analyses the connection between theory and reality and the role
of approximation on the basis of some general background. As long
as we have no case studies of concrete examples of approximation
the discussion will remain analytic, and what I shall have to say
in the following will be analytic to a large extent, also.

There are at least three proposals for treating vagueness or
approximation . technically. A first, 'classical' text here is
Przelecki's [9]. He offers an apparatus in terms of the semantics
of first-or higher-order theories. A second proposal is due to
Ludwig who introduces topological uniformities to 'smear over' the
sharp theoretical images of the theory (see hin contribution in
this volume, or his [7]). Thirdly, Moulines in [8] has applied
Ludwig's ideas to Sneed's theory concept.
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148 W. BALZER

My aim in this paper is to consider these propositions with
respect to their underlying intuitions and to look for adequate
formal realisations of these intuitions in Sneed's concept of an
empirical theory.

It should be noted that the latter concept is 'open' enough
to allow for an 'emendation' by building in aspects of approxima-
tion without essentially changing the original content. I think
such 'openess' is favourable for meta-theoretical concepts and
fits the idea propounded by Stegmiiller in [14] of starting an ana-
logue to the Bourbaki-programme in the realm of empirical sciences
on the basis of some suitable theory concept. In order to build in
approximation into Sneed's theory concept it seems necessary to
start with a brief discussion of some central features of this
concept.

I. SNEED'S THEORY CONCEPT

I will concentrate on the aspect of formulating empirical
claims which is especially relevant for problems of approximation.
The discussion of empirical claims will force me to look at the so
called 'problem of theoretical terms' in some detail. For a
broader discussion the reader is referred to [12], [13]1, [14] and
for an appropriate technical formulation especially to [3].

The starting point of Sneed's theory concept is that there
are axiomatizations of physical theories. Any such axiomatization
yields a class of structures or (in the following) models: M. In
special contexts it is profitable to regard M as the class of
structures of a certain species in the sense of Bourbaki [4] (as
proposed by Ludwig [7]) or as the class of structures of a certain
'similarity type' in the sense of Feferman [5].

But the characterization of a class of models has nothing to
do with experience or reality. We have to ask how M can be used in
order to formulate statements about reality or empirical claims.
It is clear that this cannot be done without reference to 'real
systems'. So let us introduce a set I such that the members of I
are 'real systems'. In classical mechanics, for instance, such
real systems are the solar system and its sub-systems, concrete pen-
dulums, the tides, and concrete harmonic oscillators. Such real
systems will be called intended applications, so I is the set of
intended applications. As soon as we have these two components,

M and I, we can try to formulate an empirical claim of the
following form: "All intended applications of the theory are
models of the theory". This claim admittedly is a bit unclear, in
particular it is not clear what is meant by 'are'. The meaning of
'are' depends on the structure of the intended applications.
There are various possibilities of giving a special structure to
the intended applications of which I want to point out two ex-
tremes. A first possibility is to regard an intended application
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as a (finite) set of atomic propositionSIL (Proponents of this
view are, e.g., Ludwig and Popper). A second possibility is to
regard an intended application as a structure of the same 'type'
as the members of M, i.e. intended applications are structures
wich possibly might be models. A discussion and comparison of
these possibilities which, I think, arise from different strate-
gies in reconstructing a theory or a 'hierarchy' of theories is
beyond the bounds of this paper. As I want to concentrate on
Sneed's theory concept I shall follow Sneed and choose the second
possibility.

A theory T then consists of at least three components, M, I
and M_, where M_ is the class of potential models, i.e. of struc-
tures of the type of models (which need not satisfy the central
axioms of the theory).

er a) T is a theory* iff T = <MP,M,I> and
1) Mp and M are classes of structures of the same type
2)y MEM
b
3) IE€M
b

b) the empirical claim* of T = <Mp,M,I> is that T < M

A claim of this form immediately leads to the problem of theoreti-
cal terms if we ask how the claim can be tested. Since the claim
has the form of a universal sentence

Vx (XETI = xEM)
it is sufficient to consider one arbitrary X € I. How do we test
=
(1) X €1 x, €M?

If we know that X, € I we know that X, has the form of a potential
model Let us assume the potential models of T having the form
<y1,...,y > where Yyre--ry, are functions or relations. Then
xO also has tﬂls form: xo-<y? ...,y°> But we do not know what
the various y? look like. The set I 1s not defined ex; explicitly but
'paradigmatically', i.e. some concrete gystems are singled out
- forming a finite set I_ of 'paradigm intended applications' -
and other systems are sald to belong to I if they are 'sufficient-

1) I speak of propositions rather than of sentences in order to
preserve the distinction between models and axioms, or between
interpretation and language. Propositions (in the technical
sense) are entities of the first kind. They correspond to sen-
tences at the level of language, and by an atomic proposition
the reader may understand a proposition corresponding to an
atomic sentence.
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ly similar' to members of I_. In order to test (l) we must
describe yo,...,yo and this in turn leads to measurements in order
to find out the 'values' of y?,...,yg.

Now we have the following problem. There are theories T with
theoretical components. That is, there is some component, say Yoo
in the potential models of T such that every measurement of y
presupposes some version of T's axioms to be satisfied in the
course of the measurement (for details compare (2)).

As an example take mass in classical particle mechanics (CPM).
The potential models of CPM have the form <P,T,s,m,f>, where P is
a non-empty, finite set (of 'particles'), T © R is an open inter-
val (time), and s (position), £ (force), m (mass) are such that
s : PxT » R and £ : P x T x N ~» R~ are smooth and
m: P » R . Models of CPM are those potential models which
satisfy Newton's second law:

Vp € PVt € T(m(p)B(p,t) = Z f(p,t,i)). Mass in this theory is a

theoretical component. To grove this statement we have to consider
all methods of measurement for mass. Since this totality is very
difficult to describe we can only try to confirm it by means of
some examples. Let us consider the measurement of mass by means of
central, inelastic collisions. This method yields the mass ratio
in terms of differences of velocities, provided the two particles
move on a straight line. But these assumptions do not guarantee
that we really measure mass. If, e.g., the whole measuring device
is accelerated along the line of motion we will not accept the
ratio of the velocity differences as an expression being equal to
the mass ratio although the performance of the experiment still
might be possible. A physicist will say that of course the measu-
rement has to be performed in an inertial system. If by this he
means what Prof. Ludwig has suggested, namely that objects made
out of 'soft' material do not change when submitted actively to
the usual Galilei transformations then he already presupposes
'part of' Newton's second law, namely that

(2) Vp € PVt € T(} £(p,t,i) = @m(p)E(p,t))) with
3 3l
@ : RO — R and @(0) = 0.
For if the objects are not accelerated the presence of non-zero
forces would deform them. Among those functions ¢ for which (2)
is true identity certainly is the simplest one, and so we can say
that some version of Newton 2 is satisfied.

The reader may check other methods for measuring mass and
see whether he can find an example where no version of Newton's
second law is necessary. But in all cases he must be able to con-
vince us that he really measures the 'mass of CPM'. Part of this
task will always be to exclude counterexamples of the kind just
discussed, and usually such counterexamples lead to the assumption
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of some version of Newton's second law. Anyway, Sneed and others
have claimed that mass is CPM-theoretical. This is an 'empirical
claim' at the meta-level, and, I think, a correct one.

Usually the most interesting terms of empirical theories
turn out to be theoretical. Thus the following 'problem of theore~
tical terms' cannot be neglected: if T has a theoretical component
then confirmation of an empirical claim of the form of Dl-b) leads
to a version of circularity. For in order to check, say, whether
X €EI1I= Xq € M is true we have to determine the components of
X, among which there is a theoretical one. In order to determine
(to measure) this component it is presupposed that the 'measuring-
system’ already satisfies a version of the axioms. Thus in order
to determine whether Xq is a model we already presuppose that some
x, satisfies a version of T's axioms. So we only have a kind of
conditional confirmation, namely relative to the assumption that
x4 is a 'model-version' of T. If we want to transform this condi-
tional confirmation into an 'absolute' one we have to test whether
X, in fact is such a version. But this leads to a repetition of
the whole story. In order to test whether x4 satisfies a version
of T's axioms we first have to measure x,'s components, and since
X; contains a theoretical component this is possible only by pre-
supposing some X5 being a version of T's axioms.

I agree with the objection that this formulation of the
problem of theoretical terms is still a bit vague: what is a
'version of T's axioms' and what is a 'measuring-system'? The
lLatter notion has been clarified in [2] where it is called
't~determining model', while the concept of a version still waits
for precise explication. But such an explication does not pose
any principal question and I avoid it only because it leads to
rather complicated technical formulations.

An elegant solution of the problem of theoretical terms was
suggested by Ramsey: just reformulate the empirical claim such
that the theoretical components come under existential quanti-
fiers. For given X then it is no longer claimed that X, is a
model but that there exist theoretical components which, if
adduced to X0 yield a model. Certainly this solution (which is
called the solution by Ramsey-sentences) is not the only possible
one and it seems to be a rather coarse solution. But it fits with
practising scientists' answers to questions like: "What does the
theory tell us about this system?".

A more precise formulation forces us to extend our theory
concept as follows. We have to introduce a distinction between
theoretical components and non-theoretical components of the
potential models. We can do this by making explicit the structure
of potential models (a potential model x then being of the form

X = <y1,...,yn>) and by introducing a natural number m(m<n) to-
gether with the stipulation that Yqree-ry, are non-theoretical
components and Y417 e 1Y, are theoreticaT components of x. The

class of structures consisting of non-theoretical components only
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is called M__ and its members 'partial potential models'. In this
frame it ispgufficient to require I to be a subset of Mp instead
of M,. This, finally, allows us to formulate an empiricag claim in

which no theoretical component occurs as constant (D2-b) below).

D2 a) T is a theorz1 iff T = <Mp'M'Mpp'I> and

1) M and are classes of structures x of the same type
and of the form x = <y1,...,yn>
2) MM
p
3) there is m £ n such that
Mpp = {<y1,...,ym>/3ym+1...3yn(<y1,..., " m+1""'yn>
€M)}
p
4) I M
pp 1
b) the empirical claim™ of T = <Mp,M,Mpp,I> is that
Vx(x=<y1,...,ym>€I=>3ym+1...Hyn(<y1,...,ym,ym+1,...yn>€M))

This claim can be written more elegantly if we use the function

r : ME — defined by r(<y1,...,ym,ym+1,...,yn>) = <YQreesr¥pp-
The claim then is that Vx(X€I—=>3Ix'(r(x')=xAx'€M)) or, still more
briefly

(3) T<crM.

This claim no longer creates a problem with theoretical terms for
the role which these play in (3) can be tested by paper and pencil
operations: we only have to check whether there exist theoretical
augmentations x' such that x' € M. The determination of x - which
is treated as 'given' - is unproblematic, at least from the point
of view of the theory under consideration, becausé x does not
contain any theoretical component.

I do not treat here other features of Sneed's theory concept,
as for instance the 'constraints' which are crucial to arrive at
non-vacuous empirical claims, or the notion of a theory-net which
allows us to treat dynamical aspects as well as larger 'portions
of theory'.

II. VAGUENESS AS MULTIPLICITY

This view of vagueness as well as the slogan is due to
Przelecki. In [9], [10] and [11] he treats vagueness in a seman-
tical frame. There is given a language L of an empirical theory
which has to be interpreted (in the sense of formal logics). In
contrast to formal or mathematical theories the interpretations of
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an empirical language cannot be arbitrary. Only certain 'intended'
interpretations are of interest. Vagueness now means that there is
not one unique intended interpretation for L but there are many
'admissible' intended interpretations.

The idea behind this approach is that an interpretation of
language L is given or induced by ostensive or non-verbal means,
in physics for instance by means of measurement. And it is a fact
that two interpretations of some expression of L as given by mea-
surements usually are different.

For example, if we consider the function m of CPM and inter-
pret it, first, as the mass function of a given system x at time
t - which is determined by means of mass-measurements - and, se-
cond, as the mass function of the same system x at time t + 1
again determined by means of measurement, then usually the two
interpretations will be different. In other words, if we twice
measure the mass of some particle p then, in general, we obtain
two different values. This is an observation about how the world
is and little or even no theory is needed to establish such ob-
servations.

Thus we have as a general feature of most terms of empirical
theories that their interpretation at different occasions will be
different. This gives rise to a kind of vagueness: the empirical
claim will depend on the special way in which we arrive at an
interpretation of the terms occuring in this claim.

To avoid misunderstandings it seems useful to add two re-
marks. First, this kind of vagueness has nothing to do with the
question of how precise our measuring instruments are. If they
are not very precise then of course we will expect different
values at different times. But even if they are very precise, say,
more precise than our ability to resolve visual impressions, the
situation does not change. For in such cases by means of ingenious
devices we can make 'visible' (e.g. countable) the differences
which are too fine for the senses. And with such auxiliary devices
again we obtain different results in different performances. Se-
cond, this kind of vagueness does depend on the kind of measure-
ment which is used. If the term to be interpreted for instance is
a function taking only the values O and 1 (think of yes-no experi-
ments in quantum mechanics) then there are examples in which
practically all performances of the experiment yield the same
value and thus the same interpretation. But such experiments are
important mainly in quantum physics and there we have statistical
features elsewhere. In classical theories we could introduce such
measurements but this would necessitate a substantial reformula-
tion of the established theories. I do not want to speculate on
what could be the case. It is the case that the terms of the
established classical theories, if interpreted by means of mea-
surement, yield multiple results. (The point here is that
'smeared' terms, lime m * e, are not terms occurring in
established theories.)



154 ' W. BALZER

Now in order to build this kind of vagueness into the
Sneedian theory concept we have to look for counterparts of a
language L and of 'interpretations'. A language L is present only
implicitly in a theory T in the sense of D2-a). The different com-
ponents of the potential models correspond to the different basic
symbols of a language. More precisely, we could regard these com-
ponents as given by some interpretation of a language containing
a non~logical constant for each such component. The intended
interpretations mentioned above in T correspond to the set of
intended applications I. For the other components, M, M_ and
are classes of all structures of a certain kind. So they are, soto
speak, classes of all possible interpretations of suitable langua-
ges (in case of M the class is further restricted by purely verbal
or formal requirements). So I is the only candidate to express
that we want to deal only with certain intended objects (interpre-
tations or applications). But the correspondence of an intended
interpretation with an intended application seems to be sound also
on intuitive grounds. An intended interpretation in fact is some
structure consisting of components like those of intended appli-
cations. The distinction between theoretical and non-theoretical
components does not create any problems because Przelecki also has
such a distinction and the intended interpretations at first are
considered on the non-theoretical level.

If we identify intended interpretations with intended appli-
cations then a multiplicity of interpretations becomes a multipli-
city of intended applications. This multiplicity must not be con-
fused with a multiplicity of intended applications already present
in D2-a), namely the multiplicity constituted by the fact that
usually I contains more than one member. Different elements of I
in D2-a}) stand for different real systems, like two systems con-
sisting of two different concrete pendula or another concrete
system which is an harmonic oscillator. The multiplicity we are
discussing here is a multiplicity of intended applications
corresponding to one single real system. The idea is that corres-
ponding to some given real system we always have a multiplicity of
intended applications (intended interpretations) created by the
fact that the determination of the components of the given system
yields different results at different occasions.

These considerations give rise to the following formal treat-
ment. We impose new structure on the set I of intended applications
of D2-a). We distinguish a family of sets of intended applications
(I')'EJ such that for all j: I. C . The indices in J are
thought of as representing concrete systems, i.e. they are names
of concrete systems. For instance, the pendulum swinging at a cer-
tain time in a certain laboratory will be denoted by an index in
J. The set I corresponding to this index then contains the various
interpretations which we obtain for this pendulum if we determine
its position function and the mass of the particle at different
occasions. I is given as the union of all these Ij‘



SNEED'S THEORY CONCEPT AND VAGUENESS 155

It may be noted that a set I. does not contain a distinguished
element, the 'true' description o% the system This is no short-
coming but an advantage. There simply are no distinguished des-
criptions of concrete systems. This point can be better understood
by contrasting it with the opposite one. According to the opposite
point of view for a concrete system, like the pendulum, given
ostensively, there exists one distinguished, 'sharp' and 'true'
theoretical image or description, and the set I. is obtained by
smearing this distinguished structure which is necessary because
of our limited ability to determine this true object. I think this
latter view is wrong and misleading. It is wrong as concerns the
everyday experience in measuring, and it is misleading in meta-
theoretic thinking because it strengthens our tendency to over-
estimate theoretical pictures and to underestimate their accessi-
bility.

I now go beyond what Przelecki has proposed by asking whether
we can (or should) introduce uniform structures at this stage. Of
course we can. The sets I. are natural condidates on which we can
impose uniform structures .. The members U of such anll. are
subsetsof I x Ij. <x,x'> €U with x, x' € I. and U €U means
that x and x' areé similar of 'degree U', and U will be called a
degree of similarity in the following. There are two arguments in
favour of such U.. The first argument is that in case of quanti-
tative theories, which is the normal case in physics, we will have
one or several natural mathematical uniformities on each I.. A
second argument is that in physical practice we find activities
corresponding to such uniform structures. Calculations of errors,
for instance, consist of calculations of mean-values and of
variances, and this can be interpreted as calculating a degree of
similarity U to which both systems - the one given by the mean-
values and the other one given by the measured values - belong.

We will therefore, in addition, introduce uniformities with each
set Ij (see D4) below.

If we introduce uniformities we somehow must restrict the
possibilities for dissimilarity in order to avoid smearing the
empirical claim to such an extent that it becomes logically true.
The usual definition of uniform structures contains an axiom of
the form Uc V A U EW = v €U (compare D3-b) below for an under-
standing of this formula). Thus the uniformity has to contain with
each U all V representing smaller degrees of similarity (U< V).
This axiom implies that the cartesian product of the basic set
always belongs to the uniformity, i.e. that the uniformityZ% con-
tains a degree of similarity according to which every object of
the basic set is similar to every other such object. Clearly we
need some restriction here. There are two possibilities. First,
we can drop the axiom just mentioned and work with 'weak' uniform
structures as defined in D3-b) below. In these structures the
above axiom need not be satisfied and we can think of the uni-
formity U itself as representing the ‘admissible' degrees of
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similarity and no others. In this case we can regard the members
of I. as being all admissible in the sense that they are suffi-
ciengly similar to each other. A second possibility (used by
Moulines on the theoretical level) is to treat I; as full uniform
space and to choose a subset &, of each W, with %he idea thatCZj
contains the admissible degrees of similarity. For reasons of
simplicity I will take the first alternative.

We now can introduce the concept of a weak uniform space.

D3 a) if N is a set and US N X N then
a.l) AU = {<y,y>/3z € N(<y,z>€U) vIzEN (<z,y>€U) }

a.2) U'—1

{<y,z>/<z,y>€u}

a.3) U

]

{<x,y>/3z (<x,z>€Uv<z,y>€U) }

b) x is a weak uniform space iff x = <N,U> and

1) N is a non-empty set

2) ¢ #U < Pot (NxN)

3) VYU,U' (UEUWAU'EY =UNU'EW)
4) Yu(ue =>AUCUAU_1€'VC)

5) VU'3u(U'€t= U2CU'AU€a)

For an interpretation of these axioms see, e.g. Ludwig's contri-
bution to this volume.

D4 T is a theory iff T = <Mp,M,Mpp,I,(Ij) > and

j€J’(wj)jEJ
1) <M ,M,M ,I> is a theory1 (see D2-a)
b bp
2) J is a non-empty set
3) for all j € J : Ij c I and 2)[3, c Pot(IjXIj)

4) 1 = U I,
jes I
5) for all j € J : <Ij,Mg> is a weak uniform space

As already said, J is a set of names of concrete physical systems
and each I; is a set of intended interpretations arrived at by
measuring system j. EachVl is a weak uniformity on Is.

We now can formulate a vague empirical claim of T. To this
end we agree on the following notation. If X € I Ij

JEJ
(@€ T Pot(1,)) then o(x) = {X(3)/3€7} (b () =U{%X(3) /3€T}) . Intuiti-
JE€T

2) We might add I n Ij = ¢ for i # j but this seems a rather
strong requirement.
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vely, p(X) is the set of 'components' X(j) of X.

EE the vague empirical claim2 of T = <Mp,M,M ,I,(Ij)

w.)
bp

JETTTY j€J>

is that

IX(XE T I Ap(X)=xr(M))
j€7 )

The vague empirical claim formulated with the help of this
apparatus intuitively says that there exists a combination of in-
tended applications X such that for each name j, X contains exact-
ly one member, and all these members by means of theoretical com-
ponents can be extended to models. In other words, for each con-
crete system there exists an intended description (given by mea-
surement) and these descriptions can be extended to models.

Some further remarks may be helpful. First, we observe that
the uniformities U, in a natural way induce a uniformity U on
I I.,. The preseng account then formally can be regarded as
jET 1
smearing an empirical claim : I*¥*c r(M) by smearing I* with the
help of . Here, I* is the set of 'sharp' intended applications in
the sense of D2). In the terminology of D5) we would say that for
some 'ordering' of I*, say Io(p(Io)=I*), I, € 0T 1I.. But as al-

€T

ready said this point of view is misleading for it suggests the
existence of some distinguished member of I I,, namely some

such 10.3) j&a

Second, we note that the claim2 of D5) contains two 'Ramsey-
fications', two existential quantifications. For the part
p(X) € r(M) implicitly contains another existential quantifier. So
the explicit formulation is this:

IXIY(XE T I . Ar(Y)=p (X)AYM).
j€T
As a third remark let us pose the question why we have chosen an
existential quantification for X. Alternatively we might have put
X under an universal quantifier, thus requiring that all combina-
tions of II I, can be extended to models. But such a claim would
j€I
be false in most cases. To see this consider for instance CPM
enriched by the law of gravitation. For suitably given paths
(expressed by s) we can find masses such that the gravitational
equations are satisfied. But in an arbitrarily small neighbourhood
of s we find mathematical paths s' such that there are no masses
for which s' satisfies the gravitational equations. We cannot ex-
clude - and in fact it is very likely - that both these paths s
and s' occur in one Ij’ i.e. they both arise from a concrete

3) This argument was put forward by Przelecki in a discussion.
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system by means of measuring the corresponding paths. In this case
a universally quantified claim is false. This seems reason enough
to justify the existential quantifier. :

Fourth, it is easy to see - and has been pointed out by H.-J.
Schmidt - that the claim? of D5) does not at all refer to the
uniformities (u-)-e occuring in T. In fact, as long as we choose

J&J LT
exactly one member from each I. there is no possibility of using
some U: €U(. in formulating the claim?. The component (W)
assigned to”the theory (c.f. D4) thus seems redundant. But I think
that the intuition of adding these uniformities is sound: there is
something like degrees of similarity between different 'sets of
data' obtained by measuring the same system several times, and
these similarities are relevant and highly important for connec-
ting theory with experiments. The inadequacy of D5S) - as revealed
by its neglecting the W. - is this. We have oversimplified the
claim by choosing exactiy one member from each I.. If the indices
in J are to denote concrete physical systems theh of course there
is the possibility of measuring one such system j at several times
and thus obtaining several members of I. to be regarded in the em-
pirical claim. And only in this case do we have the opportunity of
investigating those different members of I. with regard to their
respective similarities. Such similarities, once established
quantitatively, form a kind of standard with which new measure-
ments or measurements of similar systems are compared. Such pro-
cedures are the basic - and, I think, even the only - means to
obtain and explicate something like confirmation of a theory. If
we allow for more than one member of each I; to be considered in
the empirical claim we arrive at the following.

D6 If T = <MP,M,M > is a theory in the sense

y I, (TL) Lo (UL
j=ie] ( J)JEJ (v{J)JeJ
of D4) then

a) the empirical claim of T with precisicn (Uj)

J€EJ
(Uj euj for all j € J) is that

33X (XE€E T Pot (I,)Ap (X)Sr (M)AVIET (¥ () #BA BE(F) xH(F))=U,))
JET J
b) the vague empirical claim of T is that for each j € J there
is exactly one Uy Ellj such that
IXGE T Pot (1) A0 (eI (M) AVIET (X (3) A4A (B (3) XX(3))<U,))
j€T
According to D6-a) for every concrete system j € J there are some
members of I. (at least one, since ¥(j) # 4) which can be extended
to models ané which are similar to each other with degree Uj.
D6-b) makes sense only in view of our use of weak uniform spaces.
For with full uniform spaces W: a claim of this form would al-

ways be true. Existential quantification over the Uj becomes non-
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trivial only if the U. are obtained by 'cutting off' full unifor-
mities on I, X I. at some place 'in the direction of dissimilari-
ty'. We then can imagine one or several 'greatest' degrees of
similarity in?lj which already are 'fine' enough to express real,
non-trivial similarities.

To sum up this section we can say that the kind of vagueness
of empirical claims discussed here is due to a statistical
character of the world. Every measurement reveals a slightly
different object which is measured. So it is misleading to say one
has measured one object and obtained different results because of
'disturbances' or what ever. It is more adequate to say that by
repeated (eventually sharp) measurement one has acquired informa-
tion about a multiplicity of slightly different objects. This kind
of vagueness has to be considered as a component of empirical
theories because it affects the empirical claim in a straightfor-
ward way. It corresponds to Ludwig's 'unscharfen Abbildungsprinzi-
pien' and to Moulines' uniformities on the non-theoretical level.
My proposal to take the content of 'vagueness a multiplicity'
seriously is to consider a new kind of empirical claim which is
just an extended Ramsey-sentence.

III. VAGUENESS AND IDEALIZATION

A second kind of vagueness comes up by the observation that
our theories and theoretical pictures are 'idealizations', whereas
the world is not idealized, i.e. 'real'. In an empirical claim
these two things have to be put together. But they are of diffe-
rent nature and so how can we manage to bring them together? Since
both parts do not precisely fit with each other, some room for
vagueness seems necessary.

In Sneed's theory concept this problem does not exist at
first glance. For intended applications, which represent 'the
world' in the empirical claim already have an 'ideal' mathematical
structure, namely that of partial potential models. In case of CPM,
for instance, partial potential models are entities <P,T,s> which
contain a continuous position function s. So the entities to be
combined in the empirical claim, namely I and M, are of the same
idealized nature. But this answer clearly is not satisfactory. The
problem is still present in the connection between I and the world.

The contrast between idealized pictures and real world is
clearly present in the relation between intended applications and
concrete physical systems. The kind of vagueness we are thinking
of is therefore implicit in the problem of how intended applica-
tions are determined (by means of measurement). For theories whose
partial potential models contain quantitative components this
amounts to the gquestion: Can the set of possible outcomes of our
measuring instruments include the set of all real members?

Clearly the answer is: No. The number of distinguishable outcomes
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is usually rather small. This certainly does not put us in a posi-
tion to read off the function values of a continous quantity for
all its arguments from the real system. The question then is how
to bridge the gap between our crude 'observational data' read off
from measuring instruments and the idealized continuous quantities
occurring in the theory.

Before continuing here it seems helpful to see how this
question is related to the kind of vagueness discussed in Sec. II.
There we have presupposed that 'by means of measurement' we some-
how arrive at sharp values. This assumption seems to be false in
the light of the present considerations. But this does not detract
from the results of Sec. II, for what has been said there does not
depend on whether our theories are idealized. The basic feature of
'vagueness as multiplicity' is present also in cases of non-ideal
theoretical pictures. So it seems that 'vagueness as multiplicity'
is independent from 'vagueness induced by idealization' (if some-
thing like that exists). Whether the opposite also is true depends
on what we can make out of the latter kind of vagueness. In any
case the discussion of this section does not affect the results of
Sec. II. Even if we find it difficult to understand how we can
arrive at 'sharp' results from 'coarse' data, this is no reason
to attack 'vagueness as multiplicity'. For as long as we have our
idealized theories, and no better ones, we shall want to work with
these and somehow to bridge the gap, even if we do not quite
understand how. And as soon as we have such a bridge 'vagueness as
multiplicity' becomes relevant.

To come back to the question whether we need some formal re-
presentation of the vagueness arising because of the gap between
real world and idealized theories, let us consider the proposals
to bridge this gap. A first proposal which treats intended appli-
cations in the form of atomic obvervational propositions is to
substitute propositions of the form 'f(x) = a' by
'a - € < £(x) < a + ¢' where f is a physical quantity having real
numbers as values. This account seems to be very natural and in
fact has been proposed by different authors, e.g. Ludwig [7] and
Wojcicki [16]. It is natural because it reflects physical prac-
tice: whenever in reading off some value from an instrument we
stop at a certain decimal we have done something like introducing
such an interval in which the 'real' value has to lie.

Even if this proposal is satisfactory to some extent as a
description of practice it does not yield a better, in the sense
of 'more precise' unterstanding of how we bridge the gap between
reality and theory. On the one hand observational results of the
form 'a - € < £(x) < a + €' still are 'sharp' in the sense that
they contain special real numbers, namely o -~ € and o + €. These
numbers are not given by experience, they rather are chosen
according to some pragmatic standard we usually are not able to
make explicit. But why not use similar standards to fix a unique
value o thus obtaining propositions of the original form
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'f(x) = a'? The only difference between these two versions is that
the 'interval'-version contains an explicit hint that the obser-
vational proposition contains some conventional component, namely
in the choice of ¢; while the original version tends to make us
forget this fact. From a formal point of view I see no reason to
say that the 'interval'-version is 'nearer to reality' than its
alternative.

On the other hand the question arises how to formulate an
empirical claim with intended applications using such 'interval-
statements'. It has been proposed to consider a physical theory as
‘useful' if the observational sentences added to the axioms of the
theory do not lead to contradictions [7]. In terms of set theore-
tic structures this amounts to a rather weak Ramsey-claim, namely
that it is possible to 'fill in', first, the gaps between the
finitely many observational propositions in order to obtain con-
tinuous functions, and, second, to add theoretical components in
order to obtain full models. If we regard intended applications as
full partial structures then an analogue to such a claim could be
formulated as follows. We first smear the set of originally given
sharp intended applications by introducing some uniformity at the
non-theoretical level. But of course we cannot choose I as the
basic set of the uniform space for we want to have included sy-
stems similar to, but different from intended applications. There-
fore we have to choose a set of structures containing I as the
basic set of the uniform space. A natural candidate for this is
the class of all partial potential models, . By introducing a
uniformity on we can formulate a claim of the following form.
For each intendeg applicaiton x € I there exists a partial poten-
tial model x' in some neighbourhood U of x such that x' can be
extended by theoretical components to a model. More formally:

IX(VxE€Ix'EX (<x,x ' >EU) AXCr (M))

where U is a fixed degree of similarity of the uniformity imposed
on . This claim can be reformulated as follows. We denote by U,
the neighbourhood of x induced by U, i.e, Uy = {x'/<x,x'>€U}. Then
the above formula is equivalent to

IX(XE T U_Ap (X)Sr(M))
x€x ¥
There is an analogy between such a claim and propositions of the
form 'a - e < f(x) < o + €': I corresponds to the sharp o and U
to €.

But if we compare this approach with that of D5) we see that
there is not much difference, at least formally. In fact, it just
amounts to the possibility we already mentioned in the discussion
of D5). The only difference is that in D5) the basic set of the
uniform space is given by I where I is different from , while
here we have no clear idea how to choose this basic set (hence the
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idea to take all of Mpp)- But the disadvantage of this technical
formulation has already been pointed out: it suggests that there
is something like sharp, real intended applications. We see no
argument for such a thing to exist and therefore no argument to
prefer such a formulation to the more neutral one of D5).

So the proposal to go over to 'smeared' intended applications
in order to bridge the gap between reality and theory, as far as
it formally enters into the theory concept by imposing a uniformi-
ty on the intended applications, adds nothing to D5) and thus is
redundant. The mechanism of choosing a special € or a special U of
some uniformity at present is not theoretically understood and our
understanding is not much improved by pointing out that we choose
some such € or U. I do not feel convinced that this formal treat-
ment gives insight into the mechanism.

A second proposal is due to Suppes [15]. But his work con-
tains more of a program than a clear picture of how things are.
Although I think that a theoretical understanding in fact can be
achieved in the direction Suppes indicates, I have nothing to add
at the moment.

We will have to live at the moment with the fact that we do
not really know how 'observations' can be brought together with
theories. Of course it is possible to develop theoretical pictures
of such a mechanism but, I think it would be more efficient to
study in detail some concrete examples first. Let me note that
here we have another example of the 'openess' of Sneed's theory
concept. In order to understand or to develop a theoretical pic-
ture of how 'data' come into contact with theories, we do not need
to change the theory concept at all. For such a theoretical pic-
ture can be developed by means of putting together theories of the
form of D2) (or D4)) in special ways. A special relation between
theories (in the sense of D2)) which seems to be relevant here is
'theoretization' as introduced in [1] and [3]. But perhaps we need
further relations not yet investigated.

Let me close with a more philosophical aspect of this problem.
One clear feature of idealization is that some idealized theories
contain an 'induction along space' in both directions: towards in-
finitly big and small areas. This is true for all theories con-
taining Euclidean geometry or the real numbers ('containing' here
in the logical sense). The axioms of such theories have been con-
firmed with objects of a certain size. But the way these theories
are axiomatized induces their models to be infinite and to be in-
finitely fine (continuous). The use of such models implicitly
assumes that things in certain respects behave independently of their
size. And to a certain extent this assumption is justified by a form
of induction. We assume that in realms in which we do not yet have
experience, the world is like in that area we know. But of course
such an assumption can be, and in fact has been, questioned. Today
we do not believe in that induction. So one way to bridge the gap
between data and theories, at least with respect to this special
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type of idealization, would be to adjust our theories. One could
try to eliminate such idealizing assumptions as far as possible
and thus obtain theories whose basic terms can already be inter-
preted as 'real' objects in some specified domain. H.-J. Schmidt's
contribution to this volume is one step in that direction. But
such modification of physical theories is physics and does not be-
long to philosophy of science.
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