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Basic Concepts and New Methods of 
Time Series Analysis in 

Historical Social Research 

Winfried Stier* 

Abstract: The main purpose of this lecture is the presenta­
tion of important concepts and tools of time series analysis 
in a nontechnical way. Therefore only elementary mathe­
matical operations will be used. Proofs and a lot of details 
are ommitted completely. In a first part »Time Series Mo­
dels« fundamentals and modelling of time series are dis­
cussed. The second part »Filtering of lime Series« is dedi­
cated to filter-problems in time series analysis. The two 
parts are independent of each other. 

TIME SERIES MODELS 

I. Fundamentals 

1. Introduction 

A time series is a set of time-ordered observations of a process. Each 
observation should be an interval level measurement of the process and 
the time separating successive observations should be constant. Thus, by 
this definition, a time series is a discrete data set. For example, Figure 1 
shows the plotted time series »Gross Fixed Capital Formation in the Uni­
ted Kingdom 1830-1979«, an annual series. In practice we can observe 
quarterly, monthly, weekly and even daily time series (like stock prices). 

2. Some Objectives of Time Series Analysis 

The social scientist is interested in making inferences about the process 
underlying a given time series. This implies that we consider a given time 

* Address all communications to: Winfried Stier, Hochschule St. Gallen, Bodanstr. 
6, CH - 9000 St. Gallen, Switzerland. 
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series as a realization of an unknown process. If we succeed in identifying 
this unknown process, we can hope to »predict the future« of a social 
process. Furthermore, if we consider not only one time series but several 
series (a so-called »multivariate« instead of an »univariate« approach), we 
can hope to analyze dependencies between different social processes. This 
possibility seems to be especially promising for historical research. 

Both in the univariate and in the multivariate approach an identifica­
tion of the unknown underlying process is only possible if we succeed in 
»modelling« properly a given time series. For this to achieve, it is neces­
sary to know some basic facts about stochastic processes which will be 
presented in the following. 

II. Modelling of Time Series 

1. Stochastic Processes 

Simply spoken, a stochastic process is a sequence of random variables 
which are in general dependent (or correlated). In the special case where 
the random variables are uncorrelated, the process is called a »whitenoi-
se«process. For such a process, the realization at a certain time point t i 
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bears no informations about the next realization in t j + 1. Such a process is 
unpredictable. In general however, the correlation-structure of a stochastic 
process can be used for prediction. 

Now, there are different types of stochastic processes. An important 
class of processes are the so-called »stationary« processes. They can be 
characterized by the fact that their mean and variance are constant for all 
time points. Besides that their correlation-structure is »homogeneous«, 
which means that the correlation of two variables at different time points 
does only depend on the length of the time-interval between the two time-
points but not on the location of the two time-points on the time scale. 

For »nonstationary«-processes one of these properties does not hold. As 
we mentioned above, we will consider a given time series as a realization 
of a stochastic process. The series of Figure 1 can certainly not considered 
to be a realization of a stationary process, since obviously both the mean 
and variance are not constant over time. This series contains a »trend«. 

However, with the series plotted in Figure 2 we would have no problems 
to consider it as a realization of a stationary process. 

There are certain »basic« stationary processes which prove to be very 
useful tools in building complex processes. There are the »autoregressive«-
and the »movingaverage«processes. The simplest autoregressive process 
is given by the equation 

(1) 

where u t denotes a white-noise-process. In order to be stationary the 
parameter a has to be smaller than one in absolute value. This process is 
called an autoregressive process of order 1 (in short: AR(1)). In general, an 
autoregressive process of order p (AR(p)) is given by 

(2) 

The parameters have to obey certain conditions to guarantee 
the stationarity of AR(p). They cannot be mentioned here. 
The simplest moving-average-process is defined by the equation 

( 3 ) 

This process is called a moving-average-process of order 1 (in short: 
MA(1)). An MA(l)process is stationary for arbitrary values of the para-
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meter 
In general, a moving-average process of order q (MA(q)) is given by 

(4) 

If we would try to modelling a series by using either an AR- or a MA-
process we frequently would see that the required order for a »good« mo­
del would be very high. This, however, would be an unsatisfactory state of 
affairs, since the precision of the estimation of the unknown parameters 
depends (given a limited set of data) on the number of parameters to be 
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estimated. Therefore, we should look for models which contain as less 
parameters as possible. This is called the »principle of parsimony«. Now, it 
can be shown that a good strategy to realize this principle consists in com­
bining the two »pure« approaches which leads to the so-called AR-
MA(p,q)processes: 

(5) > 

In practise, in many cases the orders p _<_ 2, q <_ 2 prove to be sufficient. 

2. ARIMA Processes 

Since practical time series frequently cannot considered to be realiza­
tions of stationary processes, it seems to be a poor strategy to use stationary 
ARMA(p,q)processes as modelling tools. Fortunately, there exists a sim­
ple device which transforms non-stationary series to stationarity - at least 
for most series encountering in practise. This transformation consists in 
differencing a series. The first difference is defined by 

(6) 

If Y t should not be stationary, we could try a second difference 

(7) 

and so on. In most cases no higher than second differences are necessary to 
achieve stationarity. 

If we are able to model a series after differencing we call this an ARI 
MA(p,d,q)-process, where d = 1, 2, ... denotes the degree of differencing. 

Now the modelling of a time series by an ARIMA(p,d,q)-process in 
general requires the following three steps: 

1) Identification of the process-type (what are the proper values for p, d, 
q? 

2) Estimation of the unknown parameters. 
3) Diagnostic checking of the residuals. 

In step 1) the order of the process has to be determined. This is a relatively 
complicated and delicate matter which is solved mainly by using and in­
terpreting different (estimated) correlation-functions. Details cannot be 
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discussed here. Until recently, a lot of practical experience was necessary 
to do a good identification-job. But fortunately, more and more software is 
now available with an automatic identification-procedure. In step 2) the 
unknown parameters of the model proposed in step 1) are estimated. This 
requires complicated numerical procedures which, however, need not bo­
ther the model-builder, since they work fully automatically in all available 
software. The final step 3) checks the adequacy of a proposed model by 
analyzing the residuals which are defined as difference between the given 
series and the series predicted by the identified model. Necessary for ade­
quacy of a model is that the residuals can be considered as a realization of 
a white-noise process. There exists different statistics for testing this hy­
pothesis which cannot be considered here. If a model passes step 3) then it 
can be used for instance for forecasting. If not, then one would have to go 
back to step 1) again and try a different (hopefully better) modelspecifi 
cation. So it might be necessary to iterate the three steps. For details the 
interested reader is referred to (1) and (2). 

If we try to model the time series of Figure 1 we find as the best model 
the ARIMA(0, 1, 4)- or IMA(1, 4)process: 

(8) 

Figure 3 shows the »long wave« which is hidden in this series. (The ex­
traction of this signal using digital filters is discussed in Part Two »Filtering 
of Time Series«). 

The best model here is the ARIMA(2,0,1> or ARMA(2,l)process: 

(9) 

We can use this process for forecasting. The forecasting-equations in this 
case are 

3. Some Practical Results 

and 

8 

Historical Social Research, Vol. 14 — 1989 — No. 1, 3-24



where X t (m) denotes the forecasted value for the lead time m. 
In the next table we find both the forecasted values for 1980, 1981, 

1985 and the »true« values for these years. The latter ones are the result of 
updating the original series »Gross fixed Capital Format ions 

Table 1 

Year Forecasted »True« 
Values Values 

1980 -12.4 -9.0 
1981 -13.0 -11.5 
1982 -13.0 -13.2 
1983 -12.2 -13.9 
1984 -10.9 -13.6 
1985 -9.0 -12.4 

Comparing the forecasted values with the »true« ones, it is seen that 
they show the correct tendency: there is a »turning-point« (where the 
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downswing stops) both in the »true« data and in the forecastings. The 
latter date this point one year too early, however. Besides that, the minima 
are very close together in value. 

4. Multivariate ARIMA Processes 

As mentioned already in the beginning, it is also possible to modelling 
more than one series simultaneously. Here, one series can be considered to 
be dependent on n independent series, say: 

(11) 

where N t is an ARIMA-noise component. Such models are also known as 
»transfer-function« models. It seems to be evident that such an approach 
should be especially promising for analyzing dependencies of historical 
series. Because of lack of space it is not possible to give even a short 
introduction into this field. 

FILTERING OF TIME SERIES 

1. Introduction 

Filter-methods may be very important in investigating historical phe­
nomena. For instance, the search for »long swings« is a famous and well-
known subject which keeps busy historians and economists since more 
than fifty years and in which an extensive use of filters is made. Although 
the purpose of my lecture is not the discussion of the existence (or non­
existence) of »long swings«, I would like to start with a problem which is 
also important in the context of »long swings« and which gives a good 
illustration of why filtering is necessary and what are the main differences 
between traditional and modern approaches in this field. 

For the sake of clarity I shall use firstly a simulated time series. Let us 
suppose, we generate a time series in the following manner. The series is 
supposed to be additively composed of three components (see Figure 4): 

(12) 
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that is 

Let us further suppose that the time index t means years, so that our time 
series comprises 200 years, a time span not unusual for historical time 
series. Of course, the first component is the so-called long-term or secular 
trend which gives us the direction of the general development of the series 
in the long range. The second component (C t) is a cyclical one which 
evolves with exact regularity with a period of about 33 years. Finally, the 
third component (R t) is of a different nature than the other ones. It is a 
so-called random-component, that means, this component does not follow 
any regular pattern whatsoever. Its behaviour is unpredictable. This cha­
racterization involves that R t contains no useful information for the hi­
storian. Therefore, Rt is »white-noise«. We assume for Rt a normal distri­
bution with zero expectation and unit variance for all time-points. The 
following graph shows the series X t and the components T t and C t. 

Now, let us forget that we know the components of the time series and 
let us consider Xt to be a real time series. If Xt is a real series, we might be 
interested in the following questions: 
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- Does Xt contain a cyclical component and if yes, how regularly does it 
evolve in time? 
How does the trend develop in time? 

Obviously, the first question seems to be the more difficult one: we have to 
extract a signal - namely the cyclical component C t - which is contami­
nated by a second signal and by 'noise'. Of course, in our simple example, 
the trend is the more disturbing fact. This might be different in a different 
series. Now, how could we find out, if the series Xt contains a cyclical 
component at all? 

The first and easiest method would be a simple visual inspection of the 
given series. In our example it is not hard to see that the series does indeed 
contain a cyclical component whose pattern is obviously very regular at 
least until t = 90. After that time point the pattern seems to loose its 
regularity (the maxima and minima are shifted) and the amplitude of the 
cyclical component seems to diminish. Thus we would conclude that there 
is a cyclical component which however is not stable in the whole series and 
which disappears towards the end of the series. Of course, this conclusion 
would be wrong as we know. 

It is obvious that the trend makes the visual method an insufficient one. 
We see also that the random-component is not a severe problem here, since 
the variance of that component is always the same for all time-points, so 
the cyclical component is disturbed to the same degree for all time points. 
Of course, this may be quite different in real time series. Our simple exam­
ple shows, that we have to eliminate the trend-component in any case 
before we can hope to identify a cyclical component. This example gives us 
a good opportunity to discuss some traditional and some newer approaches 
in time series analysis. 

2. Traditional Filter-Methods 

What are the procedures usually and traditionally used in trend-elimi­
nating? 

Let us begin with the so-called 'method of least-squares'. The basic idea 
is the assumption that the trend follows a simple function of time such as 

(13) T t = a + bt 

or 

T t = a + bt + ct 2 

or in general 
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whose coefficients are unknown. According to the 'leastsquares'-principle, 
they are estimated in such a way that the differences between the values of 
the time series and the trend-values - squared and summed over all time-
points - take a minimum. In the simplest case of a linear trend we mini­
mize therefore the expression 

with respect to a and where the 'hats' denote least-squares estimates. 
This approach is also called a 'regression'. After having estimated the 
trend-coefficients, a subtraction of the estimated trend from the given se­
ries results in a detrended series. 

This brief nontechnical outline of least-squares shows us the crucial 
points of this method. Obviously, the most delicate point is the choice of 
the 'correct' trend-function. What degree is to be chosen? Is a linear func­
tion sufficient or should a higher degree be chosen? It is clear that an 
incorrect choice of the functional form - a misspecification - has severe 
consequences on the resulting detrended series. For instance, if we would 
choose a quadratic function instead of a cubic one, the detrended series 
would never be similar to a regular sinusoid with constant amplitude. Un­
fortunately, in general, we have no solid arguments which would allow us 
to prefer a special functional form for the trend in real time series. Neither 
economic theory nor history will give us reliable hints. So our choice will 
be more or less arbitrarily. This holds also of course for further results 
which depend on the detrended series. It shall be mentioned here that 
there exist special methods in time series analysis which may be useful in 
determining the 'adequate' degree of a trend-polynomial. However, they 
depend on certain assumptions which may not be fulfilled in reality. May­
be the most familiar is the so-called 'VariateDifferenceMethod'. It de­
pends on a simple fact: 

Let f(t) be a polynomial of degree n. Then the difference 

(14) 

is a polynomial of degree not higher that n - 1. For instance, let 
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Then 

and 

that is, the n-th difference is a constant. This gives us a practical procedure 
for determining the degree of a polynomial: by differencing a series suc­
cessively we finally get a series of constants. The number of differences we 
need until we get constants is the degree of the trend-polynomial. If the 
series contains a noise-component we will not get exactly a series of con­
stants, but a series which oscillates around zero. There exists significance-
tests which are useful to decide if the differenced series can be considered 
indeed as a pure noise-process. Details are not important here. 

However, this method depends on the assumption that a series does not 
contain a cyclical component. If a cyclical component is present, we can 
difference as often as we like, we never will get a constant or random-
series. For instance, let us consider the cyclical component in our simula­
ted series after differencing once: 

(15) 

If we perform more differences, the differenced cyclical component be­
comes a very complicated trigonometric expression which is not equal to a 
constant. So in our simulated series, the third difference is not a constant 
(or oscillating randomly around zero if we include the noise-component) 
although the trend is in fact a polynomial of the third degree. Thus, this 
method is of restricted value only. Further problems of the variate dif 
ferencemethod cannot be discussed here. 

Let us consider some more details and problems of least-squares. Ob­
viously, a further crucial point is the validity of the basic time series mo­
del, that is the additivity of the components. A subtraction of the estimated 
trend makes only sense when the postulated additivity holds. But the com-
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ponents might just as well be combined in a multiplicative manner. Or a 
mixed model might be adequate. Since there are no dead-sure methods to 
discriminate between the different approaches, a further source of possible 
specification-errors has to be taken into account. 

There exist some more problems with the least-squares-approach which 
shall not be discussed here. 

The second approach used in time series analysis for estimating a trend 
are the so-called 'moving-averages'. A moving-average is defined by: 

where 2q + 1 denotes the length of the average and N the length of the time 
series. In general, it is preferable to choose an average of odd length, be­
cause the averaged values can be assigned exactly to the given time points. 
With even length they would have to be assigned between time points. 

The above formula shows that by the averaging-procedure q values are 
lost at both ends of the series. For example, if the filter-length is 7, then we 
would loose 3 values at each end of the series. Figure 5 shows a series 
where the trend is estimated by a 7-term and by a 13-term moving-average. 
Obviously, the longer the moving-average is the smoother a trend results. 
Since moving-averages have smoothingproperties, they are often called 
»smoothers«. 

One of the problems with moving-averages is the question: how many 
terms should be included? As our example shows, this is indeed a crucial 
problem, since the smoothness of the resulting trend depends on this de­
cision and of course the pattern of the detrended series also. This problem 
is of the same importance as the choice of the degree of the polynomial in 
the least-squares-approach. However, 1 would like to defer the discussion 
of this point until some more aspects of time series analysis are exposed. 

Moving-averages as introduced above can be considered as special fil­
ters. A linear filter can simply be described as a transformation of a time 
series according to 
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with 

X t: = filter-input (given time series) 

Y t: = filter-output (filtered series) 

a s: = filter-weights. 

Obviously, in the case of our moving-averages we have 

that is, they are filters with constant coefficients and they are symmetrical. 
This last property implies that there is no phase-shift between filter-input 
and filter-output. In a nonsymmetrical filter or moving-average there is a 
phase-shift, which means that the filter-output is delayed against the given 
time series. This might be an undesirable feature of a filter. 

Filters are important tools of modern time series analysis. Before we 
enter into a discussion of these concepts, I would like to make some final 
comments on the traditional approaches. Moving averages seem to be 
more flexible than least-squares. The assumption that a trend, for example, 
evolves according to one and the same function for all time-points seems 
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to be a very rigid one, especially when the series is very long. Fortunately, 
least-squares-approaches can be modified in a way which makes them as 
flexible as moving averages. The modification is based on the assumption 
that the polynomial chosen does not hold for the complete series, but only 
for relatively small time-intervals. These intervals are overlapping and 
moving over the series. Therefore, this modification is called 'moving 
regression'. For an example, let us assume that a polynomial of the second 
degree is to be fitted to the first five values of a series by least squares. 
Then the coefficients of the polynomial are determined by minimizing the 
expression: 

As solution we get for the first trend value at t = 3 

or in general: 

The filter-weights are (-3/35, 12/35, 17/35, 12/35, -3/35 ). Note that they 
sum to unity. The first case with equal weights results by fitting a linear 
function. 

Although least-squares can be made more flexible by using moving 
regressions, the basic problem, namely the choice of the functional form, 
remains the same. Additionally, there is the problem of the length of the 
moving regression. This is the price to be paid for the higher flexibility. 

3. Newer Filter-Methods 

The modern approaches to be discussed here are methods which are 
based on filter-theory. We have learned already that moving-averages can 
also be considered as filters, although more elementary ones. Modern 
filter-theory can be characterized by the fact that no ad-hoc-solutions (like 
simple moving averages) are accepted, but filters are designed in such a 
way, that they accomplish prespecified criteria. These criteria are chosen 
according to the problems to be solved or the aims of the analysis. 
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A characteristic feature of modern filter-theory is the fact that filter-
design can be made in the frequency-domain and not only in the time 
domain. This possibility offers a lot of advantages which will become evi­
dent when we consider details and examples. [See (4) and (5)]. 

The transition from the time domain to the frequency domain is done 
by mathematical operations which are known as Fourier transforms. How­
ever, I do not want to enter into this relatively complicated matter. Rather, 
I prefer to explain the essentials in a nontechnical way. 

The thinking in frequencies seems to be complicated and unfamiliar. 
However, it is easily to understand, if we look at well-understood concepts 
in a way which is a little bit different than we might be used to it. 

Let us begin with a monthly economic time series. Very often, economic 
series show a seasonal pattern, for example, the series of unemployment. 
The seasonal component of a series can roughly be characterized by its 
'periodic' nature: it repeats every twelve months. Of course, the seasonal 
pattern is almost never of an exact regularity in reality, since the ampli­
tude of the seasonal component is usually changing more or less. There­
fore, we should characterize a seasonal component as a 'quasi-periodic' 
movement with a period of twelve months. 

Now, instead of saying: 'the period of the seasonal component is 12 
months' we might just as well say: 'in a time unit (which is a month here) 
1/12 of the seasonal component has passed'. Or shorter: 'the frequency of 
the seasonal component is 1/12'. Next, let us consider the trend of a series. 
The trend can be characterized by the fact that it is a component which 
never repeats itself. That is, its periodicity is infinite or its frequency is 
zero. Frequencies which are between zero and 1/12 are called 'low fre­
quencies' and frequencies beyond 1/12 are called 'high frequencies' (in 
monthly series). 

Visually, low-frequency components correspond to smooth and slow 
movements in the time domain, whereas high-frequency components cor­
respond to rough and fast movements in the time domain. 

Instead of considering only two frequencies we might ask if a series 
contains maybe some more frequencies. Now, it may be proven mathe­
matically, that there are in fact an infinity of frequencies. More exactly, it 
can be shown that a series in generally can be considered as being com­
posed of a continuum of frequencies. The lowest frequency is zero and the 
highest is 0.5 (with discrete series). 

If we design a filter in the frequency domain, we have the possibility to 
eliminate or preserve frequencies according to the aims of our analysis. 
For instance, if a series is to be detrended, the filter has to eliminate the 
zero-frequency. All other frequencies have to be preserved. A filter of this 
kind is called a high pass filter. If the trend is to be estimated, all low 
frequencies below the seasonal frequency should be left unaltered, whereas 
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the high frequencies should be eliminated. Such a filter is called a low-pass 
filter. 

The behaviour of a filter in the frequency-domain can be described 
completely by a function which is usually called 'transfer junction. This 
function gives us two informations: the first one shows us, if and how 
certain frequencies or frequency-bands are attenuated resp. eliminated or 
amplified. The second one shows, if there is a phase-shift between filter-
input and filter-output. The transfer function of a filter is a complex va­
lued function in general. Its absolute value gives us the first information. 
Therefore, this function is called the 'amplitude-function' of a filter. 

Now, let us return to our problem of detrending a time series. As 
mentioned before, for solving this problem, a high-pass filter is needed. 
The amplitude function of such a filter has the shape shown in Figure 6. 

A filter with such an amplitude function eliminates practically only the 
zero-frequency and leaves untouched all other frequencies. 

If th is amplitude function is to be realized, how can we find the corre-
sponding filter-equation? The solution of this problem is indeed difficult. 
It is not possible to discuss it here in detail. Only results can be given. It 
can be shown that the realization requires a set of three filter equations: 

(17) 
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The filter-output of the first filter (Y t

( 1 ) ) is the filter-input of the second 
filter and its output (Y t

( 2 ) ) is the input of the third filter. Y t

( 3 ) finally, is the 
detrended series. The next diagram illustrates the complete filtering-pro­
cess: 

Fig. 7 

The cyclical component is a superposition of three sinusoids with the per­
iods 60, 40 and 20 time units (or with the frequencies 1/60, 1/40 and 1/20). 
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For the sake of simplicity, the series does not contain a random compo­
nent. Figure 7 shows the series and the result of the detrending. 

Obviously, C t and the detrended series differ only marginally. Note, that 
no assumption has to be made about the functional form of the trend 
whatsoever. 

Now, let us consider some real series (see Figures 8, 9 and 10). The series 
are English series relating to the production of consumption goods, invest­
ment goods and the production on tin. [See (3)J. Fortunately, the filter-
design approach discussed above does not exhaust all possibilities of mo­
dern filter design. For certain types of filters like low-pass or band-pass-
filters (which are very important in practice), such a design may have the 
drawback of a remarkable phase-shift which may be disturbing in analy­
zing certain problems. 

This phase-shift can be avoided if we use a different approach. Its es­
sential feature is the fact that filtering is done in the frequency-domain 
and not in the time-domain as in the first approach. This can be achieved 
by a transformation of the data into the frequency-domain which can be 
done by using a so-called »Discrete-Fourier-Transform , (DFT). I shall not 
discuss details here [See (5)]. Rather, let us finally consider an example. For 
illustration we use the series Turnover of Rye in Cologne 1531 -1659'. For 
estimating the trend a low-pass filter was chosen which preserves all os­
cillations with a period longer than 60 years. To estimate a trend-free se­
ries, a high-pass filter was used which is complementary to the low-pass. 
Finally, for analyzing any possible long cycles, a bandpass filter was taken 
which preserves all cycles between 20 and 60 years. The amplitude func­
tions of these filters are shown in Figure 11. The series and the results of 
the filtering are shown in Figure 12. 
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