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Design Effects:
Model-based versus Design-based Approach

Der Designeffekt gewinnt in multinationalen Stichprobenerhebungen wie dem European Social Survey (ESS) zunehmend 
an Bedeutung. Im Rahmen einer eine ex ante Harmonisierung des effektiven Stichprobenumfangs kommen einerseits 
modellbasierte Verfahren zur Prognose eines erwarteten Designeffekts zum Einsatz. Bei der ex post Schätzung des 
Designeffekts bieten sich zudem auch designbasierte Verfahren an. Die vorliegende Arbeit stellt den design- und 
modellbasierten Schätzansatz gegenüber und bewertet deren Güte und Eignung im praktischen Einsatz. Diese Bewer-
tung erfolgt zum einen auf Basis einer umfassenden Monte-Carlo Simulationsstudie, zum anderen werden Daten aus 
dem ESS benutzt.

The design effect is receiving increased attention in multi-national sample survey projects like the European Social 
Survey (ESS). On the one hand, model-based methods are applied for the prediction of expected design effects in order 
to ex ante harmonize the effective sample size of different samples. On the other hand, also design-based estimators 
can be used for the ex post estimation of design effects from sample data. This thesis compares the design-based and 
the model-based approach to design effects and evaluates their quality and applicability in real-world situations. This 
evaluation is based on a large-scale Monte-Carlo simulation study and on data from selected countries of the ESS.

Matthias Ganninger





Design Effects: Model-based versus Design-based Approach



GESIS-Schriftenreihe
herausgegeben von GESIS – Leibniz-Institut für Sozialwissenschaften

Band 3

Matthias Ganninger

Design Effects:  
Model-based versus Design-based Approach

Die vorliegende Arbeit wurde vom Fachbereich IV, Wirtschafts- und Sozialwissenschaf-
ten, Mathematik, Informatik und Wirtschaftsinformatik der Universität Trier im Jahr 
2009 als Dissertation zur Erlangung des akademischen Grades eines Doktors der Wirt-
schafts- und Sozialwissenschaften (Dr.rer.pol.) angenommen.

Erstgutachter: Prof. Dr. Ralf Münnich
Zweitgutachter: PD Dr. Siegfried Gabler
Tag der Disputation: 3. Dezember 2009
Vorsitzender: Prof. Dr. Christian Bauer



Matthias Ganninger

Design Effects:
Model-based versus Design-based Approach

GESIS – Leibniz-Institut für Sozialwissenschaften 2010



Bibliographische Information Der Deutschen Bibliothek

Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbi-
bliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de 
abrufbar.

ISBN 978-3-86819-010-6
ISSN 1869-2869

Herausgeber, 
Druck u. Vertrieb: GESIS – Leibniz-Institut für Sozialwissenschaften
 Lennéstraße 30, 53113 Bonn, Tel.: 0228 / 22 81 -0
 info@gesis.org
 Printed in Germany

©2010  GESIS – Leibniz-Institut für Sozialwissenschaften, Bonn. Alle Rechte vorbehal-
ten. Insbesondere ist die Überführung in maschinenlesbare Form sowie das Speichern 
in Informationssystemen, auch auszugsweise, nur mit schriftlicher Einwilligung von 
GESIS gestattet.



Contents

List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

List of Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Technical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Sample Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Cluster Sampling and Multi-Stage Sampling . . . . . . . . . . . . . 25

2.1.2 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Elements of Design Effects . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Illustration and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Design Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 A Classical View on Design Effects . . . . . . . . . . . . . . . . . . . 35

3.2 Areas of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Two Approaches to Design Effects . . . . . . . . . . . . . . . . . . . 40

3.3.1 Design-based Approach to Design Effects . . . . . . . . . . . . . . . 40

3.3.1.1 Taylor Linearisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.1.2 The Jackknife Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Model-based Approach to Design Effects . . . . . . . . . . . . . . . 43

4 Measures of Homogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Overview of Estimation Methods . . . . . . . . . . . . . . . . . . . . 47

4.2 Estimators for continuous data . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 ANOVA Estimator and F-statistic based Estimators . . . . . . . . . 49

4.2.2 Estimators based on Random Effects Models . . . . . . . . . . . . . 50

4.3 Dichotomous Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Classical ANOVA Estimator . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.2 Estimators based on Moments . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Direct Estimation of Correlation Structure . . . . . . . . . . . . . . 54

4.3.4 Estimators Based on Random Effects Models . . . . . . . . . . . . . 55

5 Monte Carlo Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Generation and Structure of Universes . . . . . . . . . . . . . . . . . 59

5.1.1 Geographically Clustered Universes . . . . . . . . . . . . . . . . . . . 59

5.1.2 Universes with a Nested Structure . . . . . . . . . . . . . . . . . . . . 60

5.2 Aim and Design of the Monte Carlo Simulation Studies . . . . . . 61

5.2.1 Simulation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.3 Monte Carlo Estimation of the True Design Effect . . . . . . . . . . 63



Matthias Ganninger

5.3.1 Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.1.1 Two-Stage Cluster Sampling with equal Cluster Sizes . . . . . . . 64
5.3.1.2 Two-Stage Cluster Sampling with unequal Cluster Sizes . . . . . 67
5.3.1.3 Comparison of Two-Stage Cluster Sampling with equal and un-

equal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.3.2 Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.3.2.1 Two Stage Cluster Sampling with equal Cluster Sizes . . . . . . . 72
5.3.2.2 Two Stage Cluster Sampling with unequal Cluster Sizes . . . . . . 73
5.3.2.3 Comparison of Two-Stage Cluster Sampling with equal and un-

equal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3.3 Comparing Estimation of the Monte Carlo estimated True Design

Effect with Continuous and with Binary Data . . . . . . . . . . . . 74
5.4 Design-based Estimation of the Design Effect . . . . . . . . . . . . 75
5.4.1 Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4.1.1 Cluster Sampling with equal Cluster Sizes . . . . . . . . . . . . . . . 76
5.4.1.2 Cluster Sampling with unequal Cluster Sizes . . . . . . . . . . . . . 78
5.4.1.3 Comparison of Two-Stage Cluster Sampling with equal and un-

equal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1.4 Variance Estimation under Cluster Sampling assuming SRS . . . 80
5.4.2 Estimation of the Design Effect for the Median . . . . . . . . . . . 84
5.4.3 Dichotomous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4.3.1 Cluster Sampling with equal Cluster Sizes . . . . . . . . . . . . . . . 86
5.4.3.2 Cluster Sampling with unequal Cluster Sizes . . . . . . . . . . . . . 87
5.4.3.3 Comparison of Two-Stage Cluster Sampling with equal and un-

equal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Model-based Estimation of the Design Effect . . . . . . . . . . . . . 90
5.5.1 Estimation of ρ with Continuous Data . . . . . . . . . . . . . . . . . 91
5.5.1.1 Two-Stage Cluster Sampling with equal Cluster Sizes . . . . . . . 91
5.5.1.2 Two-Stage Cluster Sampling with unequal Cluster Sizes . . . . . 94
5.5.1.3 Comparison of Cluster Sampling with equal and unequal Cluster

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.5.2 Estimation of ρ with Binary Data . . . . . . . . . . . . . . . . . . . . 97
5.5.2.1 Two-Stage Cluster Sampling with equal Cluster Sizes . . . . . . . 97
5.5.2.2 Two-Stage Cluster Sampling with unequal Cluster Sizes . . . . . 100
5.5.2.3 Comparison of Cluster Sampling with equal and unequal Cluster

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.6 Comparison of Estimation Strategies . . . . . . . . . . . . . . . . . . 104
5.6.1 Continuous Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.1.1 Cluster Sampling with equal Cluster Sizes . . . . . . . . . . . . . . . 105
5.6.1.2 Cluster Sampling with unequal Cluster Sizes . . . . . . . . . . . . . 106
5.6.2 Binary Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.6.2.1 Cluster Sampling with equal Cluster Sizes . . . . . . . . . . . . . . . 107
5.6.2.2 Cluster Sampling with unequal Cluster Sizes . . . . . . . . . . . . . 108

6 GESIS-Series | Volume 3



Design Effects

5.7 Decomposition of Design and Interviewer Effects . . . . . . . . . . 109
5.7.1 Estimation of Intraclass Correlation with Nested Data . . . . . . . 110
5.7.1.1 Equal cluster sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.7.1.2 Unequal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7.2 Variance Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7.2.1 Equal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.7.2.2 Unequal Cluster Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.7.2.3 Comparison of Cluster Sampling with equal and unequal Cluster

Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 Estimation of Design Effects in the European Social Survey . . . . . . . . . . . 119
6.1 Aim and overall Design of the ESS . . . . . . . . . . . . . . . . . . . 119
6.2 Using the Model-based Approach to predict required sample sizes 120
6.3 Sample Designs in selected Countries . . . . . . . . . . . . . . . . . 120
6.3.1 Spain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.2 France . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.3 Poland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.4 Finland . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Estimation of Design Effects in the ESS . . . . . . . . . . . . . . . . 127
6.4.1 Estimation of ρ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.2 Design-based and Model-based Estimation of the Design Effect . 134

7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.1 Concept of Design Effects . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.2 Use in Complex Sample Surveys . . . . . . . . . . . . . . . . . . . . . 138
7.3 Estimation of Design Effects and their Components . . . . . . . . 138

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Zusammenfassung der Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Ausbildungs- und Studienverlauf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

GESIS-Series | Volume 3 7





Design Effects

List of Symbols

PSU Level – Population Quantities

M = number of PSUs in the population,

Ni = number of SSUs in the ith PSU in the population,

N =

M∑

i=1

Ni = total number of SSUs in the population

B̄ =
N

M
= mean PSU size in the population,

B̄ = Ni ,∀i if all PSUs are of the same size

t iU =

Ni∑

j=1

Yi j = population total of the ith PSU

tU =

M∑

i=1

t iU =

M∑

i=1

Ni∑

j=1

Yi j = population total
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= 1

ni−1

∑
j∈si

�
yi j − ȳi

�2
= sample variance within the ith PSU (srs on stage two)
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Design Effects

1 Introduction
The need for adequate consideration of the effects of a sample design on the preci-
sion of estimators is becoming recognized by an increasing number of sample survey
projects like TIMMS (Gonzalez and Foy, 2004), the URGE study (Campbell et al., 2000),
the Add Health study (Chantala and Tabor, 1999), population-based diarrhea preva-
lence surveys (Katz et al., 1993), general health surveys like Health-2000 (Lehtonen
et al., 2002), epidemiological studies like PAQUID (Lemeshow et al., 1998), nutrition
examination surveys (Lago et al., 1987b) or crime victimization studies (Schnell and
Kreuter, 2005) to name only a few. These studies recognize the need to take into
account the possibly negative effects of a complex sample design on estimators of
interest. They make use of a concept called design effect which can serve as a mea-
sure of variance inflation in the estimator due to a departure from simple random
sampling.

The European Social Survey (ESS) was the first general social survey to make ex-
plicit use of design effects already at the planning stage (ESS, 2005a). In this biennial,
EU-wide general social survey each participating country is responsible for its sample
to meet some pre-defined quality criteria. One of these criteria concerns the precision
of estimators: The samples of all participating countries shall yield estimators of com-
parable precision (ESS, 2005b, 1). Design effects play a crucial role in the planning of
samples which will yield estimators with these properties.

The foundations for sampling in Europe-wide surveys like the ESS are, however,
quite diverse. In some countries, like Sweden, Norway or Finland, scientific re-
searchers are allowed to draw a sample directly from population registers. In other
countries, like Portugal, Spain or Poland, access to population registers is either lim-
ited or not possible at all. With this diversity of sampling frames comes a diversity of
sample designs. Whereas in countries of the first group, a simple random sample (srs),
a stratified random sample (str) or a systematic sample (sys) of contact persons can be
drawn directly, this is not possible in the second group of countries due to the struc-
ture of the sampling frame. Often, these countries have to resort to more complex
sample designs like for example cluster or multi-stage sample designs. In a multi-
stage sample design one draws, for example, municipalities at the first stage. Then, at
the second stage, persons are drawn from a complete list of inhabitants within each
municipality. It is an empirical fact, however, that persons who are socialized within
the same social context (e.g. living in the same neighborhood or municipality), are
more similar to each other than to persons who are socialized in another social con-
text on many queried items of a general social survey like the ESS. This homogeneity
can have a negative effect on the precision of estimators.

The accuracy of an estimator calculated with data which have arisen from a simple
random sample differs from the quality of the same estimator calculated on the basis
of a cluster sample design described above, given the two samples are of the same
size. Nevertheless, all samples in the ESS have to comply with the aforementioned
quality standards in terms of the precision of estimators. The question, then, is how to
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design different samples such that these criteria are met under the practical restriction
of divergent sampling frames.

One way to ensure that the precision of an estimator is independent of the sample
design is to plan samples with an equal effective sample size. The effective sample
size is a concept which incorporates the design effect. A thorough formal definition
of the design effect follows in Chapter 3. For the time being, the design effect shall be
defined as a measure for the inflation of variance of an estimator under a given (e.g.
cluster or multi-stage) sample design compared to the variance of the same estimator
under simple random sampling. There is, however, no unique design effect for a
given sample. Design effects will vary in magnitude depending on the characteristics
of the item under study. The following example illustrates the connection between
a) a study variable, b) the definition of clusters and c) the effects of different sample
designs (Kish, 1989).

Let us thus assume a clustered population in which values of the study variable are
distributed according to Table 1. The column and row means ( ȳ•c and ȳr•, respec-
tively) are given along with the variable values.

Table 1: A clustered population

ȳr•

1 6 11 16 21 11
2 7 12 17 22 12
3 8 13 18 23 13
4 9 14 19 24 14
5 10 15 20 25 15

ȳ•c 3 8 13 18 23

From this population n= 10 elements are to be drawn by a) srs and b) cluster sampling
where clusters are either defined by columns (clu-col) or rows (clu-row) of the matrix.
Under cluster sampling all elements of two randomly selected columns or rows are
selected. Under srswr n elements are chosen randomly. In either case the sample
mean ȳ = n−1

∑n

i=1
yi is to be calculated. The means and the variances under srs,

Var(srswr)

�
ȳ
�
, under column-wise cluster sampling, Var(clu−col)

�
ȳ
�

and under row-
wise cluster sampling, Var(clu−row)

�
ȳ
�
, are given in the following table.

srswr clu-col clu-row

Mean 13.00 13.00 13.00

Variance 5.20 18.75 0.75

It can be seen that the population mean of Ȳ = 13 is estimated without bias under all
sample designs but the variances of the estimates vary dramatically. The variance of
the estimates of ȳ under srswr (5.2) shall serve as a reference. Under column-wise

cluster sampling the variance of the sample mean is 18.75 which is
Var(clu−col)( ȳ)
Var(srswr)( ȳ)

=

18.75

5.2
= 3.61 times Var(srswr)

�
ȳ
�
. If the columns selected are not exactly symmetrical

to the third column (i.e. first and fifth and second and fourth), the difference between
the sample mean and the population parameter will be very large. If columns are
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sampled, the variance of sample mean is very low
�

Var(clu−row)( ȳ)
Var(srswr)( ȳ)

= 0.75

5.2
= 0.14

�
. This

is due to the very low heterogeneity of row-wise means. Even if, in one of the worst
cases, for example the two upper rows are selected, the sample mean is 11.5 which
is closer to the population mean than in one of the corresponding worst cases of
column-wise selection (i.e. if for example the first or last two columns are selected)
where the sample mean is 5 and 20.5, respectively.

This example illustrates that cluster sampling can yield better and worse results (in
terms of precision) than srswr. The magnitude of loss or gain in precision depends
on the interrelation of the distribution of the study variable and the structure and
definition of clusters in a sample design. In most real-world sample surveys, however,
these two parameters are interrelated in a way such that precision is lost.

If design weights are constant and no additional inflation of variance is generated
through weighting, the only factor by which the variance is underestimated is due to
clustering. For sake of simplicity, the additional inflation of variance due to unequal
inclusion probabilities will be introduced later. For the time being, everything that
follows is discussed under the assumption of equal inclusion probabilities.

For a given sample and a certain item, design effects can be estimated under two
different approaches: the design-based approach to design effects is flexible in terms
of the estimators for which deff can be specified. The model-based approach has the
advantage of enabling predictions of expected design effects. The components of the
estimators of deff under either approach are, however, subject to quality issues them-
selves. Thus, the question arises which estimation approach yields the best results in
terms of bias and precision. In the following this question shall be answered for a set
of practically relevant estimators and sample designs.

To arrive at an answer, Chapter 2 will first give some basic definitions and clar-
ifications of notation and terminology. Then, Chapter 3 introduces the concept of
design effects more stringently and gives an overview of estimation techniques. In
Chapter 4, measures of homogeneity are introduced and their merits and shortcom-
ings are discussed. Since some of these measures of homogeneity are based on the
variance components of a random effects model, Chapters 7.3 and 7.3 give a basic
introduction into linear models, generalized linear models and random effect models.
In Chapter 5, a Monte Carlo simulation study investigates the behavior of estimators
of the design effect and its components. Similar investigations are conducted on the
basis of selected countries of the ESS in Chapter 6. The findings of both the Monte
Carlo study and those based on the ESS are synthesized and discussed in Chapter 7.
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2 Technical Foundations
In this chapter the technical foundations underlying the most frequently used con-
cepts of this thesis are introduced. It proceeds with a definition of the investigated
sample designs (Section 2.1). Section 2.2 defines estimators and their variance estima-
tors under study. Then, Section 2.3 gives an introduction into some of the elementary
aspects of design effects. Finally, Section 2.4 illustrates the effects of a complex
sample design on the variance of an estimator.

2.1 Sample Designs

Let U denote a universe of size N such that U1, . . . , Ui , . . . , UN are the elements of U . A
study variable is denoted by Y and has unknown population values Y1, . . . , Yi , . . . , YN .
A sample, s, is a subset of U . The set of all possible samples of size n is denoted
by S. A sample selection scheme is a mechanism which assigns a specific sample, s,
a non-zero selection probability, p(s). Generally, the function p(·) is called sample
design or sampling scheme. Sample designs which do explicitly define a function p(·)

are called probability sample designs. Sample designs which do not explicitly define
a function p(·) are called non-probability sample designs and are not considered here.

For a given sample design, each element of the population has an inclusion prob-
ability, πi , which indicates the a priori probability of the element to be selected into
the sample. The inverse of πi is called design weight and is defined as wi = π

−1
i

.
If sampling is with replacement (wr), each population element can occur more than
once in the sample since it becomes a member of U again once it has been selected.
If an element of the population does not have a chance of occurring in the sample
more than once, the sample design is without replacement (wor). The study variable,
Y , is surveyed at each element of the sample. Values of Y in the sample are denoted
by y1, . . . , yi , . . . , yn. The elements of s are called ultimate sampling units if y can
be surveyed directly on them. A sample survey is the combination of the realization
of a sample design and measurement of the values of at least one study variable for
elements of the sample.

A sample design is called simple random sample (srs) if all s ∈ S have the same
selection probability. A complex sample design is any probability sample design which
is not srs. Although complex sample designs suffer from significant problems, they
represent the most commonly applied sampling scheme in the social sciences and
related fields of research (Lohr, 1999, pp. 221). Their popularity is based on a number
of practical advantages associated with each design’s specific characteristics. Some of
these advantages and shortcomings are discussed in more detail in Subsections 2.1.1
and 2.1.2.

Following the delineation in Schnell et al. (1999), sample designs can further be
classified as depicted in Figure 11. Of the sample designs presented in figure 1, multi-
stage sampling, cluster sampling, disproportional stratified sampling, and combina-

1 In addition to simple random sample designs mentioned in the box at the bottom of the illustration,
systematic and πps designs also play an important role in survey sampling.
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Figure 1: Sampling Schemes; in Schnell et al. (1999, 252)

tions of these are at the focus of analysis. Deviating from Figure 1, the term cluster
sampling will be used more widely and will also refer to multi-stage sample designs
since any multi-stage sample design possesses elements of clustering at one or more
stages.

As mentioned above, these sample designs shall be referred to as belonging to the
class of complex sample designs. Sample surveys which apply any of these designs or
combinations of them are called complex sample surveys. There exist more sampling
schemes which are also referred to as complex sample designs (e.g. systematic sam-
pling, Sampford sampling, etc.). For the purpose of this thesis, however, the term will
be defined more narrowly. Put more stringently, complex sample designs differ from
srs in at least one of the following aspects: a) inclusion probabilities, b) stratification,
c) clustering.

In complex sample designs inclusion probabilities may vary – either because the
researcher intentionally plans to over-sample a specific sub-group or due to other
reasons associated with the sample design. Sample designs which cause inclusion
probabilities to vary are called unequal probability sample designs. In the following
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subsections, two important complex sample designs are introduced in more detail:
stratification on the one hand and multi-stage sampling on the other hand as these
are the most prominent and widely used design modifications. Stratification is usu-
ally applied when the sampling frame offers information on a characteristic, Z , useful
for stratification. Sensible stratification can reduce sampling error and hence increase
the precision of estimators. A multi-stage sample, on the other hand, is either drawn
because no frame of ultimate sampling units exists or because fieldwork personnel
management aims at a geographical allocation of the interviewers that minimizes
travelling between and within geographical clusters. Clustering can, however, intro-
duce a severe loss in precision of estimators.

2.1.1 Cluster Sampling and Multi-Stage Sampling

A cluster sample design (clu) is any sample design in which ultimate sample units
are not selected directly from a frame but from a sample of superordinate non-
overlapping clusters. A cluster, or primary sampling unit (PSU ), denotes a subset
of population units which belong to this subset due to some well defined specific
(known or unknown) attributes (e.g. a respondent’s address in the case of geographi-
cal clustering or the person a respondent is interviewed by if the survey is conducted
face-to-face or by telephone).

Each ultimate sample element belongs to exactly one PSU and each cluster is com-
prised of one or more ultimate sampling elements. A clustered population consists of
M PSUs, each of the same size Ni = C , i = 1, . . . , M . We shall assume there exists a
complete frame of PSUs from which a sample of m PSUs is drawn. The set of possible
samples of m of the M clusters is denoted by S and a specific sample of m PSUs is
denoted by s. The cluster sample design is defined by p(s). The inclusion probabilities
of each of the M clusters is denoted by πi with i = 1, . . . , M . The value of πi depends
on the characteristics p(s).

After s has been obtained, y is being surveyed for each of the n = m× C ultimate
sample elements (ignoring contact and non-response issues for the time being). This
sampling scheme is referred to as single-stage sampling or simply cluster sampling.
There exist, however, a wide range of variations to this most simple clustered sample
design.

Multi-stage sampling is any sample design in which ultimate sample elements are
selected through subsequent sampling on two or more superordinate stages.

In two-stage sampling (clu2 for short), for example, m of M clusters are selected
at the first stage. The set of possible samples of m primary sampling units is denoted
by S(1). A specific sample of m primary sampling units is denoted by s(1), inclusion
probabilities for each of the M PSUs are denoted by πi , i = 1, . . . , M .

At the second stage, ni secondary sampling units (SSU ) of the ith PSU of size
Ni = C are selected for i ∈ s(1). Thus, n =

∑
i∈s(1)

ni . Elements of the ith cluster are

denoted by 1, . . . , j, . . . , ni . The set of possible samples of ni from Ni SSUs in the ith
PSU is denoted by S

(2)

i
and a specific sample by s

(2)

i
.
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The inclusion probability of the jth element given the ith PSU was selected is π j|i

and the design weight for the (i, j)th element is given by wi j = π
−1
i j

. A consistent
notation is used in three- or more generally in multi-stage sampling.

Two-stage sampling is the sample design which underlies most of the empirical
analyses in chapter 5 and an important design also in the ESS (as discussed in chap-
ter 6). Figure 2 gives examples of single-stage cluster sampling (cluster sampling)
with M = 16, Ni = 16 and m = 5 and two-stage cluster sampling with m = 5 and
ni = 3.

(a) One-stage cluster sampling with m= 5 (b) Two-stage cluster sampling with m = 5

and ni = 3

Figure 2: One-stage and two-stage cluster sampling scheme

It is a widely spread believe that one of the most striking advantages of cluster sam-
pling for social surveys is that it guarantees reduced travel costs. Interviewers can
be sent to the field within closely defined geographical boundaries. Often, a primary
sampling unit is defined as a municipality or a city district making travelling from
address to address relatively inexpensive. We will later see that if the estimators
based on data of a geographically clustered sample design are estimated naively, this
assumption may hold but that it can be neglected if the effects of the sample design
are incorporated in the estimation process.

A further explanation for the wide spread use of cluster sample designs are the ad-
mission restrictions of alternative sampling frames of ultimate sample elements (e.g.
through population registers). In fact, many European countries either lack of such a
list or do not allow researchers to draw a sample from it. This is also reflected in the
sample designs used by ESS countries from which only about half are not multi-stage
designs (ESS, 2005b; Häder et al., 2007). In the ESS, the guideline for selection of
a sample design follows the recommendation of Kish (1994, 173): “Sample designs
may be chosen flexibly and there is no need for similarity of sample designs. Flex-
ibility of choice is particularly advisable for multinational comparisons, because the
foundations for samplig differ greatly between countries. All this flexibility assumes
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probability selection methods: known probabilities of selection for all population el-
ements” .

Thorough definitions of the underlying concepts can be found in the list of symbols
on page 9.

2.1.2 Stratified Sampling

In stratified sampling (str), the population of interest is divided into H non-overlapping
sub-populations or strata of size Nh,h = 1, . . . , H . The set of possible samples of nh

from Nh is denoted by Sh and a specific sample by sh. The sample design p(sh). A

sample of size nh is drawn from each of the H strata by p(sh) such that n=
H∑

h=1

nh.

Basically, there are two types of mechanism to obtain nh. First, nh can be allocated
proportionally to the population figure Nh such that nh = n×

Nh

N
. The resulting sam-

pling scheme is called proportional stratified sampling (strp). On the other hand, any
stratified sample that is not according to that allocation method is called dispropor-
tional stratified sample (strd).

Stratified samples can have a lower variance than srs. The magnitude of reduction
or increase of variance, however, depends on the degree of homogeneity of elements
within the strata and heterogeneity between strata. Thus, a well-informed choice of
stratification characteristics is essential to achieve the promising gains in efficiency
that stratification generally offers. For a more detailed overview of stratification
techniques the reader must be referred to Särndal et al. (1992, chapter 3.7), Cochran
(1977), Lehtonen and Pahkinen (2004, pp. 61) or Münnich (2003b).

2.2 Estimators

A population parameter, θ , is a function of the values of the study variable. The

population total of Y , for example, is given by tU =
M∑

i=1

Ni∑
j=1

Yi j and the population

mean is given by ȲU =
tU

N
. An estimator, θ̂ , is a function of the observed values

of the study variable. An estimate is the numeric value produced by an estimator.
An unbiased estimator has the property that its expected value equals the population
parameter, E

�
θ̂
�
= θ .

In unequal probability sampling the Horvitz-Thompson estimator (HT estimator) is
an unbiased estimator of the population total and is defined as

t̂HT =
∑

i∈s

yi

πi

=
∑

i∈s

wi yi , (2.1)

where wi = 1/πi is the design weight of the ith element (see Lohr, 1999, 207). The HT
estimator of the population mean is given by

ˆ̄yHT =
t̂HT

N
. (2.2)
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The combination of an estimator and a sample design p(·) is called strategy. The
following is, with minor modifications, closely leant on Lohr (1999, pp. 196).

The variance of an estimator is generally denoted by Var(θ̂ ). As a rule, those
estimators with small variances are preferred over estimators with large variances.
The variance of one estimator under one sample design can differ from the variance
of the same estimator under another sample design. This why we shall write, more
generally, Varp(·)

�
θ̂
�

to take into account the dependence on the sample design. A
variance estimator is an estimator for the variance of an estimator and is generally
denoted by dVarp(·)

�
θ̂
�
. The variance of the HT estimator for the population total is

given by

Varp(s)

�
t̂HT

�
=

N∑

i=1

1−πi

πi

t2
i
+

N∑

i=1

N∑

q 6=i

πiq −πiπq

πiπq

t i tq +

N∑

i=1

Var ( t̂)

πi

, (2.3)

if |s| = n for p(s) > 0 and πiq is the probability that both elements i and q are in the
sample. The above formula can also be expressed in the so called Sen-Yates-Grundy
form as

Var(SYG)

p(s)

�
t̂HT

�
=

N∑

i=1

N∑

q>i

�
πiπq −πiq

�� t i

πi

−
tq

πq

�2

+

N∑

i=1

Var ( t̂)

πi

. (2.4)

The estimated variance of the HT estimator for the population total is then given by

dVarp(s)

�
t̂HT

�
=
∑

i∈s

�
1−πi

� t̂2
i

π2
i

+
∑

i∈s

∑

q∈s
q 6=i

πiq −πiπq

πiq

t̂ i

πi

t̂q

πq

+
∑

i∈s

dVarp(s)

�
t̂ i

�

πi

(2.5)

and, correspondingly, in Sen-Yates-Grundy form by

dVar
(SYG)

p(s)

�
t̂HT

�
=
∑

i∈s

∑

q∈s
q>i

πiπq −πiq

πiq

�
t̂ i

πi

−
t̂q

πq

�2

+
∑

i∈s

dVarp(s)

�
t̂ i

�

πi

. (2.6)

Formulas for the variance estimator of HT estimator for the population mean can be
found in Kish (1965, pp. 255). Estimation of the variance in this closed form re-
quires computation of second order inclusion probabilities, πiq, which can become
cumbersome or impossible at all as Münnich (2008, 322) notes. Thus, practical ap-
proximations have to be found that avoid use of second order inclusion probabilities.
One such approximation for one-stage fixed n sample designs was suggested by Dev-
ille (1999) and is given by

dVar
(Deville)

p(s)

�
t̂HT

�
=

1

1−
∑
i∈s

a2
i

∑

i∈s

�
1−πi

�

 yi

πi

−
∑

j∈s

a j

y j

π j




2

, (2.7)
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where ai =
1−πi∑

j∈s

�
1−π j

� .

In addition, Section 5.4.2 will present results on estimating the design effect for
the median. Let the study variable in the population of size N follow the distribution
function F(·) and let it be ordered such that y1 ≤ · · · ≤ yN . The median, ỹ , for y-
values with a smooth distribution function is defined as F( ỹ) = 1

2
(Särndal et al.,

1992, 197). An estimator of the median based on a sample of size n is given by

ˆ̃y =

(
yz+1 if n= 2z + 1 (i.e. n is odd)
yz+yz+1

2
if n= 2z (i.e. n is even) .

(2.8)

2.3 Elements of Design Effects

A complex (i.e. cluster or multi-stage) sample design often leads to an inflation of
the variance of an estimator only to the degree to which the population (and hence,
the sampled elements) show some homogeneity within the same clusters and less
homogeneity between clusters. Put formally, values of the study variable follow the
model M1 (Gabler et al., 2006, 4)

Var
�

yi j

�
= σ2

Cov
�

yi j , yi′ j′

�
=

(
σ2ρ for i = i′, j 6= j′

0 otherwise.
(2.9)

The above model implies that the variance of the study variable is inflated by the
factor of ρ for all elements of the same cluster. A very simple example for an item
which follows that model is made up by the following question: “How many kilo-
metres away from the Dome of Cologne do you live?” If this question is asked in a
multi-stage sample conducted in Germany with cities or city blocks as primary sam-
pling units and a fixed number of respondents sampled within each PSU, the answers
of the respondents of each PSU would be almost exactly the same. Thus, a large share
of the total variation on that item comes from between PSUs and hardly any can be
attributed to variation within clusters. For reasons of simplicity, assume that in fact
all respondents within each PSU give exactly the same answer. Hence, the gain in
information after having surveyed the answer of the first respondent in a PSU is zero
because the second, the third and all other persons of the cluster will give exactly the
same answer.

Assume that m = 200 PSUs have been sampled and that ni = 10, i = 1, . . . , m,
persons in each PSU have been asked the above question. However, there are only
200 unique answers to the item which contribute to the variance of that variable
due to the lack of independence of the answers. Thus, when falsefully treating the
sample data as fulfilling the assumption of independence and using, for example,
the usual variance estimator of the sample mean, the true variance (i.e. the variance
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of an appropriate estimator not assuming independence of the responses of the study
variable) of the estimator will be underestimated by a factor which is called the design
effect. The design effect depends on the average size of clusters, on the extent to which
respondents of a certain cluster resemble each other as well as on the dissimilarity of
respondents belonging to different clusters.

Although many empirical studies show that design effects are anything but negli-
gible (Bieler and Williams, 1990; Gabler and Häder, 2000; Gonzalez and Foy, 2004;
Kish, 1995; Lemeshow et al., 1998; Lehtonen et al., 2002; Rowe et al., 2002; Selhub
et al., 1999; Verma et al., 1980; Yeo et al., 1999), the concept is commonly ignored
in substantive analyses. Including design effects in the data analysis usually yields
more conservative results for example in hypothesis tests (i.e. a significant difference
may no longer be significant if design effects are taken into account). This may be
one reason why design effects are widely neglected.

Besides the homogeneity introduced by spatial clustering, homogeneity may also
be due to interviewers. This interviewer effect follows the same logic as the design
effect and can be interpreted similarly: Respondents surveyed by the same interviewer
may form a kind of artificial cluster – being interviewed by the same interviewer may
make their answers to a certain item more similar to each other than to those of
respondents interviewed by another interviewer.

Separation of design effects and interviewer effects is an issue that is addressed
by only a few authors (Schnell and Kreuter, 2005). This is counter intuitive since
whereas design effects arise in surveys with a cluster sample only, interviewer effects
(in addition) are present in any face-to-face and even in a telephone survey – re-
gardless of the sample design. Moreover, interviewer effects and design effects can
interfere with each other. That is, homogeneity caused by one source of clustering
(e.g. geographical) can have an influence on or be influenced by the other source (e.g.
the interviewer). Ignoring either source of homogeneity can lead to biased or at least
inefficient estimations.

The issue of separating design and interviewer effects and methods to determining
the source of variation by use of a variance components model will be addressed in
chapters 7.3 and 7.3 theoretically. An empirical investigation by means of a Monte
Carlo simulation study is presented in Section 5.7.

2.4 Illustration and Motivation

The following illustration is based on results of selected runs of the Monte Carlo sim-
ulation study presented and discussed in Chapter 5. It shall demonstrate the inflation
of variance of an estimator under a complex sample design (here: two-stage cluster
sampling) compared to simple random sampling without replacement as described in
the above example. This section serves a motivational purpose and does not explicitly
clarify all elements used for illustration. This is done in the next chapter.

Figure 3 shows two overlaid histograms. Both histograms display the distribution

30 GESIS-Series | Volume 3



Design Effects

of values of the sample mean, ȳ =
1

n

∑
i∈s

∑
j∈si

yi j , under two different sample designs.

According to this formula, the mean is estimated in each of I = 10000 replicated
draws from a population of size N = 500000 both under two-stage cluster sampling
and simple random sampling without replacement (srswor). The population consists
of M = 1000 clusters. Each cluster, in turn, consists of Ni = 500, i = 1, . . . , M ,
ultimate sample units (for a detailed description of the universe(s) see Section 5.1).

The study variable, Y , is generated according to model M1 (2.9). In the present
example σ is one and ρ is set to 0.10 which can be seen as a rather extreme value,
chosen for illustrative purposes2. Table 2 gives summary statistics for the study vari-
able in the population.

Table 2: Summary statistics of the population

y

Min. −4.4670

Q25 −0.6745

Median 0.0002

Q75 0.6744

Max. 4.9660

Mean 0.0000

SD 1.0002

Var 1.0004

In the Monte Carlo simulations, cluster samples and simple random samples each of
size n= 3000 are repeatedly and independently drawn from this population. First, for
the two-stage cluster sample design (clu2), in each sample m= 150 clusters are drawn
on the first stage. At the second stage, ni = 20 ultimate sample elements are drawn
by srs from the sampled PSUs. Thus, every element in the sample has equal inclusion
probabilities at both stages making weighting ignorable. Secondly, in each of the
10000 simple random samples an identical number of n = 3000 ultimate sample
elements is drawn from the population. Figure 3 shows the empirical distributions
of sample means of these 10000 replicated draws for the two sample designs in the
same plot. The two histograms illustrate the different range of variation of the two
distributions.
The red histogram – indicating the distribution of sample means based on the clus-
ter sample design – has a larger variation in estimated sample means than the blue
histogram. This can be seen from the thick tails of the red histogram and the lower
density around the mean. The empirical variance of the 10000 estimates under srswor
is

Var
�

ȳ (srswor)
�
=

1

10000

10 000∑

i=1

�
ȳ

(srswor)
i

− ȳ (srswor)
�2
= 3.2796 · 10−4 ,

2 Among this configuration also more and less extreme populations were generated with population
values of ρ = {0.01, 0.02, 0.03, 0.04, 0.05, 0.10, 0.15, 0.20} (see Chapter 5)
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Figure 3: Overlaid histograms of values of the estimator for the sample mean estimated under two-stage
equal probability cluster sampling and simple random sampling without replacement from a
clustered population with ρ = 0.10

where ȳ (srswor)
•

is the mean of estimated sample means over 10 000 iterations. The
corresponding empirical variance of the distribution under cluster sampling is

Var
�

ȳ (clu)
�
= 8.7727 · 10−4 ,

which is
Var
�

ȳ (clu)
�

Var
�

ȳ (srswor)
� = 8.7727 · 10−4

3.2796 · 10−4
≈ 2.68

times the variance of the srswor estimate. This ratio is the design effect, deff which
will be defined more thoroughly in the next chapter. Its square root,

p
deff = deft, is

sometimes referred to as design factor (Kish, 1965,9). Table 3 gives some additional
summary statistics for the estimates of simulated distributions of the sample mean
under cluster and under simple random sampling without replacement.
The results in the table illustrate that the estimator of the sample mean of both sam-
ple designs is unbiased for the population mean. The distribution of sample means
estimated on the basis of the srs replicates, however, shows less variability than the
clu2 sample replicates.

Figure 4 consists of four smoothed scatterplots which illustrate the bivariate dis-
tribution of clu and srswor sample means for four different populations. The first
population is generated such that hardly any homogeneity on the study variable
within clusters appears which was achieved by a very small value of ρ (0.02) in
the population. The second population was created assuming a slightly higher level
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Table 3: Summary statistics of the distribution of sample means of the study variable under two-stage
equal probability cluster sampling and under srswor

ȳclu ȳsrswor

Min. −0.1102 −0.0706

Q25 −0.0200 −0.0122

Median 0.0001 0.0001

Q75 0.0197 0.0123

Max. 0.1096 0.0679

Mean 0.0000 0.0000

SD 2.9619·10−2 1.8110·10−2

Var 8.7727·10−4 3.2796·10−4

of homogeneity within clusters (ρ = 0.05), the third (ρ = 0.10) was already de-
scribed before, and the fourth shows a very high level of homogeneity within clusters
(ρ = 0.20)3. Each plot of figure 4 shows the common distribution of 10000 pairwise
sample means under clu with an equal number of b̄ = n

m
= 3 000

150
= 20 elements per

cluster and srswor of the same total sample size. Dark blue color indicates high den-
sity of observations in that region whereas a low density is indicated by light blue
color. It can be seen that in the upper left plot the common distribution of the sample

Figure 4: Smoothed scatterplots based on a simulation of I = 10 000 repeated draws under srswor and
two-stage equal probability cluster sampling

3 These populations were generated according to model M1 defined in (2.9).
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means has almost the shape of a perfect circle. This indicates that the distributions of
sample means under clu2 and under srs are very similar in respect to variation. The
second plot on the upper right shows some deviation from a perfect circle – the points
are scattered wider along the y-axis then along the x-axis. The third plot displays the
distributions of sample means drawn from the clustered population with parameter
ρ = 0.10 which was already analyzed graphically by the overlaid histograms in fig-
ure 3. Here the smoothed scatterplot has even more the shape of a football, indicating
that variation in sample means is higher for cluster sampling than for srswor. The
plot in the lower right corner finally shows the simulation results for sampling from
the ρ = 0.20 population. Here the plot clearly shows the very imprecise nature of
the sample mean estimated under cluster sampling as the plot is even more stretched
along the y-axis.

Another way to look at this is, again, through overlaid histograms. Figure 5 shows
the same distributions in four overlaid histograms. In each plot the area of intersection

(a) ρ = 0.02 (b) ρ = 0.05

(c) ρ = 0.10 (d) ρ = 0.20

Figure 5: Overlaid Histograms based on a simulation of 10 000 repeated draws under srswor and two-stage
equal probability cluster sampling (m= 150, b̄ = 20)

of the two histograms is reciprocal to the magnitude of the design effect: large area of
intersection indicates a low design effect (the variance of the estimate under cluster
sampling is close to the variance under srswor) whereas less overlay indicates a large
design effect. The evaluation of estimation strategies for design effects is at the focus
of this thesis. The following chapter explicitly defines the concept of the design effect.
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3 Design Effects
The examples in the previous chapter can be seen as motivatpoinal for a more thor-
ough definition of the design effect laid out in this chapter. It opens with a discussion
of design effects based on the seminal work by Kish (1965) in the following section. In
Section 3.2, areas of application of design effects are illustrated and in the following
section (3.3) an overview of the two approaches to the estimation of the design effect
is given. Subsection 3.3.1 delineates the design-based estimation approach whereas
the model-based approach is discussed in Subsection 3.3.2.

3.1 A Classical View on Design Effects

Design effects arise from a variety of divergences in real-world sample surveys from
the (hypothetical) ideal of simple random sampling. Most prominent and intuitively
appealing is the inflation of variance of an estimator due to clustering as highlighted
in the illustration of the previous chapter. As already mentioned, it arises due to the
fact that respondents living in the same geographical area are socialised in similar
ways. Thus, their responses to survey items resemble each other more than they re-
semble the responses of respondents who live in another geographical area. However,
the fact that the responses are more similar implies that, in terms of precision, the
cluster sample data correspond to simple random sample data with less responses.
This, in turn, means that the variance of an estimator (e.g. the HT-estimator) may
be underestimated by the naive formula given by dVar

�
ˆ̄y
�
= s2

n

�
1− n

N

�
. However,

complex sample designs, and cluster sampling in particular, are not less precise than
srs by definition as the following example shows.
Let us assume a population of elements grouped into M PSUs each of size Ni , i =

1, . . . , M and let N =
∑

Ni . Furthermore, let B̄ = N

M
be the average cluster size. For

the time being, let us assume that the PSUs are of equal size, so Ni = B. Finally, let yi j

denote the value of the variable of interest for the jth respondent in the ith cluster as

before. Consequently, yi =
Ni∑

j=1

yi j denotes the sum of study variable in the ith cluster.

Again, the study variable follows the model M1 (2.9). A simple random sample of m

clusters is drawn at the first stage and then all B elements of a a PSU are selected. The
homogeneity of y introduced by geographical clustering leads to the design effect,
deff, which is defined by Kish (1965, 162) as

deffKish =
s2
m/m

s2/n
, (3.1)
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with s2
m
= 1

m−1

m∑
i=1

�
ȳi − ȳ

�2 and s2 = 1

MB−1

m∑
i=1

B∑
j=1

�
yi j − ȳ

�2
but shall here, following

Lohr (1999, 239), be expressed more generally as

deff=
Varc

�
θ̂
�

Varsrs

�
θ̂
� , (3.2)

where Varc

�
θ̂
�

is the variance of the estimator θ̂ under the actual complex design

(here: one-stage cluster sample design) and Varsrs

�
θ̂
�

is the variance of the same
estimator under a (hypothetical) simple random sample4. Put less formally, the design
effect is the factor by which the variance of an estimator under a complex design is
under or overestimated by the naive formula. The ratio

neff =
n

deff
(3.3)

is referred to as the effective sample size and is the number of ultimate sample ele-
ments required in a srs which yields the same precision on a certain estimator as under
a given complex sample design. Kish (1965, 162) showed that (3.1) can be expressed
as

deffone-stage = 1+ (B− 1)ρ , (3.4)

if all B elements of a selected cluster are selected (one-stage or cluster sampling) and

defftwo-stage = 1+ (b− 1)ρ , (3.5)

if b elements of a selected cluster are subsampled randomly (two-stage sampling). In
expressions (3.4) and (3.5), ρ is the intraclass correlation coefficient which is defined
as

ρ =

M∑
i=1

B∑
j=1

B∑
k=1
k 6= j

�
Yi j − ȲU

��
Yjk − ȲU

�

(B− 1)(MB− 1)S2
Y

(3.6)

with S2
y
= SST

MB−1
with SST =

M∑
i=1

B∑
j=1

(Yi j − ȲU)
2. This can also be written as

ρ = 1−
B

B− 1

SSW

SST
, (3.7)

where SSW =
M∑

i=1

B∑
j=1

�
Yi j − ȲiU

�2
. The domain of ρ ranges from − B

B−1
to one. The

value of ρ can be negative when most or all of the total variation can be attributed to

4 The ratios of variances of the sample means in the above examples correspond to the design effect as
defined by the above formula.
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variation within clusters. This makes sense theoretically but will almost never occur
practical applications.

It can easily be seen that the design effect depends on two parameters: If the cluster
size, B or b, the second is the intraclass correlation coefficient, ρ. The following
wireframe plot shows how deff changes as these two parameters vary. It can be seen
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Figure 6: deff as a function of b and ρ

that when either of the parameters takes on a small value, an increase in the other one
hardly increases the design effect. That is, big cluster sizes hardly matter as long as the
intraclass correlation is small. Put the other way around, large intraclass correlation
does not lead to a large design effect if the cluster size is small enough. Another
way to look at this is through a level plot. In Figure 7 selected levels of deff are
highlighted by solid lines. Any point on a line represents a combination of values of
b and ρ that yield a design effect of the given magnitude. A design effect of 1.5, for
example, can be achieved by a combination of b = 11;ρ = 0.05, b = 6;ρ = 0.10

or by b = 3;ρ = 0.25 as indicated by the grey crosses. The figure also illustrates
that any two or more points on the plane with identical hue and saturation represent
design effects of equal magnitude.

Let us now turn to the wide spread situation of unequal cluster sizes5. Kish (1965,
162) mentions the flexibility of expressions (3.4) and (3.5) in regard to their behaviour
if cluster sizes vary. In such situations Kish (1989, 210) defines an estimator of the
design effect given in (3.5) as

5 In the samples of participating countries of ESS, hardly any sample realizes a sample of PSUs of equal
sizes but rather clusters of varying sizes as the selected sample designs discussed in Section 6.3 illustrate.

GESIS-Series | Volume 3 37



Matthias Ganninger

ddeff= 1+ ( b̄− 1)ρ . (3.8)

In the more general case, when also ρ has to be estimated from sample data an
appropriate estimator of the design effect is given by

ddeff= 1+ ( b̄− 1)ρ̂ , (3.9)

where b̄ is an estimate of the average cluster size and ρ̂ is an adequate estimator of the
intraclass correlation coefficient. Selected estimators of ρ are discussed in Chapter 4
which are evaluated in terms of bias and precision in Chapter 5.

In a scenario where weighting is necessary, additional variance is introduced in
the HT estimator through variation of the design weights. A simple extension of
the previous examples can illustrate such a situation: Instead of surveying an equal
number of ni = B elements per selected PSU, let ni vary. With a fixed cluster size in
the population, Ni = B, inclusion probabilities of elements will vary between PSUs:

πi =
ni

Ni

and since Ni = B we have πi =
ni

B
.

Kish (1987) proposed a formula “for determining the design effect in order to in-
corporate the effects due to both weighting needed to counter unequal selection prob-
abilities and clustered selection”. This formula is given by

ddeff= n

∑L

ℓ=1
w2
ℓ
mℓ�∑L

ℓ=1
wℓmℓ

�2
×
�

1+ ( b̄− 1)ρ
�

, (3.10)

where mℓ denotes the number of observations in the ℓth weighting class, wℓ is the
weight associated with the ℓth weighting class (not necessarily identical to PSUs).
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Figure 7: Levels of deff by ρ and b
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Since variation in design weights stems from variation in inclusion probabilities, it
is easy to see from (2.3) and (2.5) that unequal inclusion probabilities (i.e. π is such
that at least one element is unequal to all other elements) lead to an increase in
the variance and estimated variance of the HT estimator compared to the case of
equal inclusion probabilities. The magnitude of increase is called the design effect due
to unequal inclusion probabilities, deffp, and is captured by the first term of (3.10).
Hence, the estimator for the design effect of multi-stage cluster sampling with unequal
inclusion probabilities can be written as

ddeff=ddeffp ×ddeffc . (3.11)

The concept of the design effect discussed above itself goes back to the ideas of
several authors. Cornfield (1951) introduced a very similar concept which, in essence,
he mainly needed to estimate a priori the required sample size of a cluster sample of
census tracts. He defined the ratio of the standard error of the estimate of a certain
prevalence rate under the assumption that the individual is the sampling unit to the
standard error of an appropriate estimator of the prevalence rate estimator under the
assumption of cluster sampling. This concept is to be seen as the inverse of the design
effect as values above unity indicate a gain in efficiency when sampling Census tracts
instead of individuals. Cornfield (1951) however uses the inverse of this ratio to define
an early predecessor of the concept of the effective sample size which he calls “the
factor by which the sample size, estimated by assuming that the individual is the
sampling unit, must be increased if the tract is in fact the unit” (Cornfield, 1951, 660).

3.2 Areas of Application

Design effects basically serve two purposes: The first is to use design effects to esti-
mate effective sample sizes at the planning phase of a survey. The second is to use
them to correct naively estimated variance estimates and standard errors.

In the ESS, design effects are only used for the first purpose6. Since deffc varies
from item to item a typical design effect due to clustering is estimated from data of the
preceding round and the resulting value is taken as predictor for the upcoming round.
Based on this value the minimum effective sample size of 1 5007 is multiplied with
the design effect in order to arrive at the required net sample size, i.e. the number
of required interviews needed to fulfil the ESS specifications concerning the effective
sample size. This means that the actual number of interviews will vary from country
to country – sometimes quite significantly – depending on the sample designs and
hence the predicted design effects.

Turning to the second purpose mentioned above, design effects should be used to
correct standard errors, e.g. in classical hypothesis tests (Kish, 1989, pp. 209). Due
to the fact that the variance of an estimator of a complex sample is underestimated

6 To the knowledge of the author, the ESS is the only social survey that incorporates design effects in this
way.

7 In countries with less than two million inhabitants the minimum effective sample size is set to 800.
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when calculated naively (i.e. assuming srs), the results of hypothesis tests will tend to
be overoptimistic.

Unfortunately, only a subset of countries have given allowance to publish PSU
labels along with the substantive data yet. This is why the ESS data archive pub-
lishes a typical design effect on-line for each country and round which can be used
by the data analyst to correct standard errors. This policy ensures that substantive
researchers are supplied at least with a good guess of deff if a country’s privacy reg-
ulations do not permit publication of PSU identifiers. For all other countries, the
researcher can estimate design effects for every item under study.

The aforementioned areas of application are based on different formulations of deff.
Whereas, naturally, prediction of deff should be based on an adequate model, ex-post
estimation of the design effect does not necessarily have to be model-based. In the
following sections the model-based and the design-based approach to formulation
and estimation of design effects is discussed in more detail.

3.3 Two Approaches to Design Effects

Although the definition of design effects is a purely design-based one, Gabler et al.
(1999) have explicitly proposed a model-based justification for this formulation. Their
model applies to a variety of real-word sample survey settings and is flexible enough
to be adopted to even more complex settings, such as multiple design surveys (Gabler
et al., 2006).

Skinner (1986) discussed design-based and model-based interpretations of the de-
sign effect thoroughly. In the ESS a model-based approach is relied upon to estimate
the design effect. A detailed discussion and comparison of randomization-based and
model-based design effects can be found in Gabler et al. (2010). In this section, a brief
review of the most common methods for the estimation of design effects is given.
Design-based as well as model-based approaches are discussed in the following two
subsections.

3.3.1 Design-based Approach to Design Effects

Design-based estimation of the design effect is essentially based upon design-based
methods of variance estimation. There exist numerous such variance estimation
methods (Canty and Davison, 1999; Kish, 1989; Lohr, 1999; Münnich and Rässler,
2004; Münnich, 2004; Rao and Wu, 1988; Rao and Shao, 1999; Wolter, 1985). Various
of them have been evaluated extensively in the DACSEIS project (Münnich, 2003a).
A brief overview of the most important ones can be found in Canty and Davison
(1999) and in Davison and Sardy (2007). In the following, the two most commonly
used methods – Taylor Linearisation and Jackknife Repeated Replication (JRR) – are
discussed.

For design-based estimation of the design effect mainly JRR and Balanced Re-
peated Replication (BRR) have been used (Gonzalez and Foy, 2004; Lago et al., 1987a).
These techniques are replication based methods and as such rely on a large number
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of repeated draws from sample data. Thus, they tend to be computationally intensive.
Taylor Linearisation, in contrast, is an analytical approximative technique.

Looking at estimation of design effects from a design-based point of view, methods

are required that efficiently and unbiased estimate equation (3.2): ddeffc =
dVarc(θ̂ )

dVarsrs(θ̂ )
. The

main problem is to find good estimates for the numerator of this ratio. One of the
problems of the design-based approach to estimation of the design effect is, however,
to find an adequate estimator for dVarsrs(θ̂ ). A commonly used solution is to treat the
data of the cluster sample naively as having arisen from a simple random sample with
replacement and estimate the variance of θ̂ as dVarsrs(θ̂ ) by s2

n
. The simulation study

on the Monte Carlo estimation of the true design effect in Section 5.3, however, uses a
separate srs of the same (expected) sample size like the corresponding cluster sample
(for details see Section 5.2.1). This strategy serves as a baseline in the following
sections which evaluate different design- and model-based estimators of the design
effect. In addition, a small Monte Carlo study in Section 5.4.1.4 evaluates the effects
of using the naive formula for the variance estimator of the sample mean on data
from a cluster sample.

3.3.1.1 Taylor Linearisation

Linearisation methods in variance estimation are based on a theorem by Taylor (1969).
Let there be K estimators of the population total, τ1, . . . ,τK and let g be a function
on these estimators. Then an approximate estimator of the variance of an estimator,
θ̂ , is, according to Münnich (2008, 323), given by

dVar
�
θ̂
�
= var

 
K∑

k=1

∂ g
�
τ̂1, . . . , τ̂K

�

∂ τ̂k

�
τ̂k −τk

�
!

. (3.12)

The linearisation method can be used in cluster sampling to estimate the variance
of the combined ratio estimator of m cluster totals to m weighted cluster sizes: r =

m∑
i=1

ni∑
j=1

wi j yi j

m∑
i=1

ni∑
j=1

wi j

. This estimator is used as an estimator for the population mean. The

Taylor linearisation estimator of the variance of this estimator is given by

dVar
Taylor

c (θ̂ ) =

m∑
i=1

m∑
i=1

ni∑
j=1

wi j

 
m∑

i=1

ni∑
j=1

wi j

!
−1




z2
i
−

z2

m∑
i=1

ni∑
j=1

wi j




�
m∑

i=1

ni∑
j=1

wi j

�2
, (3.13)
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where zi =
ni∑

j=1

wi j yi j −

�
r ·

ni∑
j=1

wi j

�
. For a general discussion of linearised variance

estimators of ratios see also Binder (1996) and Demnati and Rao (2002). The design-
based estimator of the design effect for the sample mean is then given by

ddeff
Ta ylor

=
dVar

Taylor

c (θ̂ )

dVarsrs(θ̂ )
. (3.14)

The above estimator is easily adopted to the case when y has dichotomous outcome
since yi j can then be regarded as an indicator variable taking the value of one if the
jth person in the ith cluster has a positive outcome on the the study variable and zero
otherwise.

Taylor Linearization makes most sense when the variance estimator is has non-
linear terms which makes it difficult to compute directly. Within the scope of the
simulation studies in Chapter 5 the estimator in 3.14 is evaluated as one candidate of
the class of design-based estimators for deff for the sample mean and for the median
(see Section 5.4.2).

3.3.1.2 The Jackknife Method

The Jackknife method – also referred to as Jackknife Repeated Replication – is de-
scribed in detail in Wolter (1985, chapter 4). A brief discussion of its merits and
shortcomings is given in Münnich (2008, pp. 325). As applied to variance estimation
in cluster sampling, the basic approach is to run as many iterations as there are PSUs.
In each run, however, the ith PSU is omitted for the calculation of the variance. The
average of the resulting C variance estimations is then taken as the final variance
estimation. Stated formally, the JRR estimator is defined as in (Gonzalez and Foy,
2004, 82)

dVar
JRR

c (θ̂ ) =
1

m

m∑

i=1

�
θ̂ (Ji)− θ̂ (S)

�2
, (3.15)

where θ̂ (S) refers to the estimator of parameter θ based on data of the whole sample
and θ̂ (Ji) is the estimator of the same parameter based on the ith JRR replicate sample,
i.e. excluding the ith PSU for each estimation.

The JRR design-based design effect, then, is given by

ddeff
JRR
=
dVar

JRR

c (θ̂ )

dVarsrs(θ̂ )
. (3.16)

The flexibility of the JRR method comes into play when the variance estimator of a
parameter under complex sample designs has no closed form. In the case of non-
parametric point estimators like the median, the JRR estimator follows the same prin-
ciple as in the case of parametric estimators like the HT estimator of the population
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total or the population mean8. The JRR estimator is adopted for binary variables
by substituting an appropriate estimator of the overall success rate, π̂, for θ̂ and its
variance estimator under srs for dVarsrs(θ̂ ).

3.3.2 Model-based Approach to Design Effects

Model-based estimation differs from the design-based approach mainly in the as-
sumptions about the data generating process and hence the way estimators of popu-
lation parameters have to be thought of. Where the design-based approach focuses
on the set of possible samples that could have been drawn from a population in order
to protect itself against model failure, the model-based perspective conditions infer-
ences on the realized sample and is thus commonly judged more robust – iff the model
holds.

In many cases, however, following a design-based or a model-based approach
reveals identical formulae and, hence, identical numerical values for a number of
common estimators. This is also true for the estimation of the design effect. A model-
based version of the design effect has been suggested by Gabler et al. (1999) and
further developed by Gabler et al. (2006) and Lynn and Gabler (2005).

The model-based approach is generally attractive due to its flexibility to deviations
in the data from a suggested model. In an analogous manner, the model-based esti-
mator of the design effect presented in the following can be thought of as an instance
of a wider class of estimators based on models that account for even more complex
situations.

A model-based estimator of the design effect assumes a model from which the data
are generated. The following delineation describes such a model and explains its in-
terrelation with the proposed model-based estimator of deff. The following discussion
is closely lent on Gabler et al. (1999) and Gabler et al. (2006).

Let qiℓ be the number of observations in the ith cluster and the ℓth weighting

class, let qℓ =
m∑

i=1

qiℓ be the number of observations in the ℓth weighting class, and let

n=
L∑
ℓ=1

qℓ, as previously, denote the sample size. Further let ni =
L∑
ℓ=1

qiℓ be the number

of observations in the ith cluster. Hence, b̄ =
1

m

m∑
i=1

ni =
n

m
is the average cluster size.

8 However, with a non-smooth statistik like the median, JRR may have problems with consistency.
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Taking into account the usual design-based HT estimator of the population mean,

ȳw =

m∑
i=1

ni∑
j=1

wi j yi j

m∑
i=1

ni∑
j=1

wi j

, Gabler et al. (1999) assume the following model (M1):

Var(yi j) = σ2 for i = 1, . . . , m; j = 1, . . . , ni (3.17)

Cov(yi j , yi′ j′) =

(
ρσ2 if i = i′; j 6= j′

0 otherwise.
(3.18)

A second model (M2) specifies the distribution of the yi j in the following way:

Var(yi j) = σ2 for i = 1, . . . , m; j = 1, . . . , ni (3.19)

Cov(yi j , yi′ j′) = 0 for all
�
i, j
�
6=
�
i′, j′

�
. (3.20)

Let VarM1( ȳw) be the variance of the weighted sample mean under model M1 and

let VarM2( ȳ) be the variance of the overall sample mean, ȳ =
m∑

i=1

ni∑
j=1

yi j

n
, under

M2, respectively. Under M2, the variance of ȳ , however, turns out to be given by
VarM2( ȳ) =

σ2

n
. Then the design effect is defined as

deff=
VarM1( ȳw)

VarM2( ȳ)
. (3.21)

According to Gabler et al. (1999) deff can be expressed as

deff= n

L∑
ℓ=1

w2
ℓ
qℓ

�
L∑
ℓ=1

wℓqℓ

�2
×
�

1+ (b∗ − 1)ρ
�

, (3.22)

where

b∗ =

m∑
i=1

�
ni∑

j=1

wi j

�2

m∑
i=1

ni∑
j=1

w2
i j

. (3.23)

The quantity ρ servers as a measure of homogeneity and as such gives information
about the similarity of the clustered elements. High values of ρ imply very similar
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values on the variable under study within the clusters and very dissimilar values
between clusters. The usual ANOVA estimator of ρ is given by

ρ̂(AOV) =
MSB−MSW

MSB+ (K − 1)MSW
, (3.24)

where

MSB =
SSB

m− 1

with SSB =
m∑

i=1

ni

�
ȳi − ȳ

�2 and

MSW =
SSW

n−m

with SSW =
m∑

i=1

ni∑
j=1

(yi j − ȳi)
2 and

K =
1

(m− 1)

 
n−

m∑

i=1

n2
i

n

!
.

The above model has the advantage that it applies in many real-world situations.
In the ESS, for example, the model-based design effect is estimated according to
the above formula in countries where sampling was done either using a) unequal
inclusion probabilities, b) clustering or c) both. What makes it even more useful is
that it can also be applied to multiple design surveys. Gabler et al. (2006) showed
that (3.22) has a generalized form that allows to calculate a weighted average of
deff over multiple domains in a sample. A domain is defined by a subset of the
sample in which the design effect is one, e.g. a part of the sample where instead
of a complex sample design, a srs of ultimate sample units is drawn. A multiple
sample design with two domains, for example, is realized in Poland where in large
cities a srs of respondents and in rural areas a cluster sample is drawn (for details see
Section 6.3.3). Here, the design effect is predicted only for the clustered part of the
sample and combined with the design effect of the srs part of the sample according
to the proposed model.
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4 Measures of Homogeneity
Homogeneity refers to the degree by which respondents belonging to the same pre-
defined structural entity, or cluster, resemble each other. This entity may be defined as
a geographical region in the most common case when considering the design effect
due to clustering or the trait of being interviewed by the same interviewer (Gabler
and Lahiri, 2009). In both settings respondents tend to be more similar to other re-
spondents belonging to the same structural entity than to respondents of another
structural entity. This implies that large differences on an item will mainly be found
at respondents belonging to different clusters whereas the odds of finding large dif-
ferences between respondents of the same cluster are rather small. However, instead
of the term similarity the more stringently defined term of homogeneity shall be used.
Homogeneity refers to the relative similarity of elements within the same cluster to
their expected similarity with all other elements. Quantification of the degree of ho-
mogeneity within the scope of this thesis is by means of the intraclass correlation
coefficient (ICC), denoted by ρ and its estimators, ρ̂.

This chapter first briefly reviews the existing literature on estimation methods for
ρ. Then, in Section 4.2, estimators for continuous and in Section 4.3 special estima-
tors for binary data are presented.

4.1 Overview of Estimation Methods

Estimation and interpretation of the intraclass correlation coefficient is a heavily de-
bated topic. A very early paper focusing on a specific topic is the one by Irwin (1946)
who discusses ways of interpreting negative values of ICC. The effects on intraclass
correlation on confidence intervals and the results of significance tests were already
discussed by Walsh (1947). A non-parametric estimator if the intraclass correlation
coefficient was proposed by Rothery (1979) which employs the probability of con-
cordance values. Clemmer and Kalsbeek (1984) propose an alternative “proportion
variation method” to for the estimation of ρ. Donner (1986) gives a nice overview
of inferential methods for the evaluation of point and interval estimates of ρ. Choi
(1987) discusses a closed-form direct estimator of the intraclass correlation, going
back to Cohen (1960) and Kleinman (1973) with which the variances of the corre-
lation estimators shall be reduced. An estimator and its variance estimator of the
intraclass correlation for categorical data is given in Choi (1989). The estimator un-
derlies a one-way ANOVA model within each level of the variable. As computational
power grew rapidly in the 90’s, iterative methods came into the focus of researchers.
Paul (1990) for example presents an Maximum-Likelihood estimator and its variance
estimator based on estimating equations which can only be solved iteratively, for
example by the ZBRENT subroutine of IMSL (Paul, 1990, 553). McGraw and Wong
(1996) present a comprehensive overview of different types of estimators applicable
in one- and two-way random and mixed models both with and without interaction
effects. As the proficiency of the authors is in psychology, the paper cover ρ as the
rate of homogeneity as a special case.
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An evaluation of the use of ρ as an analytical tool in a small cluster sample sur-
vey9 is given in Fields (1970). Measures of intraclass correlation can also be used
to assess inter-rater reliability. Shrout and Fleiss (1979) give an example of how to
choose among different estimator of ρ depending on the data generating model which
is assumed. An illustration of the influence of cluster sizes on a specific estimator of
ρ and also the design effect is given in Thomas et al. (1983) by artificially generating
clusters from Enumeration Districts (ED) of the 1980 US Census. The paper by Mar-
tinez and Brogan (1984) empirically evaluates the behaviour of two different types of

estimators of ρ, namely the design effect method, ρ =
ddeff −1

b̄−1
, and a classical ANOVA

estimator. Mak (1988) discusses the asymptotic variance of the variance component
based estimator of ρ for binary data and presents an evaluation study based on litter-
mate data. An empirical investigation of the homogeneity of smoking behaviour of
students within classes and the effect of a loss in precision is given in Siddiqui et al.
(1996). An overview of a large number of estimators of the intraclass correlation
coefficient for binary data and an evaluation based on a simulation study is given in
Ridout et al. (1999). In fact, many of the estimators presented herein are also eval-
uated in the Monte Carlo simulations presented in Chapter 5. Paul et al. (2003) give
an overview of extensive simulation studies of estimators for dichotomous variables.
They find that a version of the estimator based on Quadratic Estimation Equations
is very precise and has very little bias. However, the usual ANOVA estimator also
performs very well (Paul et al., 2003, 518). Rodríguez and Elo (2003) discuss the use
of random effects models to estimate intraclass correlation for binary variables using
probit, logit, and complementary log-log models. Zou and Donner (2004) propose a
method for estimation of confidence intervals of intraclass correlation estimators for
binary data.

Due to the large amount of estimators proposed, it is essential to define some struc-
ture that helps distinguish between different types of estimators. On the one hand,
estimators can be distinguished by the data scale type (continuous versus binary)
for which they are appropriate. Certain estimators, for example, are defined for bi-
nary data only and do not work for continuous data (and the other way around).
Section 4.2 describes estimators for continuous data and Section 4.3 is focused on
estimators for dichotomous items.

A second line of differentiation concerns the definition of estimators themselves.
Do estimators directly use the (estimated) correlation structure of the data, are they
based on an ANOVA decomposition, or do they rely on the variance components of a
random effects model? Estimators belonging to the first two classes will be grouped
together and named classical estimators whereas estimators of the third class will
be referred to as random-effects based estimators. Estimators for continuous data
belonging to the first group are discussed in Section 4.2.1 and random-effect model-
based estimators in Section 4.2.2. The same differentiation is made also for estimators
for binary data: Section 4.3.1 presents classical estimators whereas Section 4.3.4 fo-

9 The 1968 Michigan Detroit Area Study, (Fields, 1970, pp. 594).
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cuses on the definition of estimators based on random effect models for dichotomous
data. These kinds of models (Generalized Linear Models, GLM) are, in fact, worth
more detailed consideration. An introduction into the basic model and estimation
techniques is given in Chapters 7.3 and 7.3 which give more insight into the specific
problems associated with the derived estimators of ρ.

4.2 Estimators for continuous data

Among the rather classical estimators like the ANOVA estimator and a set of F-statistic
based estimators (see 4.2.1), this section also describes estimators based on variance
components of random effect models. For the time being, the reader has to be re-
ferred to Section 4.2.2 and Chapter 7.3 for a detailed discussion of the specification
and estimation of the model. Generally, we shall distinguish between the following
estimators for continuous data:

1. Estimators based on ANOVA model and F-statistics:

ρ̂(AOV) The classical ANOVA estimator

ρ̂(F) An estimator based on F-statistics

ρ̂(F2) Similar to the one above but denominator also based on F-statistic

ρ̂(FR) Estimator as implemented in the Hmisc package of R

2. Estimators based on a variance decomposition of a random effects model. These
estimators differ in respect to the estimation method used for the random ef-
fects model. Estimation of a random effects model can be based on a number
of different techniques of which the effects on the quality of estimators of the
intraclass correlation coefficient of the following three methods will be investi-
gated:

ρ̂(ML) Maximum Likelihood optimization

ρ̂(REML) Restricted Maximum Likelihood optimization

ρ̂(Laplace) Laplace approximation assuming Gaussian family and identity link

A detailed description of these estimators is given in the following subsections.

4.2.1 ANOVA Estimator and F-statistic based Estimators

The most intuitive and appealing of all classical estimators is the ANOVA estimator,
ρ̂(AOV), which is based on an ANOVA of the study variable with clusters as grouping
factors. It is defined as in (3.24) on page 45.

There exist another class of estimators, namely those based on F-statistics. One of
those is ρ̂(F), the basic F-statistic estimator. For centered data, i.e. ȳ = 0, it is given
by

ρ̂(F) =

m∑
i=1

ni∑
j=1

j′ 6= j

yi j yi j′

ni

�
ni − 1

�

Var(y)m
. (4.1)
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A modified version is given by

ρ̂(F2) =
F − 1

F − 1+

�
n

m

� , (4.2)

where F = MSB

MSW
. For equal cluster sizes ρ̂(AOV) and ρ̂(F2) are equal.

The F-statistic estimator as implemented in the Hmisc package of R is given by

ρ̂(FR) =

h
R n−m

(1−R)m
− 1
i

b̄

1+
h

R n−m

(1−R)m
− 1
i

b̄
, (4.3)

where

R= 1−

m∑
i=1

ni∑
j=1

n−1
i

�
yi j − ȳi

�2

m∑
i=1

ni∑
j=1

n−1
i

�
yi j − ȳ

�2
.

4.2.2 Estimators based on Random Effects Models

Assume the study variable is generated according to the following one-way ANOVA
model:

yi j = µ+αi + εi j , (4.4)

where µ is the mean, the α are random effects (due to cluster membership) and ε are
independent error terms as well as independent from α. Both α and ε are normally
distributed with mean zero but α has variance σ2

α and ε has variance σ2
ε . According

to McGraw and Wong (1996, 35), the intraclass correlation coefficient of the study
variable under the above model is generally defined by

ρ(RE*) =
σ2
α

σ2
α +σ

2
ε

. (4.5)

The star in the superscript indicates that the formula does not directly represent an
estimator per se but rather a class of estimators. Specific estimators of the RE class
of ρ̂ differ in respect of the methods which are used to estimate the variances in
the equation above. The quality (i.e. bias and precision) of ρ̂(RE∗) directly depends
on the quality of these estimation methods. Among these estimation methods for
random effect models, mainly Maximum Likelihood (ML), Restricted Maximum Like-
lihood (REML) and Laplace Approximation methods are discussed in the literature.
ML and REML methods are discussed in Harville (1977) and their implementation in
R is illustrated in Faraway (2006, pp. 153). A comprehensive summary and a discus-
sion of the advantages and disadvantages of these three estimation methods and their
implications for the estimation of ρ is given in Section 7.3.
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The estimator of ρ based on an ANOVA decomposition of the variances in the
above model can be written explicitly as

ρ̂(RE−AOV) =
σ̂2
α,(AOV )

σ̂2
α,(AOV )

+ σ̂2
ε,(AOV )

=

MSB−MSW

n
MSB−MSW

n
+MSW

,

where MSB and MSW are the usual mean squared errors (within and between groups)
of the ANOVA decomposition. Estimators of ρ belonging to the RE* class which are
based on variance components deduced by alternative estimation techniques (e.g.
ML, REML, and Laplace) are referred to as ρ̂(RE−ML), ρ̂(RE−REML), and ρ̂(RE−Laplace) or,
for short ρ̂(ML), ρ̂(REML), and ρ̂(Laplace).

Estimators of the RE class, besides ρ̂(RE−AOV) above, cannot be negative by defi-
nition as equation (4.5) suggests. This can be seen as a problem if they are used in
the formula for ddeffc, since ρ in (3.6) can take on negative values. As mentioned
earlier, this is the case when a great share of the total variance can be explained by
within cluster variation. In that case, thinking in terms of efficiency, cluster sampling
would be even more efficient than simple random sampling since information gained
by surveying all selected respondents in each cluster contributes to a large amount
to total variance. In the another extreme scenario, all elements in clusters resemble
each other perfectly. Thus, after having gathered information on one respondent of a
cluster, there is no gain in surveying any further person since he does not contribute
any new information (and hence no additional variation) to the study variable.

4.3 Dichotomous Variables

A large number of estimators of the intraclass correlation coefficient for binary vari-
ables has been proposed and a number of evaluation studies have been undertaken to
investigate the behaviour of some of these estimators (see Section 4.1). Among these
studies, the paper by Ridout et al. (1999) gives a very good overview of a wide range
of classical estimators. Paul et al. (2003) considers 26 estimators based on advanced
estimation methods (e.g. Maximum Extended Beta-Binomial Likelihood).

The estimators of ρ for binary data presented in the following can be classified in
the same way as in the preceding section. On the highest level we shall distinguish
between so called classical estimators (i.e. based on ANVOA models or F-statistic
based estimators) and estimators based on variance components of random effects
models. Most of the classical estimators are taken from the overview paper by Ridout
et al. (1999) and are notationally adopted.

To account for the special case of binary data, we have to slightly adopt notation.
Let, without loss of generality, yi j be one if the jth element of the ith cluster has a
positive outcome on the study variable (e.g. owns a TV, took part in the last national
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vote, etc.). Further, let yi =
ni∑

j=1

yi j be the sum of positive outcomes within the ith

cluster.

4.3.1 Classical ANOVA Estimator

As well as when faced with continuous data, the most intuitive estimator for binary
data can be seen to be the ANOVA estimator. Also for binary data ρ̂(AOV) relies on
the mean square error between and within groups (i.e. clusters). These quantities,
however, have to be estimated differently with dichotomous items. Apart from that,
the basic logic behind the AOV estimator stays the same. Hence, also for binary items
the estimator of the intraclass correlation coefficient is defined as

ρ̂(AOV) =
MSB−MSW

MSB+ (K − 1)MSW
, (4.6)

where K =
1

(m− 1)

�
n−

m∑
i=1

n2
i

n

�
and the quantities MSB and MSW being the ap-

propriate mean square error between and mean square error within clusters. The AOV
estimator has the same merits and drawbacks as in the case of continuous data (see
section 4.2.1).

4.3.2 Estimators based on Moments

With binary data a class of estimators based on the first moment was defined by
Kleinman (1973). Put most generally, estimators of this class are defined as

ρ̂(K
∗) =

SSW(w) − π̃w

�
1− π̃w

� m∑
i=1

wi

�
1− wi

�

ni

π̃w

�
1− π̃w

�
�

m∑
i=1

wi

�
1− wi

�
−

m∑
i=1

wi

�
1− wi

�

ni

� , (4.7)

with the weighted sums of squares within clusters, SSW(w) =
m∑

i=1

wi

�
π̃i − π̃w

�2
, π̃w =

m∑
i=1

wiπ̃i and π̃i =
yi

ni

. The weights, wi , defined in (4.8) and (4.9), must be scaled

to sum to one (Ridout et al., 1999, 138). Different estimators of this class differ
in respect with the choice of the weights and hence the magnitude of the weighted
overall proportion, π̃w . Based on the above formula, Kleinman (1973) proposed the
KEQ and KPR estimators assuming equal (KEQ) and unequal (KPR; i.e. proportional
to cluster size) weights:

ρ̂(KEQ) : wi =
1

m
(4.8)

ρ̂(KPR) : wi =
ni

n
. (4.9)
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Another estimator relying on moments10 was proposed by Yamamoto and Yanagi-
moto (1992). They call it the “unbiased moment estimator” (Yamamoto and Yanag-
imoto, 1992, 274) as they state that the estimation equation it is derived from has
expectation zero. The UBE estimator is defined as

ρ̂(UBE) = 1−
nK(m− 1)MSW

m∑
i=1

yi

�
K(m− 1)−

m∑
i=1

yi

�
+

m∑
i=1

y2
i

. (4.10)

In addition to the ρ̂(UBE) estimator, Yamamoto and Yanagimoto (1992) also suggest
a “raw” (RAW) and a “central” (CEN) estimator. They take into account the fact that
sometimes raw and central moment systems are used (Yamamoto and Yanagimoto,
1992, 275). A so called “stabilized moment estimator” (STA) by Tamura and Young
(1987) is designed to overcome the bias of the MLE estimator. The STA estimator is
identical to the CEN estimator with the exception that it incorporates a stabilizing
term that was empirically derived by Tamura and Young (1987) in a simulation study.
Due to the expected small gain in precision and only minor reduction in bias, these
estimators will not be considered hereafter.

Mak (1988) assumes a beta-binomial distribution model (see for example Ridout
et al. (1999, pp. 137)) for the study variable with parameters α and β denoting the
probability that two elements show the same response given they belong to the same
and different clusters, respectively. Based on the formulation in Fleiss and Cuzick
(1979), Mak (1988, 139) proposes an unbiased estimator of ρ which is given by

ρ̂(MAK) = 1−

(m− 1)
m∑

i=1

yi(ni−yi)
ni(ni−1)

m∑
i=1

y2
i

n2
i

+

�
m∑

i=1

yi

ni

��
m− 1−

m∑
i=1

yi

ni

� . (4.11)

This estimator is based on an unbiased estimator of β which is the average of m(m−1)

2

cluster-wise estimates of β . The estimate of β for the pair of the ith and the qth

cluster is given by β(i,q) = 1−
yi(nq−yq)+(ni−yi)yq

ni nq

.

The ρ̂(MAK) estimator is closely leant on an estimator proposed by Fleiss and Cuzick

(1979) who estimate β by 1−2π̂ (1− π̂) where π̂=

m∑
i=1

yi

m∑
i=1

ni

is the overall rate of success

in the data. Their estimator is given by

ρ̂(FLC) = 1−
1

(N M − k) π̂ (1− π̂)

m∑

i=1

yi

�
ni − yi

�

ni

, (4.12)

10 In fact, they developed the estimator as an estimator for the shape parameter Φ in the general probability

function of the beta-binomial distribution: f
�

x; n,µ,Φ
�
=
(nx)

∏x−1
r=0

�
µ+r Φ

1−Φ

�∏n−x−1
r=0

�
1−µ+r Φ

1−Φ

�

∏n−1
r=0

�
1+r Φ

1−Φ

�
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where N and M denote the cluster size and the number of clusters in the population,
respectively.

4.3.3 Direct Estimation of Correlation Structure

The most direct way to estimate the intraclass correlation coefficient is to directly
estimate the correlations within groups (Donner, 1986). The resulting estimator of
ρ, however, has the undesirable property that too much weight is assigned to large
clusters. A natural approach is hence to assign weights to the group-wise correlations.
A general form of such a weighted direct estimator, proposed by Williams (1982), is
given by

ρ̂(PW) =

m∑
i=1

wi

∑ ni∑
j 6=l

(yi j − µ̂)(yil − µ̂)

m∑
i=1

wi(ni − 1)
ni∑

j=1

(yi j − µ̂)

, (4.13)

where µ̂=
m∑

i=1

wi(ni − 1)
ni∑

j=1

yi j is the weighted mean for a given study variable Y and

weights scaled to satisfy
m∑

i=1

ni(ni − 1)wi = 1. In the case of binary data (4.13) reduces

to (see Ridout et al. (1999, 139))

ρ̂(PWB) =

m∑
i=1

wi yi(yi − 1)− µ̂2

µ̂(1− µ̂)
. (4.14)

Different choices of weights yield different estimators of µ̂ and hence define different
estimators of the ρ̂(PWB) class. In the most simple case weights are equal and thus
equal weight is attributed to each pair of observations. This way the estimator for µ
is defined as

µ̂(PEQ) =

m∑
i=1

(ni − 1)yi

m∑
i=1

(ni − 1)ni

(4.15)

and the PEQ estimator for ρ is

ρ̂(PEQ) =
1

µ̂(PEQ)

�
1− µ̂(PEQ)

�




m∑
i=1

yi(yi − 1)

m∑
i=1

ni(ni − 1)

− µ̂2
PEQ




. (4.16)

When weights for each group are equal, wi =
1

mni(ni − 1)
, we have
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µ̂(PGP) =
1

m

m∑

i=1

yi

ni

= π̃ (4.17)

as in (4.7) and the PGP estimator then is defined as

ρ̂(PGP) =
1

µ̂(PGP)

�
1− µ̂(PGP)

�

 1

m

m∑

i=1

yi(yi − 1)

ni(ni − 1)
− µ̂2

(PGP)


 . (4.18)

A third case emerges when weights are proportional to the number of times a certain
pair of observations occurs as a share of the total number of observations. Weights

are thus defined as wi =
1

n(ni − 1)
yielding the estimator

µ̂(PPR) =
1

n

m∑

i=1

yi = π̂ . (4.19)

With this configuration, the PPR estimator of ρ is given by

ρ̂(PPR) =
1

µ̂(PPR)

�
1− µ̂(PPR)

�

1

n

m∑

i=1

yi(yi − 1)

ni − 1
µ̂2
(PPR)


 . (4.20)

As Ridout et al. (1999, 140) note, with equal cluster sizes there are classes of estimators
which yield identical estimates. The first class is composed of ρ̂(AOV), ρ̂(MAK) and
ρ̂(UBE). The second class is made up of ρ̂(KEQ) and ρ̂(KPR) and the third class consists
of ρ̂(FLC), ρ̂(PEQ), ρ̂(PGP) and ρ̂(PPR).

4.3.4 Estimators Based on Random Effects Models

Estimators based on the variance decomposition of a random effect model can of
course also be specified for binary data. Rodríguez and Elo (2003) give an overview of
the composition and estimation of intraclass correlation estimators based on random
effect models and illustrate their use with the xt commands of STATA. They present
estimators based on probit, logit and complementary log-log (cll) models. These types
of models can also be estimated using package lme4 of R.

The basic underlying model to be estimated is of course identical to the one speci-
fied above and is repeated here just for convenience of reading:

yi j = µ+αi + εi j .

With the left hand side of the above equation being a dichotomous variable, a link
function ensures that the linear predictor fits the scale of the outcome. In probit
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models, the probability for the outcome variable to take on the value of 1, given the
random effect, is πi j = P(yi j = 1|αi) = Φ(µ+αi) leading to the following model:

Φ−1(πi j) = µ+αi .

A nice feature of this model is its flexibility. It can be reformulated in terms of y∗
i j

being a latent variable that serves as an indicator for the outcome which is positive
iff the indicator is above a given threshold. Setting this threshold to zero and σ2

ε = 1

we can write the formula for the estimator of the intraclass correlation coefficient in
the same way as in the case of a continuous variable:

ρ̂(RE−PRO) =
σ2
α

σ2
α + 1

. (4.21)

With logit models, observations given the random effect are assumed to have inde-
pendent Bernoulli distributions with probabilities πi j = P(yi j = 1|αi) = F(µ + αi)

where F(·) is the logistic distribution with c.d.f F(µ) =
eµ

1+ eµ
. Taking the inverse,

F−1, gives the logit model:

F−1(πi j) = log
πi j

1−πi j

= µ+αi .

The construction of the estimator for the intraclass correlation coefficient follows the
same basic logic as before. However, we now assume the errors, εi j , to follow a
logisitc distribution with mean 0 and variance σ2

ε . With the standard logisitc distri-
bution, σ2

ε =
π2/3 ≈ 3.29 we can construct the estimator for the intraclass correlation

coefficient as

ρ̂(RE−LOG) =
σ2
α

σ2
α +
π2

3

. (4.22)

A third type of model is the so called complementary log-log (cll) model where the
link function is of the form log

�
log(1−πi j)

�
= µ+ αi . Again, taking the inverse

gives the log-Weibull distribution which is specified as

F(µ+αi) = 1− exp
�
−exp(µ+αi)

�
.

In the cll model the error terms are usually assumed to have “(reverse) extreme value
distributions” (Rodríguez and Elo, 2003, 39). This distribution has cumulative density
function F(εi j) = exp

�
−exp(ei j)

�
with mean ≈ 0.577 and variance π2/6. Also for the

cll model the setup of the estimator follows the same logic as before and is defined as

ρ̂(RE−CLL) =
σ2
α

σ2
α +
π2

6

. (4.23)
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The estimators of ρ for binary data investigated in Chapter 5 all are based on ran-
dom effect models formulations of the logit type. Estimation of these types of models
follows the same logic as before and basically the same techniques (ML and REML,
specifically) can be used to estimate the variance components of the underlying ran-
dom effects model. For a brief introduction into the foundations of generalized linear
models (to which the above models belong) I have to refer to Chapter 7.3. This chapter
also clarifies the pros and cons of each method and its specific effects on use of the
variance components used for estimation of the intraclass correlation coefficient.
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5 Monte Carlo Simulation Studies
In this chapter, the results of some Monte Carlo simulation studies on the behaviour
of different estimation strategies for design effects and/or their components are pre-
sented. Both the design-based and the model-based approach are evaluated in terms
of bias and precision of the respective estimators. This requires, as a first step, the
generation of artificial universes in which a study variable is defined according to a
specified model. The generation of these universe(s) is described in the first section
(5.1) of this chapter. In Section 5.2 the general set-up of the simulation study is de-
scried in more detail. Section 5.3 presents the results of the Monte Carlo estimation
of the true design effect. In Section 5.4 design-based estimation of deff for the mean
and the median (Section 5.4.2) are evaluated empirically. Section 5.5 presents the
results of model-based estimation approaches and Section 5.6 synthesizes the advan-
tages and disadvantages of either approach and compares them to each other. The
last section (5.7) presents the results of a simulation which aims at a separation of
design- and interviewer effects based on a nested random effects model.

5.1 Generation and Structure of Universes

A first step in every Monte Carlo simulation study is the generation of universes
from which samples can be drawn. Elements of these universes are characterized by
a) structural and b) substantive variables. Structural variables are pre-defined char-
acteristics such as PSUs and interviewer cluster assignment indicators. Substantive
variables (or study variables), on the other hand, are generated according to a pre-
defined model (here: a random effects model) which includes the structural variables
as predictors (e.g. PSUs as random effects). The distributional parameters of the study
variable in the universes serve as a benchmark against which the simulation results
are being evaluated.

One can distinguish between two classes of clustered universes which are generated
according to a) a one-way ANOVA (see Section 7.3) and b) a nested two-way ANOVA
(see Section 7.3) model. The generation of universes of the first class is described in
Section 5.1.1, the generation of universes of the second class in Section 5.1.2.

5.1.1 Geographically Clustered Universes

Universes of the first class are created according to the common parameter model
given in (2.9) on page 29. The generation of universes belonging to this class is
motivated by a situation where clustering on the study variable is only due to geo-
graphical units (i.e. PSUs). The number of geographical clusters in the universe is
chosen M = 1000 with Ni = 500, i = 1, . . . , M , elements in each geographical cluster.
Multiple universes are generated to account for different levels of homogeneity. The
levels of ρ are chosen {0.01,0.02,0.03,0.04,0.05,0.10,0.15,0.20}. When necessary,
universes are labelled Uρ to distinguish between them. The vector of the study vari-
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able, y , is generated according to the common parameter model given in Valliant
et al. (2000). This model assumes the response to be given by

yi j = µ+αi + εi j , (5.1)

as in (9) on page 156. In the generation of the universes, the FR estimator of ρ
implemented in the deff() function of the Hmisc package was used to evaluate ρ in
the respective population. A universe is accepted if the estimated value of ρ is in the
interval ρ± ρ/1000. The overall mean of the study variable was chosen zero.

In addition, a further set of universes is generated for binary outcome data. In
that case, an additional parameter, namely the the overall rate of success, π, must
be considered as a factor of the simulation study. Data are generated for three dif-
ferent levels: π = {0.05,0.25,0.50}. The universes are then created assuming a
common-correlation model with an underlying beta-binomial distribution: This was
done following the procedure described in Ridout et al. (1999, 138). Here, the AOV
estimator of ρ is used to evaluate ρ in the population. Again, only if ρ lays within
the boundaries of the interval defined by ρ± ρ/1000 the universe was accepted.

5.1.2 Universes with a Nested Structure

In addition to geographically clustered universes, a second class of populations is gen-
erated in which additional homogeneity is introduced by interviewers nested within
PSUs. Thus, we must distinguish between ρPSU and ρINT, indicating homogeneity due
to geographical clustering (namely through PSUs) and homogeneity due to the inter-
viewer. A further parameter to consider within this setting is the share of the variation
that is attributed to interviewer clustering, denoted by sINT.

Due to reasons of computation time, only four different levels of the magnitude
of ρPSU and ρINT are investigated in the simulation studies, respectively. These are
ρPSU,ρINT = {0.02,0.05,0.10,0.20}. Three different levels of sINT (0.33,0.50,0.67)
are assumed, indicating that 33%, 50% and 67% of the total variance explained is
attributed to the interviewer level. These parameter combinations result in 4×4×3=

48 additional universes. Figure 8 illustrates the nested structure of the universes.
Interviewers are assumed to be nested within PSUs, with exactly I = 2 interviewers

operating in each cluster (Gabler and Lahiri, 2009). Thus the total number of inter-
viewer clusters in the population is K = M · I = 1000 · 2 = 2000. The interviewer
clusters are generated perfectly balanced, this means each is of the same size in the
population, Nik = 250, with k = 1, . . . , I . With the jth element of the kth interviewer
cluster in the ith PSU is associated a value on the study variable, yik j , j = 1, . . . , Nik.
Figure 8 illustrates the basic structure of the nested universe.
The response variable, y , is generated stepwise: First, homogeneity due to geographi-
cal clustering is generated in yPSU according to the common mean model given in Val-
liant et al. (2000), at a level of tolerance of ±ρPSU/100 due to computation time evalu-
ated based on the FR estimator of the deff() function. In a second step, interviewers
nested in PSUs are assumed as elements introducing clustering and the common mean
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Figure 8: Illustration of nested universe structure

model is again applied to generate a second outcome variable, yINT, in a procedure
identical to the one of the first step. Estimated population ρ must fulfil the tolerances
as before. Then, yPSU and yINT are combined so that they yield the final response
variable

y = yPSU ·wPSU + yINT ·wINT , (5.2)

where wINT = 1 − wPSU. wPSU and wINT are chosen such that
σα

σα +σβ +σε
= sINT

where σα and σβ are the variances of the random effects of the following model (see
also Section 7.3):

yik j = µ+αi + βik + εik j . (5.3)

The parameters of the model are estimated by the lmer() function of R’s lme4 pack-
age and variance components are being extracted using the VarCorr() function. This
process is repeated until also sINT lies within the interval sINT ± sINT/100.

5.2 Aim and Design of the Monte Carlo Simulation Studies

In the following, the word scenario shall be used to refer to a specific combination
of certain parameters of the universe, for example drawing type (equal vs. unequal
cluster sizes and hence equal vs. unequal inclusion probabilities of elements of dif-
ferent PSUs), population ρ and m (number of clusters drawn or, equivalently, b̄, the
average cluster size). For example, the combination of ρ = 0.02 and m = 150 under
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equal probability cluster sampling is referred to as a scenario. A setting, on the other
hand, is a combination of scenarios, e.g. the set of 12 (4 levels of ρ × 3 levels of m)
scenarios under cluster sampling with equal probabilities.

In what follows, certain properties of estimators (e.g. their average, standard de-
viation, relative bias, etc.) will be analysed given a specific scenario. Furthermore,
comparisons between scenarios are made and systematic effects of single parameters
of the setting or of combinations of parameters are extracted. Finally, when possible,
comparisons of common effects within settings are compared to those of other set-
tings, e.g. the effects of allowing for variation in cluster sizes and hence switching
from equal to unequal probability cluster sampling which, in essence, requires design
weighting at the estimation stage.

5.2.1 Simulation Strategy

The number of clusters drawn, m, under cluster sampling is either 150, 300 or 500.
As a further source of variation, the cluster size may either be equal or unequal –
implying of course also equal or unequal inclusion probabilities with fixed cluster
sizes in the population (Ni = N• = 500). We shall refer to the scenario with fixed and
equal cluster sizes in the sample to two-stage cluster sampling with equal cluster sizes
(clu2e) and to the other scenario as two-stage cluster sampling with unequal cluster
sizes (clu2u)11. In either scenario selection of PSUs is done by srs, thus the selection
probabilities of all PSUs, πi , are equal. At the second stage, elements within selected
PSUs are also sampled using srs. The sample size, n, under clu2e is guaranteed to be
3000 as

ni =





20 if m= 150

10 if m= 300

6 if m= 500.

Thus, under clu2e, also the inclusion probabilities on the second stage are constant:

π j|i =
ni

Ni

=
c

500
, j = 1, . . . , 500, i.e.

π j|i =





20

500
= 0.04 if m= 150

10

500
= 0.02 if m= 300

6

500
= 0.012 if m= 500.

When allowing for variation in cluster sizes in the sample, this variation is cho-
sen such that the coefficient of variation of cluster sizes is constant. This ensures
comparability since variation of estimators is not influenced by different levels of
variation in weights. Cluster sizes are sampled from a uniform distribution. Thus,

interval boundaries, [a, b], must be chosen such that cv(n•) = c =

Æ
1

12
(b−a)

1

2
(a+b)

for every

11 For more details on sample designs see also Section 2.1
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m= {150,300,500}. This criterion is satisfied if we sample ni with E(ni) =
n

m
from a

symmetric distribution (here: a uniform distribution) with boundaries

[a, b] =





[10,30] , if m= 150

[5,15] , if m= 300

[3,9] , if m= 500 .

(5.4)

The fact that the number of sampled elements per PSU, ni , varies from cluster to
cluster under clu2u implies that second stage inclusion probabilities, π j|i , will vary,
increasing the variance of the HT estimator of the population mean (see equation
(2.5)). The π j|i under clu2u will lay in the interval

π j|i =





�
10

500
= 0.02, 30

500
= 0.06

�
if m= 150�

5

500
= 0.01, 15

500
= 0.03

�
if m= 300�

3

500
= 0.006, 9

500
= 0.018

�
if m= 500.

It is obvious that the expected value of
m∑

i=1

ni is E(ni)m= 3000 for all m.

In the nested universes every element in the population is a priori associated with
an interviewer. That is, if the jth element of the ith selected PSU is selected into the
sample of size ni , the size of the respective interviewer clusters, nik, depends on which
elements j have been selected. Since selection of elements within a PSU is done by
srs, the expected size of the kth interviewer cluster in the ith PSU is b̄ik = ni/2 due
to the fact that in the population there are two evenly large (Nk = 250) interviewer
clusters assigned to every PSU.

For the simulation studies, a set of 10 000 sample vectors is generated for each level
of m and for each drawing type (clu2e and clu2u). The sample vectors are logical and
indicate whether or not a population element is a member of the sample.

Labelling of scenarios and settings is as follows: any quantity will be referred to by
the following index scheme: Var

�
θ̂(sd)[cs]〈m〉{ρ}

�
with sd denoting sample design and

cs cluster size type. Following this scheme, the variance of θ̂ for a two-stage cluster
sample with equal cluster sizes, 300 PSUs drawn from a clustered population and

with population parameter ρ = 0.05 would be denoted by Var
�
θ̂(clu2)[eq] 〈300〉 {0.05}

�
.

Whenever multiple values of a parameters are under consideration, the plus sign (+)
is used as an indicator. In many figures, for example, we will restrict the illustration
to only four selected levels of ρ, namely 0.02,0.05,0.10, and 0.20. After mentioning
the subset under consideration in the text, this setting, for example, will be referred

to as Var
�
θ̂(clu2)[eq] 〈300〉 {+}

�
for simplicity.

5.3 Monte Carlo Estimation of the True Design Effect

When taking the design-based perspective on estimation of design effects, the simu-
lation study first permits us to estimate the empirical variances of the HT estimator
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under cluster sampling and simple random sampling. Then, the empirical variance
under cluster sampling has to be divided by the empirical variance under srs, this
ratio being the design effect12 by the definition of Kish (1965).

For the sake of clarity, I will illustrate the set-up of the simulation studies that
underlay this section in detail: The simulation study based on continuous data has 2
(type of inclusion probabilities) × 3 (no. of clusters) × 8 (levels of ρ)=48 factors. The
combinations of factors, or scenarios, are summarized in Table 19 in the appendix.
In addition, the Monte Carlo estimated true design effect is also estimated for bi-
nary data. For binary outcome data, the combinations of 144 further scenarios are
summarized in Table 19 (also in the appendix).

In each of the scenarios, 10 000 samples are drawn from the respective population
and the HT estimator is being estimated both based on a clustered sample and on a
simple random sample of size 3 000. Thus, this setting yields a total of (48+ 144)×

10000= 1920000 simulation results.

5.3.1 Continuous Data

This subsection describes the Monte Carlo estimation of the true design effect with
continuous data. The study variable in the universe was generated as described in
Section 5.1. As we concentrate on precision of the HT estimator a slight skewness in
the study variable in some of the universes was accepted. In those cases, this may lead
to plots that are symmetric but not around grand mean of other universes. However,
this does not disturb the conclusions to be drawn from the simulations.

5.3.1.1 Two-Stage Cluster Sampling with equal Cluster Sizes

In this subsection, we will consider the case of two-stage cluster sampling with an
equal number of samples elements per cluster (clu2e) with continuous data. The
fact that an equal number of elements, ni =

3000

m
, per PSU is drawn randomly from

clusters which are of equal size, Ni = 500, in the population, ensures equal inclusion
probabilities and makes weighting unnecessary.

Under this setting, m= {150,300,500} clusters are drawn by srs from the popula-
tion of M = 1000 clusters. Then, on the second stage, a sub-sample of either 20, 15

or 6 ultimate sample elements is chosen by srs from each cluster. Each sample that
can be drawn under this design is of fixed size n= 3000.

Additionally, a srs of ultimate sample units of the same size is drawn directly from
the population. Based on either sample, the HT estimator of the population mean (see
formula (2.2) on page 27) is calculated13. This procedure is repeated 10000 times for
each combination of ρ and m.

An illustration of the distribution of the 10000 values of the HT estimator is given
in Figure 9 which graphically displays the variance of the HT estimator under two-

12 see (3.2) on page 36
13 Due to the fact that with equal cluster sizes inclusion probabilities do not vary, the estimator simplifies

to the usual sample mean, given by ˆ̄y = n−1
m∑

i=1

ni∑
j=1

yi j .
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stage cluster sampling and srs for m = 150 (i.e. b̄ = 20) for selected values of ρ,

hence Var
�
ˆ̄y
(HT)

(clu2)[eq] 〈150〉 {+}

�
.

(a) ρ = 0.02 (b) ρ = 0.05

(c) ρ = 0.10 (d) ρ = 0.20

Figure 9: Overlaid Histograms based on a simulation of 10 000 repeated draws under srswor and two-stage
equal probability cluster sampling (m= 150)

What can be seen at first glance is that the histogram in lighter colour in front –
displaying the distribution of 10000 HT estimates based on simple random sampling
of ultimate sample elements – has a) identical shape in each plot and b) less fat tails
than the darker histogram in the background. As each histogram visually depicts the
empirical variance of the HT estimator for a specific sample design, the overdispersion
of the histogram in the background indicates that the design-based design effect,

defined as the ratio
Var
�
ˆ̄y(clu2e)

�

Var
�
ˆ̄y(srs)

� , in all scenarios exceeds unity. What can also be

seen is that with increasing homogeneity in the population the tails of the histogram
in the background become fatter which indicates higher variation in the empirical
distribution of estimates of ŷ (HT,clu2,equal).

Another way to look at the variation of the HT estimator in given scenarios is
through the grouped boxplots displayed in Figure 10. Here, the lower boxplot of
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each panel – indicating the distribution of 10 000 HT estimates under clu2 with equal
cluster sizes – is wider than the accompanying boxplot at the top of the panel. This
indicates the increased variance of the HT estimator under two-stage cluster sampling
with equal cluster sizes as compared to its variance under simple random sampling.
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Figure 10: Grouped boxplots of the distribution of the HT estimator under srs and two-stage cluster sam-
pling with equal cluster sizes for given scenarios with continuous data

What can easily be seen from Figure 10 is that both, ρ and m (and hence b̄) have an
influence on the magnitude of the estimated design effect. With large cluster sizes
the effect (in absolute terms) of an increase in ρ is of course greater than with small
cluster sizes14. This is even more obvious in the following Figure (11). For sake of
completeness, the variance of the HT estimator under clu2 and srs as well as the Monte
Carlo estimated true design effect based on these quantities for each scenario is given
in Table 21 in the appendix.

14 Note that the non-linear shape of the dots is due to a non-linear increase of the two lower most levels
of the model parameter ρ on the y-axis.
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Figure 11: Grouped dotplots of the Monte Carlo estimated true design effect for two-stage cluster sampling
with equal cluster sizes for given scenarios with continuous data

5.3.1.2 Two-Stage Cluster Sampling with unequal Cluster Sizes

This scenario is similar to the one described in the previous section with the difference
that now cluster sizes in the sample are allowed to vary (clu2u) within the boundaries
defined in (5.4). This variation in the number of selected individuals per PSU implies
that design weights, wi = Ni/ni , will vary. This additional variation is reflected in the
variance of the HT estimator (see (2.5) and (2.6) in Section 2.2). Besides, all further
steps of the simulation set-up and the analytical procedure are the same as described
in the previous subsection. The following overlaid histograms show the variance of
the estimator under clu2u and srs for m= 150; b̄ = 20 and selected values of ρ.

The shape and general interrelation of the histograms are similar to the scenario
with equal cluster sizes. However, the distribution of HT estimates under cluster sam-
pling is even wider than in the equal cluster sizes scenario, reflecting the aforemen-
tioned increase of variance in the estimator due to additional variance introduced by
variation in weights.

Taking a look on the distribution of HT estimates based on a wider range of scenar-
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(a) ρ = 0.02 (b) ρ = 0.05

(c) ρ = 0.10 (d) ρ = 0.20

Figure 12: Overlaid Histograms based on a simulation of 10 000 repeated draws under srs and two-stage
cluster sampling with unequal cluster sizes (m= 150, b̄ = 20)

ios (figure 13) we can, again, see that the influence of the average cluster size rules
this distribution – however, now generally on a higher level as additional variation
of the HT estimator is introduced by the design weights15. Also with cluster sampling
with unequal cluster sizes (and hence unequal inclusion probabilities), the influence
of ρ heavily depends on the average cluster size as can be seen from Figure 14.
With large average cluster sizes an increase in ρ has a larger effect on the magnitude
of ddeff than in a scenario with smaller average cluster sizes. The plots indicate an
increase in variance of the HT estimator due to additional variation introduced by
design weights. This becomes even more obvious in Table 22 in the appendix which
is composed similar to the one before but now displays the variance of the HT estima-
tor under two-stage sampling with unequal cluster sizes and under srs along with the
Monte Carlo estimated true design effect defined as the ratio of these two quantities.

15 This, of course, has an effect only on the spread of the distribution of the HT estimator under cluster
sampling and not under srs.
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Figure 13: Grouped boxplots of the distribution of the HT estimator under srs and two-stage cluster sam-
pling with unequal cluster sizes for given scenarios with continuous data

5.3.1.3 Comparison of Two-Stage Cluster Sampling with equal and unequal Cluster

Sizes

Unequal cluster sizes imply unequal inclusion probabilities and these, in turn, re-
quire use of design weights for unbiased estimates. The HT estimator considers design
weights and as such serves as an unbiased estimator for the population mean. In-
cluding weights, however, increases the variance of the estimator. This inflation of
variance can already be seen by comparing Tables 21 (equal cluster sizes) and 22 (un-
equal cluster sizes) where each entry in the fourth column of Table 22 is larger than
the corresponding entry of Table 21. This is illustrated graphically in Figure 15.

Here, every dot in the upper part of a given panel (i.e. indicating unequal cluster
sizes and hence unequal inclusion probabilities) lays more to the right than the cor-
responding dot of the lower part of the panel. This indicates the aforementioned fact
that the variance of the HT estimator as well as the design effect is larger for cluster
sampling with unequal cluster sizes.
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Figure 14: Grouped dotplots of the Monte Carlo estimated true design effect for srs and two-stage cluster
sampling with unequal cluster sizes for given scenarios with continuous data

The magnitude of the (model-dependent) ratio
Var
�
ˆ̄y
(HT)

(clu2) [ue] 〈+〉 {+}

�

Var
�
ˆ̄y
(HT )

(clu2)[eq] 〈+〉 {+}

� is given in Ta-

ble 4.
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Figure 15: Dotplot of mean ddeff for levels of ρ and average cluster sizes

Table 4: Summary of the simulation study with two-stage cluster sampling with equal and unequal selec-
tion probabilities

ρ m
Var
�
ˆ̄y
(HT )
(clu2) [ue] 〈+〉 {+}

�

Var

�
ˆ̄y
(HT )

(clu2)
�

eq
�
〈+〉 {+}

�

0.01 150 1.0714

0.01 300 1.1307

0.01 500 1.1449

0.02 150 1.0629

0.02 300 1.1403

0.02 500 1.1162

0.03 150 1.0808

0.03 300 1.0797

0.03 500 1.1250

0.04 150 1.0704

0.04 300 1.1335

0.04 500 1.1324

0.05 150 1.0686

0.05 300 1.0828

0.05 500 1.1035

0.10 150 1.0115

0.10 300 1.0575

0.10 500 1.1069

0.15 150 1.0442

0.15 300 1.0632

0.15 500 1.0872

0.20 150 1.0456

0.20 300 1.0483

0.20 500 1.0819
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5.3.2 Binary Data

The distributions with binary data are very similar to the ones of the previous sec-
tion. With dichotomous variables, however, an additional parameter comes into play,
namely the overall rate of success of the study variable, π, say. Hence, samples are
drawn from three different populations with π = {0.05,0.25,0.50} described earlier
(see section 5.1).

5.3.2.1 Two Stage Cluster Sampling with equal Cluster Sizes

Estimation of the true design effect as defined earlier is very similar to the continuous
data case. All we need is an appropriate estimator for the overall rate of success,
π. This is where ratio estimation comes into play. Inspecting Figure 16, we can see

deff
^

ρ

0.01

0.02

0.05

0.10

0.15

0.20

1 2 3 4

150

0.01

0.02

0.05

0.10

0.15

0.20

300

0.01

0.02

0.05

0.10

0.15

0.20

500

0.05
0.25
0.50

Figure 16: Grouped dotplots of mean ddeff under cluster sampling with equal cluster sizes for given scenar-
ios with binary data

that in most scenarios, the Monte Carlo estimated true design effect increases with π
– nevertheless, generally, there is only little variance. Again, as we saw earlier, its
magnitude is more influenced by cluster size than by population ρ.
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5.3.2.2 Two Stage Cluster Sampling with unequal Cluster Sizes

When cluster sizes vary and design weighting comes into play, also with binary data
Monte Carlo estimation of the true design effect is affected by the additional variance
introduced by the weights. However, the basic picture stays the same as before as the
magnitude of the design effect is depending mainly on the average cluster size and
not so much on population ρ. This can be seen from Figure 17 which is similar in
structure to Figure 16 of the previous section. As with cluster sampling with equal
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Figure 17: Grouped dotplots of mean ddeff under cluster sampling with unequal cluster sizes for given
scenarios with binary data

cluster sizes, the Monte Carlo estimated true design effect tends to be largest for π
for any given scenario – however this tendency is not so obvious as in the previous
setting.
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5.3.2.3 Comparison of Two-Stage Cluster Sampling with equal and unequal Cluster

Sizes

When comparing cluster sampling with equal and unequal cluster sizes (and hence
unweighted and weighted estimation), we can observe similar structure with dichoto-
mous outcome as with continuous data. Also with binary data, the Monte Carlo
estimated true design effect is larger for cluster sampling with unequal than for equal
cluster sizes as design weighting introduces additional variance to the estimates. This
is illustrated in Figure 18 where we can see that each dot, representing the estimated
design effect under a given scenario, in the upper part of a panel is further to the right
than the corresponding dot in the lower part. In this direct comparison, we can also
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Figure 18: Grouped dotplots of ddeff under cluster sampling with equal vs. unequal cluster sizes for given
scenarios with binary data

observe the tendency of the estimators to be more sensitive to variations in π under
weighting as the dots in the upper part of a panel tend to be more widely spread than
the ones in the lower half of the panel.

5.3.3 Comparing Estimation of the Monte Carlo estimated True Design Effect
with Continuous and with Binary Data

As we have observed a tendency of the Monte Carlo estimated true design effect, in the
binary setting, to vary for different levels of π, it is interesting to investigate whether
this variation has any systematic effect as compared to the setting with continuous
data. Figure 19 summarizes the relative deviation of the Monte Carlo estimated true
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design effect for binary data, ddeff[bin], from Monte Carlo estimated true design effect

for continuous data, ddeff[con], in units of ddeff[con]. What can be seen at first glance
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Figure 19: Grouped dotplots of the relative deviance of the Monte Carlo estimated true design effect for
binary data under cluster sampling with equal vs. unequal cluster sizes for given scenarios

is that the deviations are relatively small, hardly any exceeding ±5%, most of them
ranging within ±2.5%. There is a tendency of relative deviation to increase (in abso-
lute value, i.e. it may change sign from - to +) with overall π. However, this effect is
more obvious for small to medium than for large population ρ. All in all, deviations
are smaller for cluster with equal than with unequal cluster sizes.

5.4 Design-based Estimation of the Design Effect

Strategies for design-based estimation of the design effect build upon variance es-
timation methods suitable for the estimator and the design under consideration (see
Section 3.3.1). The design effect is interpreted as the ratio of the variance of an ap-
propriate estimator under a given sample design to the variance of an appropriate
estimator under srs (Kish, 1965). In real-world sampling practice, both estimators are
being calculated on basis of a given complex sample. A huge variety of variance esti-
mation methods has been proposed in the literature (see Section 3.3.1). The estimators
of deff based on Taylor linearisation (Section 3.3.1.1) and JRR (Section 3.3.1.2) meth-
ods are evaluated in the following simulation studies. For the estimation of the design
effect under two-stage cluster sampling, 10 000 samples are drawn from the differ-
ent populations. Then, with every given sample the design effect is estimated using
the variance of the unweighted and weighted sample mean of each of the aforemen-
tioned methods as enumerator of equation (3.2) according to (3.14) and (3.16). The
variance of the sample mean under srs in the denominator of te respective equations
is estimated treating the cluster sample data as if it was drawn using srs.
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5.4.1 Continuous Data

This simulation setting builds upon the same universes that were used before. Also,
the same sample vectors are used as in the previous setting. In fact, all simulation
scenarios base upon the same set of 10 000 samples drawn from the set of different
universes (see section 5.1 for more details). This enables direct comparisons between
different scenarios and settings afterwards.

5.4.1.1 Cluster Sampling with equal Cluster Sizes

As two-stage cluster sampling with equal cluster sizes is a totally balanced design,
the design-based estimators can be assumed to be highly precise. Precision, however,
must be measured in a design-based manner since there is no model-based predicted
value to evaluate the estimator against. Hence, in the following, the coefficient of
variation (cv for short) shall serve as a measure of precision. The cv was chosen to
make comparisons between different scenarios meaningful since it is defined as the
standard deviation independent of the expected value of the estimator. The following
dotplot shows the behaviour of the JRR and Taylor series estimator for given scenarios
in terms of relative variation as measured by cv(ddeff). As can be seen at first glance,
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Figure 20: Grouped dotplots of the cv of ddeff under cluster sampling with equal cluster sizes for given
scenarios with continuous data

there is hardly any variation in terms of precision between estimators at a given level
of population ρ and a given cluster size. Both, JRR and Taylor are equally precise in
terms of their cv. There is, however, variation between levels of ρ. Both estimators
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are less precise in scenarios where intraclass correlation is low. As the design effect
in magnitude mainly depends on the average cluster size, the effect of variations
between levels of m in cv is larger than the effect of variations in ρ.

This picture, however, can be misleading as it ignores the absolute magnitude of
ddeff yielded by the estimators. If we take a look at Figure 21, the scatter plot indicates
that the JRR estimator produces values larger than the ones produced by the Taylor
series estimator. In fact, with equal cluster sizes the JRR estimator yields values larger
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Figure 21: Grouped scatter plots of JRR vs. Taylor series estimates of ddeff under cluster sampling with
equal cluster sizes for given scenarios with continuous data

than those produced by the Taylor series estimator for a given sample in all of the
48 000 distinct samples of this setting. The question, then, is which of the estimators
is less biased and estimates the Monte Carlo estimated and the model-expected true
design effect most closely. Figure 22 gives an overview of the distribution of the
estimates produced by JRR and Taylor estimators in different scenarios. What can be
seen is that both estimators are downwards biased for the Monte Carlo estimated true
design effect (red vertical line) and upwards biased for the model-expected design
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Figure 22: Grouped boxplots of JRR and Taylor series estimates of ddeff under cluster sampling with equal
cluster sizes for given scenarios with continuous data

effect (blue vertical line). This bias is influenced both by the level of the population
parameter ρ and by the cluster size: High values of ρ and small cluster sizes generally
increase bias.

5.4.1.2 Cluster Sampling with unequal Cluster Sizes

With unequal cluster sizes and hence unequal inclusion probabilities, design weight-
ing must be incorporated into the HT estimator and hence also into its variance es-
timator. This, in turn, increases the variance of the estimator. The variance of the
estimator for the denominator stays unchanged as it treats the data as if it had arisen
from a srs design. It is obvious that this also increases the variance of the design-
based estimators of the design effect but leaves the basic relationship between the
estimators unchanged as can be seen in Figure 23.
Turning to deviation from the Monte Carlo estimated true design effect, we can ob-
serve the same change in the magnitude of the estimates JRR and Taylor series esti-
mators yield as Figure 24 indicates.
However, there is no change in how the estimators relate to each other. As before,
they are both positively biased for the Monte Carlo estimated true design effect.

5.4.1.3 Comparison of Two-Stage Cluster Sampling with equal and unequal Cluster

Sizes

When switching from equal to unequal cluster sizes and thus from constant to vary-
ing inclusion probabilities, design weighting for the point estimator is necessary to
get unbiased estimates. Weights, however, must be incorporated in the variance es-
timation as they introduce additional variance. If the variance estimator is used in
the nominator of the design-based formula for the design effect, any increase in the
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Figure 23: Grouped dotplots of the cv of ddeff under cluster sampling with unequal cluster sizes for given
scenarios with continuous data
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Figure 24: Grouped boxplots of JRR and Taylor series estimates of ddeff under cluster sampling with unequal
cluster sizes for given scenarios with continuous data

variance of the HT estimator will directly lead to an increase in the design effect as
the denominator will not vary since weighting is completely ignored here. Figure 25
shows the mean estimated design effects in different scenarios with equal and unequal
cluster sizes and hence with and without the effect of variation in design weights.
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Figure 25: Grouped dotplots of mean ddeff under cluster sampling with equal and unequal cluster sizes for
given scenarios with continuous data

We can hardly see any differences between the JRR and the Taylor based estimator
of deff as the plot symbols in all panels overlap almost perfectly. We do see, how-
ever, a difference in the magnitude of estimated deff. Both estimators reflect the
additional variance introduced by variation in design weights as they point estimates
show higher values with unequal cluster sizes (comparison of upper and lower part
within a panel).

Similar patterns can be observed when we look at the precision of estimators.
Figure 26 shows the coefficients of variation cv of the estimators.
Again, estimators are almost identical in terms of precision. Precision, however, in-
creases with an increase in the population level of ρ and with a decrease in the
average cluster size. At any given scenario the precision of both estimators is lower
under cluster sampling with unequal than with equal cluster sizes.

5.4.1.4 Variance Estimation under Cluster Sampling assuming SRS

The design based estimators of the design effect make use of the data from the cluster
sample at hand to estimate the denominator in equation (3.1) and (3.2), respectively.
The precision of a design-based estimator of deff of course also depends on the quality
of an appropriate variance estimator in the enumerator, but it will also be influenced
by the degree to which the assumption of the cluster sample data to be independent
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Figure 26: Grouped dotplots of cv of ddeff under cluster sampling with equal and unequal cluster sizes for
given scenarios with continuous data

identically distributed holds. The following simulation study investigates the patterns
of the ratio

R=
dVar
�
ˆ̄yclu2

�

dVar
�
ˆ̄ysrs

� , (5.5)

where dVar
�
ˆ̄yclu2

�
=

Var
�

yclu2

�

nclu2

is the variance of the sample mean of a two-stage

cluster sample of size nclu2 and dVar
�
ˆ̄ysrs

�
=

Var
�

ysrs

�

nsrs

is the variance of the sample

mean of a simple random sample of size nsrs.
Figure 27 shows the relative Root MSE (Rel. Root MSE) under different scenarios.

Rel. Root MSE was calculated according to the following formula:

Rel. Root MSE
�
θ̂
�
=

√√√√√
5 000∑
i=1

�
θ̂i − θ

θ

�2

5000
,

with the mean of dVar
�
ˆ̄ysrs

�
over 5 000 iterations as true value θ and the estimated

variances of ˆ̄y based on cluster sample data, dVar
�
ˆ̄yclu2

�
, as θ̂i . One can see that in

all scenarios the Rel. Root MSE is larger when cluster sizes vary than in the case
when they are equal. A direct comparison of Rel. Root MSE of θ̂ =dVar

�
ˆ̄ysrs

�
and

GESIS-Series | Volume 3 81



Matthias Ganninger

rel. Root MSE (in %)

equal

unequal

2.5 3.0 3.5 4.0

0.02

150

0.05

150

2.5 3.0 3.5 4.0

0.1

150

0.2

150

equal

unequal

0.02

300

0.05

300

0.1

300

0.2

300

equal

unequal

0.02

500

2.5 3.0 3.5 4.0

0.05

500

0.1

500

2.5 3.0 3.5 4.0

0.2

500

Figure 27: Grouped dotplots of Rel. Root MSE of estimated variance of the sample mean under cluster
sampling with continuous data

θ̂ =dVar
�
ˆ̄yclu2

�
, respectively, is given in Figure 28. We can see that, little surprisingly,
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Figure 28: Grouped dotplots of Rel. Root MSE of estimated variance of the sample mean based on clu2
and on real srs data with continuous data
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the Rel. Root MSE based on a srs is smaller than the respective Rel. Root MSE based
on a clu2 in all scenarios. With an increase of the homogeneity in the population
(comparison within a row) the Rel. Root MSE of the clu2 data increases. As (average)
cluster sizes get smaller, the Rel. Root MSE based on clu2 data decreases (comparison
within a column). When cluster sizes vary compared to the case when cluster sizes
are equal (comparison within a panel), Rel. Root MSE is also bigger. This leads to
the conclusion that the variance of the estimator based on the cluster sample at hand
which is commonly used in the denominator of the formula for the design effect is,
of course, less efficient than the estimator based on a srs of the (expected) same size.
What is more interesting, however, is a comparison of relative bias between estimates
based on clu2 and srs data. The following Figure gives an overview of the distribution
of

Rel. Bias
�
θ̂
�
=

1

5000

5 000∑
i=1

θ̂i − θ

θ
,

as before either for θ̂ =dVar
�
ˆ̄ysrs

�
and θ̂ =dVar

�
ˆ̄yclu2

�
, respectively. The figure shows
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Figure 29: Grouped dotplots of Rel. Bias of estimated variance of the sample mean based on clu2 and on
real srs data with continuous data

that, as expected, Rel. Bias
�dVar

�
ˆ̄ysrs

��
is effectively zero in all scenarios. Almost all

Rel. Bias based on clu2 are, however, non-zero. Nevertheless, it has to be mentioned
that the magnitude of bias is rather small, ranging from -0.1210% (ρ = 0.10, m =

150, equal cluster sizes) to 0.0747% (ρ = 0.10, m= 150, unequal cluster sizes). With
a decrease in cluster sizes (comparison within a column), the estimates tend to be
less downward biased in the scenario with equal cluster sizes (lower part of a panel)
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and more downward biased with unequal cluster sizes (upper part of a panel). Both
effects, however, are perfectly stringent. An increase in the population level of ρ
(comparison within a row) tends to change the direction from upward to downward
bias in scenarios with equal cluster sizes (again, lower part of a panel). This effect
cannot be observed in scenarios with unequal cluster sizes. Here an increase in ρ in
some cases increases and in other cases decreases Rel. Bias depending on both m and
the levels of ρ for which the comparison is made. Nevertheless, one can state that
dVar
�
ˆ̄ysrs

�
tends to be – at a low level – biased and will hence lead to biased estimates

if naively used in the denominator of a design-based estimator of deff.

5.4.2 Estimation of the Design Effect for the Median

There exists no closed form of the model-based design effect for the median. Thus,
estimation of deff for the median must be design-based. The JRR estimation technique
can be used to construct a variance estimator of the median (see Section 3.3.1.2)
with cluster sample designs. This estimator can then be used as the numerator in
equation (3.2). We can use the variance estimator of the median assuming srs of
elements proposed by McKean and Schrader (1984) as an appropriate denominator in
equation (3.2). The variance estimator for the median by McKean and Schrader (1984)
is defined as

dVarMS

�
ˆ̃y
�
=

�
yn−c+1 − yc

2(1.96)2

�2

, (5.6)

where c = n+1

2
− 1.96

�
n

4

�2

. The ratio of these two quantities is calculated 10 000

times for each combination of ρ and m, i.e. the simulation set-ups follow the same
logic as the ones described before. Figure 30 shows the distribution of the mean
estimated design effect of the median based on the estimator described above. For

a non-parametric measure like the median, the point estimate of ddeff
JRR

shows very
similar patterns as in the case of the HT estimator for the population mean: With an
increase of the homogeneity in the population, the estimated design effect increases
and with small (average) cluster sizes it decreases. Also in line with the findings of the
previous section is the observation that the design effect is larger if cluster sizes vary
than if they are constant. Figure 31 shows the coefficient of variation of estimates of

the ddeff
JRR

estimator for the median. We have to consider the coefficient of variation
since the variance and the standard deviation of estimates will be influenced by the
mean value of estimates which are, in turn influenced by levels of m and different
levels of the population parameter ρ between which we want to make comparisons.

We can see that, standardized on the mean, the estimator of the design effect for
the median is least precise when homogeneity in the population and (average) cluster
sizes are small. Due to the fact that the expected value is larger with unequal cluster
size, the denominator in the formula of the coefficient of variation rules the fraction,
although the standard deviations of estimates under unequal cluster sizes are larger
compared to the scenario with equal cluster sizes. Thus, for a comparison of the
precision of the estimator between equal and unequal cluster sizes for given levels of
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Figure 30: Grouped dotplots of the mean estimated design effect of the median based on ddeff
JRR

under
cluster sampling with equal and unequal cluster sizes for given scenarios with continuous data
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Figure 31: Grouped dotplots of the coefficient of variation of the estimated design effect of the median based

on ddeff
JRR

under cluster sampling with equal and unequal cluster sizes for given scenarios with
continuous data

m and ρ, we have to look at the standard deviation, not the coefficient of variation.
This comparison reveals that in almost all cases the precision is higher in the scenario
with equal than with unequal cluster sizes (see Figure 32).
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Figure 32: Grouped dotplots of standard deviations of the estimated design effect of the median based on
ddeff

JRR
under cluster sampling with equal and unequal cluster sizes for given scenarios with

continuous data

5.4.3 Dichotomous Data

The design-based variance estimators for the HT estimator used to estimate the design
effect with binary data differ a bit from those used in the case of continuous data.
The JRR and Taylor estimators of deff have to be modified to estimate the variance
of an appropriate point estimator with binary outcome data (see Sections 3.3.1.1 and
3.3.1.2).

5.4.3.1 Cluster Sampling with equal Cluster Sizes

With binary outcome data, the additional parameter of π has to be considered when
comparing the results of the estimated design effect. Hence, the following plots differ-
entiate different levels of overall π by different colours. It can be seen from Figure 33
which depicts the cv of the estimates produced by the respective estimators in the sce-
narios of this setting. There are, however, hardly any differences bewtween estimators
in a given scenario but huge differences between different levels of π within a given
scenario. Depending on the scenario, cv(ddeff) is up to twice as large for π = 0.05

than for π = 0.50 (as for example in ρ = 0.20, m = 150). Put the other way around,
the gain in efficiency is largest for a change in π from 0.05 to 0.25 and only marginal
when π increases from 0.25 to 0.50. However, with small and medium population ρ
there is hardly any difference in cv for different levels of π – especially for medium
and small cluster sizes where ddeff tends to be very small. In these scenarios, cv for
π = {0.25,0.50} hardly varys with ρ. Nevertheless, the general tendency of the cv
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Figure 33: Grouped dotplots of the cv of ddeff under cluster sampling with equal cluster sizes for given
scenarios with binary data

for JRR and Taylor estimator is to show less variation when ρ is large and π is not
too small.

When we take a look at the full distribution of estimates in Figure 34, we can see
that also with binary data, both estimators have positive bias for the Monte Carlo
estimated true design effect. The JRR estimator, however, shows a little less bias than
the Taylor estimator. The magnitude of bias is only slightly influenced by π as the
boxplots’ location hardly changes when moving vertically through the lattice plot. It
is more depending on population ρ since the boxplots’ location moves further away
from the grey line when moving through the lattice from low to high values of ρ.

5.4.3.2 Cluster Sampling with unequal Cluster Sizes

Under cluster sampling with unequal cluster sizes (and unequal inclusion probabil-
ities), the additional variation introduced by weighting is reflected in increased cv

of the estimates produced by the simulation runs. Figure 35 gives an overview over
the distribution of the estimators’ cv under different scenarios. There are, however,
no changes in the interrelation of the estimators as compared to the previous set-
ting. That is, also when using design weights the JRR estimator in every scenario
has smaller standard deviation than the Taylor estimator. But since JRR’s mean over
10 000 iterations is also smaller, it has essentially the same cv as the Taylor estimator.

These tendencies are both graphically illustrated by the grouped boxplots of Fig-
ure 36. Here we can observe a) the biased nature of both estimators, b) the larger
variance of the Taylor estimator and c) the smaller average of the JRR estimator. As
a rule, the JRR is less biased than the Taylor estimator. The bias is smaller for small
values of ρ and large average cluster sizes. The magnitude of π seems to have only a
very small effect on bias.
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Figure 34: Grouped boxplots of JRR and Taylor series estimates of ddeff under cluster sampling with equal
cluster sizes for given scenarios with binary data
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Figure 35: Grouped dotplots of the cv of ddeff under cluster sampling with unequal cluster sizes for given
scenarios with binary data

5.4.3.3 Comparison of Two-Stage Cluster Sampling with equal and unequal Cluster

Sizes

The loss in efficiency as measured by cv can be severe in a setting with unequal
cluster sizes compared to the same setting with equal cluster sizes. Figure 37 displays
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Figure 36: Grouped boxplots of JRR and Taylor series estimates of ddeff under cluster sampling with unequal
cluster sizes for given scenarios with binary data

the ratio Rcv =
cv
�
ddeff(+)[un] 〈+〉 {+}

�

cv
�
ddeff(+)[eq] 〈+〉 {+}

� . Here we can see that this ratio can be as big as

1.4 indicating a 40% increase in the coefficient of variation when weighting is applied
as to the setting where all weights are constant. What can be seen from the above
figure is that as π gets very small, this has an enormous effect on the magnitude of
Rcv . That is, within a given scenario a change from π = 0.50 to 0.25 has hardly any
effect on Rcv . A change from π = .25 to π = 0.05, however, leads to a dramatic
increase in Rcv . This effect is most significant when, in addition, ρ is small and m is
large (and hence the average cluster size is small).

If we now take a look at the ratio of the averages of estimated design effect,

Rmean =
ddeff(+)[un] 〈+〉 {+}

ddeff(+)[eq] 〈+〉 {+}

, we can observe different effects. Figure 38 shows Rmean

for different scenarios. First of all, there are almost no differences between estima-
tors under study. Furthermore, the magnitude of π has hardly any influence on the
average of the estimated design effect. A significant effect, however, on the mag-
nitude of Rmean is introduced both by average cluster size and by the magnitude of
the population parameter ρ. With decreasing cluster size and a decrease in ρ, Rmean

increases. This indicates that the effect of additional variance introduced by weights
is more pronounced when the effect of clustering is rather small.
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Figure 37: Grouped dotplots of the ratio of cvs of cluster sampling with unequal to equal cluster sizes for
given scenarios with binary data

5.5 Model-based Estimation of the Design Effect

Estimation of the design effect in a model-based manner requires the estimation
and/or calculation of the two components of the design effect, namely ddeffc and ddeffp.
These quantities, in turn, depend on precise estimation of the components which they
are a function of. For the estimator ddeffc, a crucial task is the estimation of ρ and
calculation of b∗, while to estimate ddeffp, only design weights have to be calculated.
Since this task, as well as the calculation of b∗, is rather trivial, the following Monte
Carlo studies are limited to an investigation of the quality of estimators of ρ.

Due to the fact that, depending on the scale, different estimators for ρ have been
proposed, the simulation studies consider Gaussian as well as binary outcome data
separately.

The Gaussian setting is similar in set-up to the situation in the previous section,
thus leading to a 2 (cluster size type) × 3 (average cluster size) × 8 (values of ρ)=48
factorial study design. The binary setting has 2 (cluster size type) × 3 (average cluster
size) × 8 (values of ρ) × 3 (values of π)=144 factors, which is also similar to the
setting described in section 5.4. In the scenarios of the first setting, the whole set of
estimators described in section 4.2 is investigated. In the setting with binary outcome
data, nine estimators – described in section 4.3 – are evaluated. In the following
subsections, first the behaviour of the estimators of ρ is illustrated for continuous
(section 5.5.1) and, second, for binary (section 5.5.2) data.
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Figure 38: Grouped dotplots of the ratio of averages of cluster sampling with unequal to equal cluster sizes
for given scenarios with binary data

5.5.1 Estimation of ρ with Continuous Data

A large number of estimators for the intraclass correlation coefficient for continuous
outcome data has been proposed in the literature. An overview is given in Section 4.2.
These estimators behave differently in different environments. Some estimators re-
act sensitive to variations in cluster size whereas others tend to underestimate the
parameter of interest when cluster sizes vary. A first natural distinction between esti-
mators of ρ is made in Section 4.2 where the classical ANOVA and F-Type estimators
form one group and estimators based on the variance decomposition of a random
effects model form the second group. Additionally, the effect of equal and unequal
cluster sizes is of interest in the evaluation of the estimators’ quality16. Finally, the
magnitude of bias and precision also depends on the magnitude of the population
parameter, ρ. Thus, also ρ is considered as a factor in the Monte Carlo simulation
and in the analysis.

5.5.1.1 Two-Stage Cluster Sampling with equal Cluster Sizes

First, the case of cluster sampling with equal cluster sizes (i.e. equal inclusion prob-
abilities) is considered. In this scenario, where all sampled clusters have equal size,
ρ̂(AOV), ρ̂(F2) and ρ̂(REML) are equivalent as well as ρ̂(FR) and ρ̂(ML); when ignoring

16 Please note that also with unequal cluster sizes no weighting has been applied since these estimators
are not designed to take weights into account.
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circumstances where classical estimators yield negative estimates and random ef-
fects model based estimators yield zero. The grouped boxplots of Figure 39 give an
overview of the distribution of the estimators in given scenarios. Within each panel,
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Figure 39: Grouped boxplots of estimates of ρ under two-stage cluster sampling with equal cluster sizes
for continuous data

a comparison between estimators can be made for given levels of population ρ and
cluster size. The distribution of estimates for different levels of ρ in the population
shows larger variation for high levels of ρ. All estimators react in similar manner to
an increase in ρ at a given cluster size. Especially in the case of ρ = 0.02, one can
clearly observe that the REML, ML and the Laplace estimators are restricted in range
to a minimum of zero. In addition, we can observe a clear tendency of the Laplace
estimator to yield downwards biased estimates.

Bias and precision – in terms of relative mean squared error (Rel. MSE) – of the
estimators are illustrated in more detail by the grouped dotplots of Figure 40. As
already indicated by Figure 39, the classical estimators show hardly any bias and
are very precise; also in the case of very low population ρ and very small cluster
sizes, the only exception being the FR estimator which shows some downward bias
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Figure 40: Grouped dotplots of Rel. Bias and Rel. MSE of estimators of ρ under two-stage cluster sampling
with equal cluster sizes for continuous data

in all scenarios. The estimators of the random effects model class are, in contrast,
all biased – some of them in certain scenarios quite heavily. The relative bias of the
Laplace estimator has already been mentioned before and becomes obvious also in
Figure 40, as it reaches a downward bias of up to -87.5% and even under the modest
conditions it is at an unacceptable level of -20.8% which is, due to the choice of scale
of the x-axis, not even shown in the plots17. The REML and ML estimators are less
biased with the REML estimator showing less bias than the ML estimator. However,
REML (as well as ML and especially Laplace) estimator tends to react very sensitive
on a decrease of cluster size, both in terms of bias and precision – especially when
population ρ is small18. The least biased estimator under each scenario is given in
the cells of Table 5. The most successful estimator in this respect is the F estimator
which is the least biased one in seven out of twelve scenarios. It is followed by F2 and
REML which are the least biased estimators in three and two scenarios, respectively.
These differences cannot, however, be assured by usual significance tests. Turning to

Table 5: Least absolute bias of all estimators by population ρ and average cluster size

0.02 0.05 0.10 0.20
150 F2 F F F
300 F F F F2
500 F F2 REML REML

precision as measured by Rel. MSE, the classical as well as the random effects model
estimators react sensitively to a decrease in cluster size – again, no more so than for
low levels of population ρ. For a given level of ρ and a given cluster size, one can

17 For better comparison of the estimators the scale of the x-axis was chosen very narrow.
18 In fact, REML and ML are both so severly biased that they are outside the scale of the x-axis in the two

most extreme settings.
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hardly see any difference between estimators except for an unacceptable high Rel.
MSE of the REML, ML and Laplace estimators in extreme scenarios and of the Laplace
estimator in all scenarios. However, with moderate levels of ρ and small to medium
cluster sizes, REML and ML estimators have Rel. MSE comparable the the classical
estimators. As can be seen from the following table, the FR estimator is most precise
in eight out of twelve scenarios, F and ML estimators only twice each. An interesting

Table 6: Least Rel. MSE of all estimators by population ρ and average cluster size

0.02 0.05 0.10 0.20
150 FR FR FR F
300 FR FR ML FR
500 FR FR F ML

feature of the joint effects of cluster size and population ρ on Rel. MSE is that with
ρ = {0.02,0.05} a decrease in cluster size increases Rel. MSE. With high levels of ρ
(i.e. 0.10 and 0.20), however, the reverse effect can be observed – a decrease in cluster
size now leads to a decrease in Rel. MSE. Table 23 in the appendix summarizes Rel.
Bias and Rel. MSE of the estimators under given simulation scenarios.

5.5.1.2 Two-Stage Cluster Sampling with unequal Cluster Sizes

When allowing for variations in cluster sizes, the picture that emerged in the previous
subsection changes a bit. However, the basic underlying structure stays the same,
as Figure 41 indicates. In extreme scenarios (small value of the parameter ρ, small
average cluster sizes), all estimators have difficulties yielding unbiased and precise
estimates. If we take a closer look, however, we can now observe variation between
estimators of all types – both in terms of bias and precision. These differences are
most obvious in extreme scenarios. Although the classical estimators, again, show
very little bias also in extreme scenarios, the F estimator can be seen to have relatively
high variation compared to all other classical estimators.

Looking at Figure 42, we can observe a similar pattern as in the case of equal
cluster sizes. A certain degree of bias can now be observed also for the FR estimator.
The REML, ML and Laplace estimators are severely biased in extreme scenarios19. As a
rule, a decrease of average cluster size at a given level of ρ leads to an increase in the
magnitude of relative bias. This effect, however, is only consistent when population
ρ is small and for the random effects model estimators as well as for ρ̂(AOV) and ρ̂(F).
For higher levels of ρ, estimators seem to be less biased for small average cluster sizes
at first glance. In fact, however, most of the estimators (especially the ones based on
random effects models), simply change sign from negative to positive bias.

Table 7 indicates that the F estimator shows least absolute bias in six of the 12
scenarios, AOV, REML and F2 in two settings each. With big and medium average
cluster sizes and small population ρ, the F estimator can be seen to be very unprecise

19 Again, they are so heavily biased that they lay outside the x-axis scale.
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Figure 41: Grouped boxplots of estimates of ρ under two-stage cluster sampling with unequal cluster sizes
for continuous data
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Figure 42: Grouped dotplots of Rel. Bias and Rel. MSE of estimators of ρ under two-stage cluster sampling
with unequal cluster sizes for continuous data
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Table 7: Least absolute bias of all estimators by population ρ and average cluster size

0.02 0.05 0.10 0.20
150 F F REML F
300 F REML AOV F2
500 AOV F F2 F

– in almost all scenarios it is the second most unprecise estimator after ρ̂(Laplace). Also
with unequal cluster sizes the effect of an increase of Rel. MSE for ρ = {0.02,0.05}

and a decrease for high values of ρ can be observed for almost all estimators. When it
comes to precision, the ML estimator is most precise in five scenarios, FR and Laplace
in three scenarios and REML in one as can be seen from Table 8 An overview of

Table 8: Least Rel. MSE of all estimators by population ρ and average cluster size

0.02 0.05 0.10 0.20
150 Laplace ML ML ML
300 Laplace FR FR ML
500 Laplace FR ML REML

relative bias and MSE for the complete set of scenarios is given in Table 24 in the
appendix.

5.5.1.3 Comparison of Cluster Sampling with equal and unequal Cluster Sizes

In practical survey sampling one is of course only very rarely faced with a cluster
sample that has PSUs of equal size. Nevertheless, many estimators (in fact all the
classical ones) are based on that assumption. We have seen that in neither of the
settings described before, the same estimator is both least biased and most precise at
a given scenario. This makes the choice of an optimal estimator for a given complex
sample even more complicated. Another way, hence, to evaluate the quality of an
estimator is to look at its sensitivity to violations of the equal cluster size assumption.

The following figures depict the ratio of Rel. Bias and Rel. MSE for each estimator
in each scenario of the unequal and the equal cluster size setting, hence the ratios

R
ρ̂(+)

Rel. MSE =
Rel. MSE

�
ρ̂
(+)

(clu2) [ue] 〈+〉 {+}

�

Rel. MSE
�
ρ̂
(+)

(clu2)[eq] 〈+〉 {+}

�

and

R
ρ̂(+)

Rel. Bias =
Rel. Bias

�
ρ̂
(+)

(clu2) [ue] 〈+〉 {+}

�

Rel. Bias
�
ρ̂
(+)

(clu2)[eq] 〈+〉 {+}

� .

To avoid confusion, Rel. Bias is treated unsigned. The x-axis of the Rel. Bias plots is
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truncated to 3.0 but covers the full range toward the minimum. Thus, ratios of Rel.
Bias not shown in a plot are above 3.0. The classical estimators in many scenarios are
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Figure 43: Grouped dotplots of Rel. Bias and Rel. MSE of estimators of ρ under two-stage cluster sampling
for unequal to equal cluster sizes for continuous data

more biased (i.e. the ratio of unsigned Rel. Biases exceeds one) when cluster sizes vary
compared to the case of equal cluster sizes. The ML, REML and Laplace estimators
tend to react with an increase in relative downward bias on a decrease in cluster size
at any level of ρ. When precision of estimators is concerned, only ρ̂(F) and ρ̂(Laplace)

react sensitive on a change from equal to unequal cluster sizes. ρ̂(F) tends to be less
precise in a scenario with unequal cluster sizes. This loss in precision increases with
a decrease in cluster size and a decrease in magnitude of the population parameter of
ρ. The ρ̂(Laplace) estimator, on the other hand, is more efficient with unequal cluster
sizes than with equal cluster sizes – especially for small values of ρ in the population
and small cluster sizes. This finding is a bit odd and counter-intuitive but may be an
artifact which can be explained by the overall low level of precision of the Laplace
estimator.

5.5.2 Estimation of ρ with Binary Data

The precision and Bias of estimators of ρ in the case of binary study variables is
analysed in the following subsections. As mentioned earlier, also for binary outcome
data, a wide range of estimators have been proposed in the literature. In this simu-
lation study, however, only nine classical estimators and three estimators based on a
variance decomposition of a random effects model are considered.

5.5.2.1 Two-Stage Cluster Sampling with equal Cluster Sizes

To get a first impression, the distribution of the estimates based on 10000 repeated
samples from the respective population is summarized in the grouped boxplots of
Figure 44. The grouping is by estimator type, number of clusters and π for selected
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levels of ρ. Within each panel, hardly any difference between estimators occurs. This
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Figure 44: Grouped boxplots of estimates of ρ under two-stage cluster sampling with equal cluster sizes
for binary data

is in line with what Mak (1988) found. We can, however, observe a pattern between
panels within a plot at a given level of ρ. With an increase in the number of clusters
(and hence a decrease in cluster size), estimators tend to be less precise. However,
with a decrease in overall π, estimators tend to be more precise. These effects can
also be observed in interaction. They are more obvious for large values of ρ (e.g.
0.20) than for small ones (e.g. 0.02).

Let us take a closer look at a set of selected estimators. I chose ρ̂(AOV), ρ̂(KEQ) and
ρ̂(ML) as well as ρ̂(REML) estimators to illustrate a) that there is hardly any difference
between the two typical estimators of the classical type and b) the differences in range
between the classical estimators and the ones based on a variance decomposition of
a random effects model. The plots of Figure 45 represent the simulation subset with
π = .25 for usual levels of ρ. The AOV and the KEQ estimator both tend to slight
overestimation especially with high levels of population ρ. For population ρ = 0.02,
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Figure 45: Grouped boxplots of selected estimators of ρ under two-stage cluster sampling with equal clus-
ter sizes for binary data; π = 0.25

it is easy to see that the two other estimators’ range is bounded to 0. Otherwise,
all estimators behave very much the same, there is no severe deviation from the
population value: AOV, KEQ and REML estimators are equivalent for the special case
of equal cluster sizes (Mak, 1988).

The variation of the estimators depends on the magnitude of the population pa-
rameter to estimate. This is why the standard deviation as a measure of the spread
of the distribution of estimates alone is misleading. Its interpretation must be ac-
companied by the relative Root Mean Squared Error (rRMSE) which is graphically
illustrated in Figure 46. It must be noted that the x-axis’ range is restricted and
hence values outside that range will not be displayed. Again, we see that especially
for small values of ρ and small cluster sizes, the rRMSE is rather big for all estima-
tors – in fact larger than 0.5 for the combination ρ = .02 and m = 500. A rather
odd pattern must be mentioned, too: rRMSE tends to be smaller for small cluster
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Figure 46: Dotplot of rRMSE of estimators of ρ based on cluster sampling with equal cluster sizes

sizes than for large ones for large values of ρ – especially for small values of π.
If we look at the coefficient of variation, we can see that this is mainly due to a de-
crease in the variation of the estimators with smaller average cluster sizes as the share

mean

�
ρ̂
(AOV)

(clu2)[eq] 〈150〉 {.20}

�

mean

�
ρ̂
(AOV)

(clu2)[eq] 〈500〉 {.20}

� = .99 but
sd

�
ρ̂
(AOV)

(clu2)[eq] 〈150〉 {.20}

�

sd

�
ρ̂
(AOV)

(clu2)[eq] 〈500〉 {.20}

� = 1.26 thus ruling

the 27% increase in cv

�
ρ̂
(AOV)

(clu2)[eq] 〈150〉 {.20}

�
= 0.2203 to cv

�
ρ̂
(AOV)

(clu2)[eq] 〈500〉 {.20}

�
=

0.1731.

5.5.2.2 Two-Stage Cluster Sampling with unequal Cluster Sizes

Things change when cluster sizes are allowed to vary. There are, however, the same
trends of estimators to be more precise with large π, average cluster sizes and with
large values of ρ. In this setting, however, we can also observe differences between
estimators as they react at different magnitude to variations in cluster sizes. Figure 47
depicts the distribution of estimators by m and ρ for given levels of π. With unequal
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Figure 47: Grouped boxplots of estimates of ρ under two-stage cluster sampling with unequal cluster sizes
for binary data

cluster sizes, we can observe differences between the distributions of estimators within
each panel. A wide spread boxplot with far outliers indicates that an estimator is less
precise than an estimator with a narrower box and less severe outliers. The KEQ,
MAK and PGP estimators, for example, tend to show this pattern – especially for
small values of π and small average cluster sizes.

If we take a closer look at selected estimators again, we can now observe differ-
ences and patterns of gain or loss in their precision. Figure 48 firstly illustrates the
differences in the lower bounds of the classical (here: AOV and KEQ) estimators com-
pared to the estimators based on the variance components of a random effect model
(here: random effect model estimation based on ML and REML technique). The lower
whisker of the boxplots (or even the inner fence) in Figures 5.48(c) and 5.48(d) ob page
102 never go beyond zero which leads to skewed distributions of ρ̂(ML) and ρ̂(REML) –
this is most obvious in scenarios where the population parameter to estimate is rather
small (i.e. ρ=0.02 or 0.05). A common pattern of all estimators presented here is the
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Figure 48: Grouped boxplots of selected estimators of ρ under two-stage cluster sampling with unequal
cluster sizes for binary data; π= .25

loss of precision when cluster sizes decrease. This effect is amplified also when ρ in
the population is rather small.

5.5.2.3 Comparison of Cluster Sampling with equal and unequal Cluster Sizes

A comparison between cluster sampling with equal and unequal cluster sizes must
consider both, bias and precision. Figures 49 and 50 are very similar. They show the
the ratio of means (Figure 49) and standard deviations (Figure 50) of estimators of ρ
for levels of overall π. Switching from equal to unequal cluster sizes has the least
effect on the bias of an estimator if π= 0.50 as in all panels of Figure 49 the ratio of
means of almost all estimators in a majority of settings is closest to one if the overall
success rate of study variable is 50% (indicated by a red triangle). Another pattern
that holds for almost all estimators and settings is that bias decreases with large
values of population ρ. The ρ̂(ML) and ρ̂(REML) estimators tend to react very sensitive
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Figure 49: Grouped dotplots of means of estimators of ρ under two-stage cluster sampling with unequal
to equal cluster sizes for binary data

on variable cluster sizes compared to the scale of equal cluster sizes – especially so
when cluster sizes are small.

Figure 50 follows the same logic but now displays the ratios of standard deviations
of estimators under unequal to equal cluster sizes instead of means. What can be seen
at first glance is that many dots lay above one, indicating that many estimators in
many settings react with a loss in precision on a switch from equal to unequal cluster
sizes.

The ρ̂(KEQ), ρ̂(MAK), and ρ̂(PGP) estimators lose precision when cluster sizes vary
compared to settings where they are constant. This effect is, again, amplified by
small population parameter of ρ and small cluster sizes. Especially ρ̂(KEQ) shows less
loss in precision when the parameter to estimate is large. ρ̂(PEQ), however, behaves
different: with an increase in population ρ a switch from equal to unequal cluster
sizes increases the variation of this estimator. In addition, a decrease in cluster size
decreases the influence of this effect – at a given level of ρ, smaller cluster sizes
have a positive effect on the relative precision of ρ̂(PEQ). The estimators of ρ which
are based on variance components of a random effects model react sensitively to a
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Figure 50: Grouped dotplots of standard deviations of estimators of ρ under two-stage cluster sampling
with unequal to equal cluster sizes for binary data

switch from equal to unequal cluster sizes only in extreme scenarios, namely when
population ρ and cluster sizes are small. Then, however, both ρ̂(ML) and ρ̂(REML) gain
from such a shift – these estimators are more precise with varying than with constant
cluster sizes.

5.6 Comparison of Estimation Strategies

With a given complex sample at hand, the most interesting question to answer for
the data analyst is: Which estimator of the design effect fits best my data? Depending
on the properties of the data and the study variable, the answer to this question
may vary. This section gives a comparative round-up of estimation approaches for
different settings, scenarios, approaches and estimators. The comparison is based
on three basic summary statistics: the mean, standard deviation (sd ) and coefficient
of variation (cv) of estimated design effects over iterations. Each evaluation of the
quality of point estimation uses the Monte Carlo estimated true design effect as a
reference. The visualization is by use of grouped dotplots. Within a panel, summary
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statistics are displayed for estimators of each approach (design-based and model-
based approach). Estimators are distinguished by different plot symbols. Estimates
of model-based estimators are calculated according to formula (3.5), substituting ρ
by one of its estimators. It can be seen that all estimators yield very similar mean
estimates.

5.6.1 Continuous Data

This subsection summarizes and compares the results of three previous sections on
a) the Monte Carlo estimated true design effect, b) design-based and c) model-based
estimation of the design effect for continuous data. Due to its bias, the ρ̂(Laplace)

estimator is not considered any further in the following discussion.

5.6.1.1 Cluster Sampling with equal Cluster Sizes

Starting with the evaluation of differences in point estimation, Figure 51 gives an
overview of the distribution of mean estimated design effects by approach and es-
timator for different scenarios. There is hardly any difference between estimation
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Figure 51: Grouped dotplots of the mean of ddeff under cluster sampling with equal cluster sizes for given
scenarios with continuous data

approaches. Compared with the Monte Carlo estimated true design effect, all estima-
tors (except for the one based on ρ̂(Laplace)) yield conservative estimates (i.e. the mean
estimated design effect is bigger than the Monte Carlo estimated true design effect in
the same scenario) which is indicated by the location of the plotting characters right
to the vertical dashed line.

Let us take a look at the precision of the estimators. Figure 52 shows the standard
deviations of estimators over 10 000 iterations of a scenario. Estimators of either ap-
proach are very similar in terms of precision. The model-based estimators using ρ̂(ML)

and ρ̂(REML) as estimators for ρ are, however, less precise than all other estimators –
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especially when the population parameter to estimate and the cluster sizes are rather
small.
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Figure 52: Grouped dotplots of the standard deviations of ddeff under cluster sampling with equal cluster
sizes for given scenarios with continuous data

5.6.1.2 Cluster Sampling with unequal Cluster Sizes

If variation in cluster sizes is present and hence weighting comes into play, estimators
of deff do have to include the additional inflation in variance due to weighting. The
design-based estimators do so by directly incorporating weights in the variance esti-
mator while model-based estimators are ex-post calibrated by multiplying ddeffc with
ddeffp. The point estimates of all estimators behave very similar also when weighting
is present and will thus not be reported here. However, estimators of deff differ in
terms of precision as Figure 53 shows. Again, model-based estimators of deff ap-
plying ρ̂(ML) and ρ̂(REML) as estimators for ρ tend to be less precise. What is more
interesting, however, are the differences between estimators of different approaches.

The design-based estimators (ddeff
JRR

and ) of deff are less precise than the most pre-
cise model-based estimator based on ρ̂(FR) in all settings. In fact the JRR estimator is
2.3% (ρ = 0.20; m = 150) to 24.6% (ρ = 0.02; m = 500) less precise than the AOV

model-based estimator. The design-based ddeff
Taylor

estimator behaves very similarly:
its precision is 1.7% to 24.4% less that that of the model-based AOV estimator of deff.

5.6.2 Binary Data

Turning to binary data, a further parameter has to be considered in the comparisons,
namely the overall rate of success of the study variable, π. In order to keep interpre-
tation of the following plots as straightforward as possible, each of them compares
the estimators bias and precision for given levels of m.
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Figure 53: Grouped dotplots of the standard deviations of ddeff under cluster sampling with unequal cluster
sizes for given scenarios with continuous data

5.6.2.1 Cluster Sampling with equal Cluster Sizes

In terms of bias, the differences in the means of estimators between approaches are
more obvious than in the previous setting as Figure 54 demonstrates.
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Figure 54: Grouped dotplots means of estimates of ddeff under cluster sampling with equal cluster sizes for
given scenarios with binary data

What can be seen at first glance is that the design-based estimators are on average
much closer to the Monte Carlo estimated true design effect than the model-based
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estimators. With equal cluster sizes, however, there seems to be hardly any effect of π
on the magnitude of this difference but rather an effect of the population parameter
of ρ: in highly clustered universes, model-based estimation techniques are over-
conservative in respect to the Monte Carlo estimated design effect.

Due to the influence of b on the magnitude of ddeff, also the variance of the esti-
mates will be influenced by changes in b. This is why Figure 55 shows the coefficients
of variation of estimators in different scenarios.
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Figure 55: Grouped dotplots of coefficients of variation of estimates of ddeff under cluster sampling with
equal cluster sizes for given scenarios with binary data

This figure illustrates that all estimators are less precise when π is small and when
ρ in the population is large as can be seen from a comparison of the dots between
panels in a column and in a row. This is true for all levels of m. A decrease in the
cluster size, on the other hand, has a positive effect on the precision. This indicates
that the dominating factor ruling the precision of any estimator is the skewness of the
study variable and the degree of homogeneity in the population.

5.6.2.2 Cluster Sampling with unequal Cluster Sizes

Also with binary data, variation in the size of sampled clusters makes weighting
necessary. This will increase the variance of the HT estimator and hence the design
effect in the same way described previously.

Figure 56 shows that with unequal cluster sizes and in the presence of weighting
the differences between model-based and design-based estimators diminish. Within
one panel of the plot, the means of all estimators lay very close to each other – there
are hardly any differences in magnitude between the two approaches. The conserva-
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tive nature of the estimators compared to the Monte Carlo estimated true design effect
(dashed vertical line), however, is also present with unequal cluster sizes.
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Figure 56: Grouped dotplots of means of estimates of ddeff under cluster sampling with unequal cluster
sizes for given scenarios with binary data

In line with what could be observed in the previous subsection, there is hardly any
effect of π on the point estimates also when cluster sizes vary and weighting comes
into play.

Things, however, change when we look at the estimators’ precision. As before, the
coefficient of variation serves as measure in Figure 57. An overall pattern which can
be observed is a decrease of the coefficient of variation as π gets larger (i.e. the study
variable is less skewed) and as the population parameter of ρ gets smaller. A decrease
in average cluster size also has a positive effect on precision of the estimators. The
design-based estimators tend to be less precise than most of the model-based estima-
tors20 when π is small. With π = {0.50,0.25} all estimators tend to be more precise
as the population parameter of ρ increases (comparison of plot symbols in a row).

5.7 Decomposition of Design and Interviewer Effects

In face-to-face sample surveys with a cluster sample design, one is faced with the
problem that variance on the response variable can be attributed to three sources: 1.)
the geographical cluster, 2.) the interviewer and 3.) residual variance. In such a situ-
ation, estimation of ρPSU will be influenced by the additional source of homogeneity

20 Except for the estimator based on ρ̂(PEQ) in the scenarios (m = 150,ρ = 0.2), (m = 300,ρ = 0.2,π =

{0.25, 0.50}) and the estimators based on ρ̂(ML) and ρ̂(REML) in the scenarios (m = {300, 500} ,ρ =

0.02,π= {0.25, 0.50})
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Figure 57: Grouped dotplots of coefficients of variation of estimates of ddeff under cluster sampling with
unequal cluster sizes for given scenarios with binary data

introduced by the interviewer. When ignoring the additional level of clustering, ρ̂(•)PSU

tend to be biased. The magnitude and direction of bias depends on a) the structure
of nesting or crossing of interviewer with geographical clusters, b) on the magnitude
of ρPSU and ρINT as well as on c) the share of each variance component on the total
variance.

For this simulation study a simple nested structure of two interviewers in one
geographical cluster was assumed for simplicity (see Section 5.1.2 for details). For
reasons of computation time, only 2500 iterations per parameter combination for
continuous data have been performed in this simulation study. As before, results
refer to the HT estimator of the population mean. With the nested structure, one has
to distinguish additionally between mPSU and mINT. As the generation of the universes
is such that interviewer clusters within PSUs are perfectly balanced, mINT = 2×mPSU.

5.7.1 Estimation of Intraclass Correlation with Nested Data

This subsection presents the effects of naive estimation of ρ̂(•)PSU in given scenarios.
Naive means that the estimation of intraclass correlation is on the PSU level although
additional clustering at an interviewer level is present. Due to the additional dimen-
sion introduced by the two parameters of ρINT and sINT, the following figures show
results for levels of sINT (rows) and ρINT at given levels of mPSU (and associated with
that mINT = 2×mPSU) and ρPSU.

110 GESIS-Series | Volume 3



Design Effects

5.7.1.1 Equal cluster sizes

The following figures show the distribution of ρ̂(•)PSU based on repeated draws from
populations with ρPSU=0.02 (Figure 58) and ρPSU=0.10 (Figure 59) with mPSU = 150;
mINT = 300 each for levels of ρINT and sINT. Both figures show the influence of changes
in sINT (comparison of boxplots in a row) and in ρINT (comparison of boxplots in a
column).

With ρPSU=0.02 (Figure 58) before mixture (see equation (5.2) in Section 5.1.2 on
page 60), we see at first glance that the differences between estimators are rather
small. Turning to the effects of sINT and ρINT, we can observe a clear pattern: with
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Figure 58: Estimated ρPSU by levels of ρINT and sINT for mPSU = 150, mINT = 300 and population ρPSU =

0.02 for equal cluster sizes

sINT=0.33 (i.e. 33% of the total variance are attributed to the interviwer clusters),
the effect of an increase in ρINT is rather small. In fact, most estimators of ρPSU are
downwards biased when ρINT =0.02; upward-bias is present with ρINT = {0.10,0.20}.
With an equal share of PSU and interviewer clusters on the variance components
(sINT=0.50), the downward-bias (at small levels of ρPSU) and the upward-bias (at all
other levels of ρINT) is more obvious. This tendency is even more pronounced at
sINT=0.67.

Similar patterns can be observed in Figure 59, which shows results for a setting
where ρPSU in the population before mixture is 0.10. Here the effects of both, sINT and
ρINT, are even stronger. All estimates of all estimators in the panels of the lower row
lay below the initial population value of ρPSU indicating a strong effect of sINT and
of ρINT during the process of mixing. Compared to the previous setting, the influ-
ence of ρINT at any given level of sINT is even stronger, leading to greater changes
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Figure 59: Estimated ρPSU by levels of ρINT and sINT for mPSU = 150, mPSU = 300 and population ρPSU =

0.10 for equal cluster sizes

between the boxplots of a column. The effect of an increase in sINT at a given level
of ρINT, however, is weaker than before. Hence, bias in the estimation of the initial
population parameter is positively correlated with ρPSU. A researcher who naively
estimates ρPSU ignoring homogeneity introducing by interviewers will generally get
to biased results. The direction and the degree of bias will depend on the magnitude
of interviewer homogeneity, ρINT, and the share that it has on the overall explained
variance, sINT.

5.7.1.2 Unequal Cluster Sizes

The following figure shows the distribution of estimators of ρPSU based on repeated
draws from populations with ρPSU = 0.02 (figure 60) for levels of ρINT and sINT. Due
to the fact that the patterns in the distributions of the estimators are very similar to
the scenarios presented in the previous subsection, this setting only reports results for
the setting (ρPSU = 0.02, mPSU = 150, mINT = 300).

The distribution of the expected values of estimators and the patters of influence
of the parameters which are varied are very similar to the setting with equal cluster
sizes. With unequal cluster sizes, however, differences in the estimators’ precision (i.e.
spread of the boxes and outliers marked by red hollow dots) become more visible.
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Figure 60: Estimated ρPSU by levels of ρINT and sINT for mPSU = 150, mINT = 300 and population ρPSU =

0.02 for unequal cluster sizes

5.7.2 Variance Decomposition

For the variance decomposition, first a random effects model was fitted on the data
with PSU and INT as nested random effects. Then, a variance decomposition was
performed using the VarCorr() function of the R package lme4. Finally, the ratio of the
variance component to the interviewer level to the total variance of the model was

calculated as sINT =
σ̂INT

σ̂INT + σ̂PSU
. This procedure was executed for each of the 2 500

iterations in each scenario.

5.7.2.1 Equal Cluster Sizes

With equal cluster sizes the patterns of the estimation of the share of the variance due
to the interviewer are relatively stable as Figure 61 indicates. It shows mean estimated
sINT in different scenarios. The main factor of influence within any given panel is
the cluster size. Estimation of the model variance components using the VarCorr()

function of R reacts sensitive to cluster sizes with rather upwards biased results when
average cluster sizes are small and rather downwards biased mean estimates when
cluster sizes are large. The magnitude of both ρPSU and ρINT in the population of
course also influence the point estimates. An increase of ρPSU (vertical comparison
within a panel) generally leads to less bias – this is especially true for small cluster
sizes and medium and large values of sINT. When ρINT is small and the share of the
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Figure 61: Dotplot of estimated mean sINT by levels of ρINT and m with equal cluster sizes

interviewer component is 0.67 (lower right panel) downwards bias is most severe for
all levels of cluster sizes.

When it comes to precision we can observe different patterns. Figure 62 shows
the distribution of standard deviations of estimates in different scenarios. An overall
pattern is that precision decreases as both ρPSU and ρINT decrease (comparison within
a row, within a column and in combination). The standard deviation also increases
with an increase of the share of interviewer variance in the population. This effect,
however, could also be influenced by the magnitude of the parameter to estimate.
However, the pattern is still present if we standardize on the mean (i.e. regard the
coefficient of variation). The VarCorr() function also reacts sensitive to small cluster
sizes, especially when overall interviewer homogeneity is small (lower row). Patterns
are less clear cut for larger values of ρINT, however.

5.7.2.2 Unequal Cluster Sizes

Turning to unequal cluster sizes we must, as in other situations, consider design
weights also in the estimation of the random effects model and the extraction of
variance components. As could be expected, design weighting has hardly any effect
on point estimates as can be seen from Figure 63. The distribution of means of esti-
mated sINT shows very similar patterns as in the case of equal cluster sizes and hence
without weighting.

114 GESIS-Series | Volume 3



Design Effects

sd(ŝINT)
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Figure 62: Dotplot of standard deviation of estimated sINT by levels of ρINT and m with equal cluster sizes

A look at Figure 64 also reveals no other patterns than in the case of equal cluster
sizes.

5.7.2.3 Comparison of Cluster Sampling with equal and unequal Cluster Sizes

A comparison of the point estimates of sINT under cluster sampling with unequal and
with equal cluster sizes is given in Figure 65 which shows the ratios of mean estimated
sINT under cluster sampling with unequal to equal cluster sizes. A pattern that can be
observed is the decrease in variation of the ratios of point estimates as ρPSU and ρINT

increase. Average cluster size seem to have a clear cut effect only when ρINT is small
and sINT is medium or large.

The ratios of the standard deviations of estimates under cluster sampling with un-
equal and equal cluster sizes, shown in Figure 66, are a bit of a surprise, however. One
would expect the precision of estimated variance components to be lower if additional
variance is introduced in the estimation by design weights. The ratios of standard de-
viations shown in the above figure, however, indicate that in some scenarios design
weighting even increases the precision (i.e. some dots are left to the dashed vertical
line, indicating that the standard deviation in the corresponding scenario is smaller
than the one without design weighting). Strangely this effect is stringer when average
cluster sizes are small.
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Figure 63: Dotplot of estimated mean sINT by levels of ρINT and m with unequal cluster sizes
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Figure 64: Dotplot of standard deviation of estimated sINT by levels of ρINT and m with unequal cluster
sizes
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Figure 65: Dotplot of ratios of estimated mean sINT by levels of ρINT and m with unequal to unequal cluster
sizes
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Figure 66: Dotplot of ratios of standard deviations of sINT by levels of ρINT and m with unequal to unequal
cluster sizes
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6 Estimation of Design Effects in the European Social

Survey
This chapter links the findings of the simulation studies presented in the previous
chapter with a real-world complex sample survey. The European Social Survey (ESS)
is known for its methodological and statistical rigour. It explicitly employs the con-
cept of design effects for planning purposes. In light of restricted budgets, however,
the development of ESS sampling strategies for participating countries must consider
both, quality and cost issues. Thus, estimation and prediction of design effects and
their components must be able to rely on highly precise estimators.

In the following Section 6.1 gives an overview of the ESS project as a whole and of
the work of the sampling expert panel in specific. The general procedure which relies
on the model-based approach to plan the sample designs of participating countries
is described in section 6.2. Then, in Section 6.3 sample designs of selected countries
are presented and their implications in terms of design effects are discussed. Finally,
Section 6.4 presents the estimation of design effects and illustrates how strategic
planning of sample designs has an influence on their magnitude.

6.1 Aim and overall Design of the ESS

“The European Social Survey (the ESS) is an academically-driven social survey de-
signed to chart and explain the interaction between Europe’s changing institutions
and the attitudes, beliefs and behaviour patterns of its diverse populations. Now
in its fourth round, the survey covers over 30 nations and employs the most rig-
orous methodologies. The survey has been funded through the European Commis-
sion’s Framework Programmes, the European Science Foundation and national fund-
ing bodies in each country.”

http://www.europeansocialsurvey.org

The management of the ESS is done by a so called Central Coordinating Team (CCT),
an international group of experts in various fields of methodological research. Mem-
bers of the CCT contribute their knowledge to workpackages which aim at supporting
central routine tasks the ESS is faced with each round. The so called sampling expert
panel is a group of five experts in the field of sampling who, in cooperation with
the National Coordinator, develop a sample design to be applied in a given country
and round. This development is guided by a principle that meanwhile became widely
accepted in cross-national sample survey research. It states that “workable and equiv-
alent sampling strategies in all participating countries” have to be developed (Häder
et al., 2007, 2). This goal is to be seen in line with Kish (1994, 173):
“Sample designs may be chosen flexibly and there is no need for similarity of sample
designs. Flexibility of choice is particularly advisable for multinational comparisons,
because the sampling resources differ greatly between countries. All this flexibil-
ity assumes probability selection methods: known probabilities of selection for all
population elements.”
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Nevertheless, there are some minimum requirements that any sample design has to
meet to find unanimous acceptance among the members of the sampling expert panel.

6.2 Using the Model-based Approach to predict required sample sizes

In the ESS, the sampling team uses a model-based approach to predict the required
number of achieved interviews (i.e. nnet) to reach a pre-defined effective sample size
of neff = 1500. Ideally, if this number was achieved in all participating countries,
differences in the variance of an estimator would be independent of the sample design.
However, the effective sample sizes vary between countries and variables under study
as both, the net sample size (due to item non-response) and also design effects (also
due to item non-response but also due to the magnitude of ρ̂) are subject to variation
even within a given country. Also between countries, however, there is variation in
neff within the same study variable as nnet and ngross are also heavily depending on
the budget available.

6.3 Sample Designs in selected Countries

A set of four countries is considered in more detail in the following. This helps lim-
iting the complexity of comparison while at the same time maximizing the variation
in sample designs. Hence, the countries under study first apply most various sample
designs but should further have taken part in at least two of the three ESS rounds that
have been conducted so far in order to spot changes in the sample quality if mean-
ingful alterations have been applied to the sample design. For this reason, I choose
Spain (ES), Finland (FI), France (FR), and Poland (PL) for the following analysis.

In this selection, Spain is a typical candidate for a country with a stratified two-
stage sample design. In such a design, usually at the first stage municipalities (primary
sampling units) are selected with probability proportional to size. Then, at the second
stage, a fixed number of persons is sampled from a complete list (e.g. administrative
records, electoral registers, residential population register, etc.) by srs.

If not persons but only super-ordinate sampling elements (e.g. households or ad-
dresses) are elements of the list available at the second stage, these secondary sam-
pling units (SSU) make up an additional stage of selection. In this scenario, after
the selection of a fixed number of households has taken place, in each SSU one re-
spondent is selected using appropriate techniques (e.g. last/next birthday or a Kish
grid).

France, in turn is a representative of the set of countries with an area-based se-
lection of households. Here, random-route procedures are applied to generate a list
of households to contact. In a different version of this procedure a complete list of
households or addresses is compiled by a fieldwork person. Then, this list is returned
to the fieldwork agency and a simple random sample of households is drawn.

In Poland, the sample is drawn independently in two separate domains. Usually,
one domain consists of big cities where lists of ultimate sampling units are available.
In this domain, a simple random or a stratified sample of ultimate sampling units is
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drawn directly. In the second domain, which usually covers settlements that do not
belong to the first domain (i.e. villages and small towns in rural areas), a two- or
three-stage probability sample is drawn.

Finland is one of the countries in the ESS where single-stage simple random or
stratified random sampling can be applied directly. Hence, no clustering is involved
in achieving the sample.

The basic structure of sample designs in the ESS is captured on a micro level in
so called sample design data files (SDDF). These SDDF include several important vari-
ables which characterize the sample design, for example first order inclusion probabil-
ities at each stage (variables PROB1 to PROB4) or the PSU label an individual belongs
to. These files are generated accompanying the fieldwork process and are delivered
to the sampling expert panel for further process (e.g. generating design weights or
estimation of design effects as a basis for the upcoming round). The SDDF are not
generally publicly available. However, privacy regulations in some countries allow
publication as long as anonymity of respondents can be assured.

In the following subsections, I describe the sample designs of the selected countries
of round 1 to 3 of the ESS in more detail. I will emphasize on the effects of deliberate
changes and describe the effects of flaws and variations from the prescribed sample
designs.

6.3.1 Spain

The whole population of Spain is divided into 33 000 electoral sections21 which are
provided as a frame through the so called municipal roll. The complete frame, how-
ever, is not available for scientific research but only a master sample, a sub-sample
of 3 500 electoral sections which is updated continuously.

From the master sample, m electoral sections are allocated to H strata. The Cox-
Method of controlled rounding is used to ensure a fixed sample size. Then, at the
first stage h = 1, . . . , H , mh electoral sections (PSUs) are sampled with probability
proportional to population size in each stratum22. At the second stage, a fixed number
of individuals is selected via simple random sampling. In round 1, however, there
was not access to a list of individuals at the PSU level but only to lists of households.
Hence, at the second stage, instead of individuals, households were selected and the
selection of persons was shifted to the third stage and was done via the last birthday
method. The dotplots of figure 67 illustrate the development of m, nnet and b̄ over
the rounds. As can be seen, Spain has increased the number of PSUs from round 1
to round 2 and 3 from mR1 = 343 to mR2 = 456 and mR3 = 500 which resulted in an
overall decline in the average cluster size from b̄R1 = 5.04 to b̄R2 = 3.65 to b̄R3 = 3.75.
This decline can be expected to have an influence on the magnitude of ddeffc as ρ̂ will
not be very likely to go down since the composition of elements in PSUs remains

21 As from ESS round 1 (2002). In round 2 (2004), the municipal roll was updated and contained 34 600
electoral sections.

22 Note that in round 1, proportionality was with respect to households, not persons. In round 2 and 3,
inclusion probabilities were based on the size of the target population.
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Figure 67: Development of m, nnet and b̄ in Spain over round 1, 2 and 3

the same. This development is rather typical for a country with a multi-stage sample
design. As there is no alternative frame available at the moment, the priority is to
design the sample in such a way that deff will not be too large. This can be achieved
most easily with an increase in the number of sampled clusters and hence a decrease
in b̄.

For round 1, where a three-stage design was applied, the product of inclusion prob-
abilities of the first two stages is constant23. Hence, the only variation in first order
inclusion probabilities, πi=PROB1×PROB2×PROB3, can be attributed to variation at
the third stage. Here, inclusion probabilities directly depend on the number of indi-
viduals in a household who belong to the target population. Thus, also (normalized)
design weights will vary only to the degree to which household sizes vary. As an
effect, also ddeffp, which only depends on the distribution of weights and nnet, will be
of reasonable magnitude24. The distribution of normalized design weights in round
1, 2 and 3 is depicted in the grouped densityplot of figure 68. Here, one can easily
see that normalized design weights in round 1 are much wider spread than in round
2 and 3. This is due to the fact that variation in inclusion probabilities, and hence in
design weights, in round 2 and 3 is only due to deviations from the planned number
of sampled individuals, for example due to non-response. Ideally, without any dis-
tortion, the product of inclusion probabilities would be equal for the sample design
applied in these rounds.

6.3.2 France

Unlike in Spain, where access to population registers is granted to scientific bodies,
privacy regulations in France do not permit access to such registers (although they
do exist). This is why in all three rounds conducted so far, a stratified multi-stage

23 This is due to the fact that for the ith PSU, PROB1 = Ni

N
and PROB2 = c

Ni
and PROB1 × PROB2 =

Ni

N
× c

Ni
= c

N
.

24 Note that with a multi-stage sample where the only source of variation in inclusion probabilities, and

hence in design weights, stems from the variation in household sizes, the magnitude of ddeffp is typically
1.2 to 1.3
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Figure 68: Grouped density plot of normalized weights by round for Spain

area sampling design had to be applied. According to this design, first, the popu-
lation is stratified into H geographical areas. Then, m primary sampling units (i.e.
communities) are allocated proportionally to these strata by Cox’ controlled rounding
method.

In each community, a fixed number of households is selected through a random
route procedure. This procedure starts with a random selection of four start addresses
from the telephone book. Then, fieldwork personnel (other than the person conduct-
ing the interview) follow a random route procedure and collect addresses which are
then returned to the fieldwork agency. Within a sampled household, an individual is
selected by the last-birthday-method.

The basic sample design did not change over the three rounds under consideration.
However, the number of PSUs was constantly increased from 169 (round 1) over 200
(round 2) to 258 in round 3. In addition, also the net sample size was increase from
1 503 (round 1) to 1 806 in round 2 and further to 1 986 in round 3. These changes
are graphically depicted in figures 6.69(a) and 6.69(b). As the increase in nnet from
round 1 to round 2 is over-proportional to the increase in m, the ratio of nnet to m, b̄,
is (slightly) higher in round 2 than in round 1. This is illustrated in figure 6.69(c). As
the composition of primary sampling units did not change over the rounds, ddeffc can
be expected to decrease with b̄ from round 1 to round 3.

The distribution of normalized design weights is illustrated in figure 70. Here we
can see that the overall distribution hardly changed from round 1 to round 3. There
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Figure 69: Development of m, nnet and b̄ in France over round 1, 2 and 3

was, however, a need to truncate 80 design weights in round 1 and one in round
225 to a maximum of 4.0. This is why the distribution in round 1 looks somewhat
smoother than in the other rounds. In round 1, the coefficient of variation (cv) of
inclusion probabilities at stage 1 (PROB1) is 1.21, at stage 2 (PROB2) 1.17 and at stage
3 (PROB3) 1.16 but the cv of the product of PROB1 and PROB2 is only 1.02. In round
2, however, this observation is even more pronounced. Here, the cv of PROB1 is 2.11,
1.97 for PROB2 and .44 for PROB3. The cv of the product of inclusion probabilities
of the first two stages is .12. In round 3, the cv of PROB1 is 2.35, the cv of PROB2
is 1.00 and .43 for PROB3, the cv of PROB1×PROB2 being .11. This indicates that a
mayor share of the overall variation in inclusion probabilities is due to variation in
PROB3, especially in round 2 and 3.

6.3.3 Poland

In Poland, a dual frame sample design was established in round 1 which has seen
some improvements over the rounds. Basically, the population is divided into two
domains: the first domain consists of big towns26, the second domain of all other
towns and villages. In the first domain, a simple random sample of individuals is
drawn directly from the PESEL frame, a national register of citizens.

In the second domain, a two-stage cluster sample is conducted. At the first stage,
m primary sampling units (i.e. small towns and villages) are selected with probability
proportional to population size and with replacement. At the second stage, within
a PSU, a fixed number of individuals is selected from the PESEL frame by srs. If a
PSU at the first stage is selected more than once, o times, say, o× the fixed number
of individuals are selected and treated as an additional, independent PSU. Due to the
change in the definition of domains since round 2, the first domain from round 2
onwards contains a greater share of the population (39.49% in round 2 and 39.05%

25 Truncation of design weights is a common method to avoid overemphasized influence of single obser-
vations.

26 In round 1, the definition of the first domain included towns of 100 000+ inhabitants. This definition
was changed from round 2 onwards where the boundary was lowered to 50 000+ inhabitants.
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Figure 70: Grouped density plot of normalized weights by round for France

in round 3) than under the definition of round 1 (31%). In addition, the number of
sampled PSUs in the second domain was increased from round 1 (158) over round 2
(313) to round 3 (328) as illustrated in figure 6.71(a). As ddeff of a dual-frame sample
is a combination of the single design effects within domains (see section 3.1) and
ddeffc in the first domain is 1, it is easy to see that with a greater share of the sample
belonging to the first domain, the overall design effect will decrease. In addition to
the increase in m, nnet decreased, resulting in an overall decrease in b̄, especially from
round 1 to round 2. This development is graphically depicted in figures 6.71(b) and
6.71(c).

The distribution of normalized design weights is illustrated in figure 72.

6.3.4 Finland

In Finland, a simple random sample of individuals is drawn from the population
register in all three rounds under consideration. In such a case, thinking of sample
designs more generally, each respondent can be regarded as a primary sampling unit.
Hence, m and nnet are equal which is indicated in figures 6.73(a) and 6.73(b). This,
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Figure 71: Development of m, nnet and b̄ in Poland over round 1, 2 and 3
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Figure 72: Grouped density plot of normalized weights by round for Poland

in turn leads to an average cluster size of b̄=1 (see figure 6.73(c)). As individuals are
sampled with equal probabilities, ddeffp is also 1 and the effective sample size equals
nnet.

The distribution of normalized design weights is illustrated in figure 74.
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Figure 73: Development of m, nnet and b̄ in Finland over round 1, 2 and 3
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Figure 74: Grouped density plot of normalized weights by round for Finland

6.4 Estimation of Design Effects in the ESS

In the ESS, design effects are explicitly used at the planning stage of a sample design
(see 6.2). Hence, for the prediction of the required net sample size, based on a fixed
effective sample size of neff=1 500, one needs a good prediction of the expected design
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effect in the upcoming round. Here, mainly the quality of ρ̂ is of importance since
the prediction of ρ for the upcoming round is based on this quantity which is, in turn,
estimated with current ESS data.

In a real-world social survey like the ESS, one is confronted with lots of obstacles
and irregularities in the data that have an effect on the quality of estimators. Most
prominently, non-response can cause problems in many applications. However, since
estimation of design effects mainly relies on an estimator’s variance, the effect of
non-response leading to bias is not considered here. Thus, as far as estimation of
design effects and their components (i.e. ρ) is concerned, two important questions to
answer are a) what to do with missing values and b) how to handle PSUs with a single
observation. Common practice is not to use imputation in the case of missing values.
As far as b) is concerned, PSUs with only one observation have to be eliminated since
within these clusters, variance estimation will fail.

6.4.1 Estimation of ρ

The usual estimators have also been tested with ESS data. However, unlike in the pre-
vious chapter, where estimators could be evaluated against a true population value,
with real-world sample survey data from the ESS, such benchmarks do not exist.
Hence, as a first step, we shall look at the inter-relation of different estimators by
means of correlation tables and plots. Tables 9 to 17 give an overview of the correla-
tion of the different estimators for Likert scaled and continuous items in the ESS core
questionnaire. Correlations are estimated separately by ESS for each country27. One
can easily see that the AOV estimator is highly correlated with most estimators in all
countries and rounds28. The behaviour of the correlation of AOV with the ML and

Table 9: Correlations of estimates for Likert and continuous variables in Spain – round 1

AOV F F2 FR REML ML
AOV 1.000

F 0.938 1.000
F2 1.000 0.938 1.000
FR 1.000 0.938 1.000 1.000

REML 0.994 0.934 0.994 0.994 1.000
ML 0.994 0.934 0.994 0.994 1.000 1.000

REML estimators is remarkable: In Spain (Tables 9 to 11), where the average cluster
size in round 1 was 5.04, 3.65 in round 2 and 3.75 in round 3, the correlation of
the AOV with both the ML and REML estimator is highest in the first, lowest in the
second round and is at an intermediate level in the third round. This can, in part, be
attributed to the instability of the ML and REML methods when cluster sizes are small.

A similar pattern can be observed in France (Tables 12 to 14), although now less
pronounced. This is due to the fact that even the smallest average cluster size of
b̄=7.7 in round 3 is still large enough for the ML and REML estimators to achieve

27 This separation is motivated by the fact that variability of cluster sizes has an impact on some estima-
tors. Hence, simply combining ESS data from different countries can lead to misinterpretation.

28 Estimation of ρ in Poland is based on the clustered part of the sample.
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Table 10: Correlations of estimates for Likert and continuous variables in Spain – round 2

AOV F F2 FR REML ML
AOV 1.000

F 0.893 1.000
F2 1.000 0.893 1.000
FR 1.000 0.893 1.000 1.000

REML 0.873 0.767 0.873 0.873 1.000
ML 0.874 0.768 0.874 0.874 1.000 1.000

Table 11: Correlations of estimates for Likert and continuous variables in Spain – round 3

AOV F F2 FR REML ML
AOV 1.000

F 0.960 1.000
F2 1.000 0.960 1.000
FR 1.000 0.960 1.000 1.000

REML 0.924 0.881 0.924 0.924 1.000
ML 0.913 0.873 0.913 0.913 0.976 1.000

Table 12: Correlations of estimates for Likert and continuous variables in France – round 1

AOV F F2 FR REML ML
AOV 1.000

F 0.995 1.000
F2 1.000 0.995 1.000
FR 1.000 0.995 1.000 1.000

REML 0.971 0.969 0.971 0.971 1.000
ML 0.960 0.957 0.960 0.960 0.980 1.000

Table 13: Correlations of estimates for Likert and continuous variables in France – round 2

AOV F F2 FR REML ML
AOV 1.000

F 0.790 1.000
F2 1.000 0.790 1.000
FR 1.000 0.789 1.000 1.000

REML 0.971 0.701 0.971 0.971 1.000
ML 0.972 0.701 0.972 0.972 1.000 1.000

Table 14: Correlations of estimates for Likert and continuous variables in France – round 3

AOV F F2 FR REML ML
AOV 1.000

F 0.949 1.000
F2 1.000 0.949 1.000
FR 1.000 0.949 1.000 1.000

REML 0.963 0.860 0.963 0.963 1.000
ML 0.963 0.861 0.963 0.963 1.000 1.000

good results. Here, correlations between AOV and ML and REML are between .960
(round 1, AOV/ML) and .972 (round 2, AOV/ML).

Turning to the clustered part of the sample in Poland (Tables 15 to 17), we can,
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again observe a decrease in correlation between AOV and ML and REML, respectively,
as the average cluster size decreases.

Table 15: Correlations of estimates for Likert and continuous variables in Poland – round 1

AOV F F2 FR REML ML
AOV 1.000

F 0.955 1.000
F2 1.000 0.956 1.000
FR 1.000 0.956 1.000 1.000

REML 0.980 0.935 0.980 0.980 1.000
ML 0.981 0.935 0.981 0.981 1.000 1.000

Table 16: Correlations of estimates for Likert and continuous variables in Poland – round 2

AOV F F2 FR REML ML
AOV 1.000

F 0.926 1.000
F2 1.000 0.926 1.000
FR 1.000 0.926 1.000 1.000

REML 0.844 0.707 0.844 0.844 1.000
ML 0.845 0.708 0.845 0.845 1.000 1.000

Table 17: Correlations of estimates for Likert and continuous variables in Poland – round 3

AOV F F2 FR REML ML
AOV 1.000

F 0.941 1.000
F2 1.000 0.941 1.000
FR 1.000 0.941 1.000 1.000

REML 0.794 0.743 0.794 0.794 1.000
ML 0.767 0.717 0.767 0.767 0.956 1.000

In round 1 with b̄=9.4, the correlation coefficient of AOV/REML is .980 and .981
for AOV/ML. As the average cluster size goes down to b̄=3.2 in round 2, so does the
correlation between AOV/REML (.844) and AOV/ML (.845). A further decrease in the
average cluster size in round 3 to b̄=3.1 causes these correlations for AOV/REML to
go down to .794 and for AOV/ML to .767.

The same patterns can also be observed for binary items as can be seen from Ta-
bles 25 to 33. The random effects model estimators REML and ML again react sen-
sitively on small average cluster sizes. This holds in Spain, France and especially in
Poland where correlations AOV/REML and AOV/REML decrease from .915 (round 1)
over .704 (round 2) to .386 (round 3). All correlation tables for binary items can be
found in appendix 7.3 (pp. 159).

Turning to differences in ρ̂ between the scale type of items, figures 75 and 76
show the distribution of estimates of the different estimators separately for Likert
scaled, continuous and binary items. One boxplot in a panel depicts the distribution
of all items of a scale type in a specific country at a given round. A comparison of
the boxplots within one panel can reveal differences between estimators.
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Figure 75: Grouped boxplots of ρ̂ for Likert scaled items

Comparing boxplots in the lower left panel (i.e. Spain, round 1) of figure 75 we can
see hardly any differences in the distribution of the estimates between estimators. The
F estimator, however, seems to have a higher variation than all other estimators. In
round 2 and 3 we can, however, observe the tendency of the REML and ML estimators
to deviate from the classical estimators. This effect, as already mentioned above, has
to do with the sensitivity of the variance component estimation to small group (i.e
cluster) sizes and is particularly obvious in Spain and Poland in round 3. Here, REML
and ML estimators for many items yield values of zero as the estimated variance
component of the random effect is estimated zero.

For binary items the same estimators have been investigated as in the simulation
studies. Also with dichotomous items we can observe a downwards biased tendency
of the REML and ML estimators when average cluster sizes are small (as in Spain and
Poland in round 2 and 3). Again, groups of estimators can be found that behave very
similarly. For example, AOV, KPR, UBE and FLC show very similar distributions in all
panels.
Figures 77 and 78 enable direct comparisons between different estimators for the
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Figure 76: Grouped boxplots of ρ̂ for binary items

same items. Three items have been selected from the set of all items of each scale
type. These items are:

• Likert (all listed items measured on 11-point scale)

LRSCALE political left-right scale,

STFLIFE overall satisfaction of life and

HAPPY momentary happiness

• Continuous

HHMMB number of household members,

YRBRN year of birth of the respondent and

EDUYRS year of full-time education

• Binary

VOTE indicator for participation at last national election,

CTZCNTR indicator for citizen of the country and
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GNDR gender.

What is more important than the absolute magnitude of the estimates, however, are
differences between estimators within a panel.
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Figure 77: Grouped dotplots of ρ̂ for selected items (Likert)

With Likert scaled items, we can see that ρ̂(F) breaks ranks in many cases. This effect
comes into play when the number of small PSUs is high. In Spain in round 1, for
example, the estimate of ρ̂(F) for LRSCALE is considerably higher than the estimates
of all other estimators. This is not the case for the item HAPPY where the value of
ρ̂(F) is in line with all other estimates. The percentage of extremely small clusters (i.e.
clusters of size 2 or 3) is almost 56% for LRSCALE but only 43% for the item HAPPY.
The patterns of this example hold in all other cases where ρ̂(F)’s estimates differ from
those of all other estimators.

The distribution of estimates for binary items is displayed in figure 78. What can
be seen at first glance is that ρ̂(MAK) and ρ̂(PGP) have a tendency to yield estimates that
differ from those of most other estimators while ρ̂(AOV), ρ̂(KPR), ρ̂(UBE) and ρ̂(PEQ) show
very similar values within every panel. Furthermore, due to the definition of ρ̂(REML)

and ρ̂(ML) their estimates cannot be negative. This can also be seen in figure 78,
most obviously so in Poland where the estimates of GNDR tend to be negative for the
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Figure 78: Grouped dotplots of ρ̂ for selected items (Binary)

classical estimators of ρ but zero for the random effects model based estimators. The
fact that in Poland the distribution of estimates for CNZCNTR is missing is caused by
the circumstance that all respondents in all rounds have answered this item positively
so that there is no variation at all – neither within nor between clusters. Hence most
estimators yield NaN due to a division of zero by zero.

6.4.2 Design-based and Model-based Estimation of the Design Effect

In the following, the quality of the estimation of the design effect using the design-
based and model-based approach is evaluated. The quality of the estimation of the
model-based design effect mainly depends on the quality of ρ̂. Thus, everything
that has been said about the precision of estimators of ρ will also have an effect on
the corresponding model-based estimator of deffc. The design effect due to unequal
inclusion probabilities is constant for a sample in a country at a given round of the
ESS. The design-based estimators of the design effect, however, directly include both
the inflation of variance due to unequal inclusion probabilities as well as the effect
of homogeneity within clusters. This is why ddeffM, and not its components, has to be
compared directly to ddeffD. The distribution of the estimates of appropriate estimators
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for selected items of the Likert scale type is illustrated in figure 79. We can see that
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Figure 79: Grouped dotplots of ddeff for selected Likert scaled items

in most panels the model-based and the design-based estimators yield very similar
values. However, the sensitivity of ρ̂(F) to small cluster sizes also has an effect on
the corresponding model-based estimator of deff. Differences between model-based
and design-based estimators mainly occur in those cases where design weights show
a high variation (i.e. France round 1 and Poland round 2 and 3). This effect is further
amplified if the item under consideration is rather skewed (i.e. STFLIFE; not reported
here).
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The distribution of estimates of selected binary items is shown in figure 80. We can,
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Figure 80: Grouped dotplots of ddeff for selected Binary items

again, observe a tendency of the design-based estimators to yield larger estimates of
deff when design weights show high variation (i.e. France round 1 and 2) and when
the item under consideration is highly skewed (VOTE).
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7 Summary
Cross-national sample survey projects like the ESS combine sample data from dif-
ferent countries to enable comparative substantive research. In the ESS, the data
are all obtained by fact-to-face interviews but using different sample designs. The
bandwidth of sample design used in auch lage-scale multi-national sample survey
projects spans from un-stratified simple random sampling (e.g. in Finland) over strat-
ified systematic sampling (e.g. Sweden) to multi-stage cluster sampling (e.g. Portugal
or Spain). The reason for these differences in sample designs are differences in the
availability of sampling frames among countries. Despite these differences, the speci-
fications of the ESS permit estimators calculated on the basis of one country’s sample
to be of the same precision as calculated on the basis of another country’s sample.
One way to make the precision of an estimator independent of the sample design is to
conduct samples with comparable effective sample sizes. The concept of the effective
sample size, however, incorporates a (model-based) prediction of the design effect.
This prediction is based on the estimated value of ρ for certain core variables of the
ESS. It is obvious that good (i.e. precise and unbiased) estimates of ρ ensure a high
quality of the predicted design effect and hence the predicted required net sample
size.

This harmonisation of effective sample sizes is based on a typical design effect and
effective sample sizes will vary from item to item since design effects will vary. This
is why substantive analyses should either directly use appropriate variance estimators
or use the design effect to correct the naive variance estimate.

This thesis has evaluated the quality of diverse estimators of the design effect both
derived under the design-based and the model-based perspective. This chapter gives
a summary of the empirical findings of the Monte Carlo simulation studies and the
applications in the ESS. Section 7.1 recapitalises the basic concept of design effects.
In Section 7.2, the use of design effects in the ESS is discussed. Section 7.3 gives
an overview of the most important findings that can be derived from the results of
Chapter 5.

7.1 Concept of Design Effects

In complex sample surveys, the assumption of independence of observations which
underlays the textbook formula for the variance of a point estimator (e.g. the HT
estimator of the population mean or total) is often violated. In cluster or multi-stage
sampling, for example, elements of the same PSU tend to be more similar to each other
than to elements of all other PSUs. This homogeneity, together with the (average) size
of PSUs, has a direct influence on the degree to which the naive variance estimator
of a point estimator underestimates the true variance of that estimator. The degree of
this underestimation is the design effect. Since different items have different levels of
homogeneity, design effects will vary from item to item.

If, in addition, the sample design assigns varying inclusion probabilities to ultimate
sample elements, for example because the number of elements selected in every PSU
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varies, design weighting is necessary. This, in turn, further increases the variance of,
for example, the HT estimator of the population mean or a non-parametric measure
like the median.

Different approaches to estimation of the design effect rely on different methods
to account for both, the effect of variance inflation due to clustering and due to
unequal inclusion probabilities. The theoretical considerations together with results
of the simulation studies have shown that the design-based approach incorporates
both effects directly but suffers from a naive use of the cluster sample data to get an
estimate of the variance of a point estimator under srs. The model-based approach, on
the other hand, is more flexible in so far as it is possible to estimate both components
of deff separately. However, it is not guaranteed that there exists a closed-form model-
based estimator of deff for every estimator under study.

7.2 Use in Complex Sample Surveys

In the ESS, the concept of design effects is used for planning a sample design. To
achieve a fixed effective sample size, a typical design effect is predicted. This pre-
diction – if possible – is based on estimates of ρ of selected items of the core ques-
tionnaire of the previous round. Researchers are, nevertheless, encouraged to either
directly use structural variables such as PSU identifiers in their analyses (if possible,
i.e. if a country agrees to make PSU identifiers publicly available) or to use the typical
design effect to correct the naive variance estimates. In both cases, estimates should
be as precise as possible to avoid additional uncertainty in the results due to low
precision in estimated deff.

7.3 Estimation of Design Effects and their Components

The answer to the question which estimator of deff is favourable depends on some
additional parameters like, among other things, the scale type of the study variable,
the expected level of ρ, the (average) cluster size or the parameter of interest. Chap-
ter 5 gave in-depth analyses of the quality of estimators of deff and of its components
under various scenarios. A central finding is that of the model-based estimators,
the commonly used classical estimators of ρ like ρ̂(AOV) or ρ̂(F) work very well in
scenarios with equal cluster sizes and react with some increase in bias and preci-
sion when cluster sizes vary. This is also true for most of the estimators for binary
study variables. Here, bias and precision is, however, also influenced by the overall
rate of success, π, of the study variable. Almost all of the classical estimators react
sensitively if the study variable is heavily skewed. Here, under certain circumstances,
ρ̂(REML) and ρ̂(ML) can give better results – mostly when average cluster sizes are small
and the parameter of ρ is rather large.

When design and interviewer effects are present at the same time and the variance
introduced by interviewer clusters is ignored, ρPSU may be under- or over estimated
– in every case, its estimation is inefficient. However, not all estimators react on such
an artefact in the same manner. In many scenarios, ρ̂(ML)

PSU and ρ̂(F2)

PSU tend to be less
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biased than all other estimators but in some scenarios quite inefficient. A precise esti-
mation of the share of a certain variance component on the total variance is difficult
in all scenarios. However, the decrease in precision is hardly influenced when switch-
ing from equal to unequal cluster sizes. Due to the large amount of factors of the
Monte Carlo simulation set-ups, for an in-depth evaluation of the quality of different
estimators the reader has to be referred to the respective sections.

The patterns found in the results of the Monte Carlo simulation studies can also be
observed in results based on data of selected samples of the ESS. Chapter 6 gave an
overview of the behaviour of the same estimators that were also under investigation
in the simulation studies. Due to the lack of an external criterion, the evaluation
of the estimators’ quality must follow a different logic. What can be said, however,
is that estimators which behave similarly in the artificial environment of the Monte
Carlo studies also behave similar in a real-world setting.
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Excursus: Generalized Linear Models
This excourse briefly explores the generalized linear model (GLM). This is done for the
sake of a better understanding of the random effect models which underlay the esti-
mators of ρ introduced in Chapter 4. Random effect models are also briefly delineated
in the next chapter on pages 155 to 158.

The GLM is a generalization of the well known linear model (LM). Through the use
of a link function, GLMs are very flexible and allow modelling relationships between
predictors and responses from a large family of distributions. The first section of this
chapter gives a brief introduction into the linear model to lay the foundations for
delineation of GLMs in Section 7.3.

The Linear Model

The basic linear model allows for modeling simple relationships between two or more
variables. The dependent variable, however, is assumed to be at least of interval
scale. The independent variable(s), on the other hand, may be continuous, discrete
or categorical. Analyses based on linear models are more commonly referred to as
regression analyses. Depending on the number of predictors, p, we shall speak of
simple regression if p = 1 and of multiple regression when p > 1. Put most general, a
linear model is of the form

Y = f (X ) + ε , (1)

where Y is the response to be modeled through f , an unknown function on X , a
predictor variable. The error made through this representation is captured by ε ∼
N(0,σ). In the most simple case X is a n×1 vector, where n is the number of cases for
which a prediction on Y is to be made. Unless f is undefined, this representation, of
course leaves infinite possibilities of estimating its parameters. Under the restriction
of f to be a linear function, one possible modification of 1 is

Y = β0 +β1X + ε , (2)

where β0 and β1 are now the unknown parameters to be estimated. The above for-
mulations would refer to a simple regression model with only one predictor variable.
A generalization of the model above would allow X to be of any dimension, p > 1.
Thus, X now is a n× p matrix defined as

X=




x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

. . .
...

xn1 xn2 . . . xnp




.

The model may now be written as

Y = β0 +β1X1 +β2X2 + . . .+βpXp + ε (3)
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or simple in matrix notation as

Y = Xβ + ε , (4)

where β now is a p+ 1 column vector defined as β = (β0,β1, . . . ,βp)
T and X now is

a n× p+ 1 matrix defined as

X=




1 x11 x12 . . . x1p

1 x21 x22 . . . x2p

1
...

...
. . .

...
1 xn1 xn2 . . . xnp




where the ones in the first column indicate the multiplier for the intercept term.

Definition of a GLM

A GLM specifies a relation between a linear predictor, η, and the expected value of
a dependent variable or response from the exponential family, θ = µ, through a link
function, g−1, and is hence given by:

E(Y ) = µ= g−1(Xβ) = g−1(µ) . (5)

Exponential Family of the Response

A density function, Y , is a member of the exponential family if and only if its distri-
bution function is of the form

f (y|θ ,φ) = exp

�
yθ − b(θ )

a(φ)
+ c(y,φ)

�
, (6)

where θ and φ are the canonical (location) and the dispersion parameters, respec-
tively. The functions a(·), b(·), and c(·) are real valued functions and may be chosen
appropriately to account for a certain type of distribution.

Many important distribution functions can be expressed through (6). Choosing, for

example, θ = µ, φ = σ2, a(φ) = φ, b(θ ) = θ 2

2
, and c(y,φ) = −

�
y2

φ
+log(2πφ)

�

2
, the

normal distribution results from (6) as

f (y|θ ,φ) = exp

�
yµ− µ2/2

σ2
−

1

2

�
y2

σ2
+ log (2πσ2)

��
.

The binomial distribution can be expressed through (6) by choosing θ = log
µ

1−µ
,

b(θ ) = −n log(1− µ) = n log(1+ expθ ), and c(y,φ) = log
�n

k

�
, and setting φ = 0

and a(φ) = 0, which results in

f (y|θ ,φ) = exp

�
y log

µ

1−µ
+ n log(1−µ) + log

�
n

k

��
.
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Of course, the exponential family distributions are characterized by a mean, E(Y ),
and a variance, Var(Y ). These are, respectively, given by

E(Y ) = µ= b′(θ )

Var(Y ) = b′′(θ )a(φ)

Note that the expected value of Y is a function of θ only, whereas, in general, the
variance also takes into account φ, the scale parameter. The variance of the binomial
distribution, for example, is a case where the variance is a function of the mean. The
Gaussian distribution, on the other hand, has variance function that does not depend
on the mean, so b′′(θ ) = 1.

The Linear Predictor

The prediction of the response is by means of a linear predictor, η, which is of the
form

η= β0 + β1 x1 + · · ·+ βp xp = x
Tβ ,

where p is the number of predictors, x are predictors of the model and the β vectors
are the vectors of unknown coefficients which are subject to estimation. The right-
hand side of the above equation is the equivalent matrix expression where x is a n×p

matrix of predictors and β is the n× p+ 1 matrix of coefficients.

The Link Function

A link function, g, relates the linear predictor to the distribution function through its
mean, E(Y ) = µ. It thus accounts for the non-linearity of the relationship between
the response and elements of the linear predictor. Thus, we can write

η= g(µ) = β0 + β1 x1 + · · ·+ βp xp = x
Tβ .

Hence, the mean response can be expressed as

E(Y ) = g−1(µ) .

This poses the question, which link functions are suitable for a given type of response.
Several link functions have been proposed (McCullagh and Nelder, 1983). It is conve-
nient to choose g in a way that η= g(µ) = θ . In that case, g is called canonical link.
The most important canonical link functions are summarized in table 18.
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Table 18: Link, mean, and variance functions for selected members of the exponential family; from Faraway
(2006, 117)

Distribution Link Function Mean Function Variance Function
Normal η= µ µ= η 1
Poisson η= log (µ) µ= exp (η) µ

Binomial η= log
�
µ

1−µ

�
µ=

exp (η)

1+exp (η)
µ(1−µ)

Gamma η= µ−1 µ= η−1 µ2

Inv. Gaussian η= µ−2 µ= η−
1/2 µ3

Estimation

If values of Y , Yi with i = 1, . . . , n say, can be assumed to be iid29 the log-likelihood
for observation i is

log L
�
θ ,Φ, yi

�
= wi

�
yiθi − b(θi)

Φ

�
+ c(yi ,Φ) , (7)

where wi are known weights (Faraway, 2006, 116). Hence the overall log-likelihood
is

n∑

i=1

log L
�
θi ,Φ, yi

�
. (8)

The log-likelihood can only be maximised analytically in the iid case when the re-
sponse is Gaussian. In all other cases iterative numerical procedures must be applied.
The most prominent of these procedures is Newton-Raphson with Fisher scoring and
Iteratively Reweighed Least Squares (Faraway, 2006, pp. 117).

29 iid denotes identically independent distributed and implies that the y values are independent realizations
of the respective distributions
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Excursus: Random Effect Models
When the iid assumption in a GLM is violated, for example because population ele-
ments are grouped together according to a certain structure which has influence on
the study variable, random effects models (REM) offer one possibility to account for
this underlying structure. The random effects in such a model have a variance, ac-
counting for the fact that, for example, membership in clusters can differ in strength
of influence. This variance component, as one part of the total variance, is a model
parameter which is used for the estimation of ρ (see Sections 4.2.2 and 4.3.4).

This chapter first gives an overview of the basic concept behind random effect
models. In Section 7.3 a basic model is defined and its applicability to the problem
at hand is discussed. A more complex, hierarchical (or nested) model is presented in
Section 7.3 and estimation techniques are discussed in Section 7.3.

Overview

Random effect models are a natural extension to models of the GLM class presented
in the previous chapter. They have lots of their properties and can thus be treated
and interpreted in similar ways. Besides their application within the context of this
thesis, REMs receive prominent attention in biology (Stiratelli et al., 1984; Mentre
et al., 1997), medicine and health research (Hedeker and Mermelstein, 1996; Gibbons
and Hedeker, 1997; Santos and Berridge, 1999; Lange and Ryan, 1989; Baujat et al.,
2001), as well as in the empirical social sciences. As an extension, random effect
models are also used when grouping is assumed to arise from serial observations on
the same subject (Stiratelli et al., 1984; Gibbons and Hedeker, 1994,9; Gilks et al.,
1993; Zeger et al., 1988; Lange and Ryan, 1989).

In a REM, a portion of the variation in the dependent variable can be attributed to
group membership. In a two-way model, each ultimate sample element (i.e. respon-
dent) is a member of exactly one group. The two levels of the model correspond to
the respondent (level one) and the random effect (level 2). As a rule, annotation of
levels is bottom-up, from smaller to larger grouping elements. It is, however, possible
that there exist multiple groups – either aside (crossed) or nested within each other.
For example, interviewer clusters can cross geographic clusters. The model assumes
that there is no unique direction into which group membership influences the variable
under study – the effects are random with an expected value zero. However, the effect
on elements of the same group points into the same direction, i.e. “observations of
the same group will be dependent” (Callens, 2006, 2).

From a technical point of view, estimation of the distribution of random effects
receives prominent attention. Depending on the structure of the dependent variable,
different estimation methods are now implemented in the most wide-spread software
packages. They can be classified into maximum-likelihood, quasi-likelihood meth-
ods and methods of numerical integration. Comparisons of their effectiveness and
convergence behaviour (Callens, 2006; Rodriguez and Goldman, 1995; Goldstein and
Rasbash, 1996) form the main line of empirical research in this field.

GESIS-Series | Volume 3 155



Matthias Ganninger

The Basic Model

Turning to model formulation, many of the definitions given in earlier chapters on
GLMs still hold. What extends a GLM to a REM is the inclusion of a random intercept
or a random slope or the combination of the two. The most basic random effects
model is the one-way ANOVA model:

yi j = µ+αi + εi j i = 1, . . . , m j = 1, . . . , n (9)

where α represent the random effects (here: intercepts) with m levels, εi j is a random
error term and yi j is the outcome of the jth ultimate sample element given the ith
level of the random effect. The expected value of both α and ε is zero but variances
are σ2

α and σ2
ε , respectively. They are assumed to be N(0,σ2

α) and N(0,σ2
ε); ε are

assumed to be independent of α (Cummings and Gaylor, 1974, 765). This basic model
applies in situations where two-stage cluster sampling is applied and random effects
are represented by PSUs. With this type of model, the intraclass correlation coefficient
is generally defined as in Sections 4.2.2 and 4.3.4 as

ρ =
σ2
α

σ2
α +σ

2
ε

.

In the case of a binary outcome yi j represents an unobserved continuous variable and
we observe only zi j = I yi j

> 0, i.e. an indicator which is one if yi j exceeds a threshold
of 0 and zero otherwise (McCulloch, 1994, 330). We can then treat the model as a
GLM, specify an appropriate link function (see Table 18) and add the random effects
to the model formula. For the estimation of ρ, however, we are only interested in the
estimation of the variance components due to the random effects.

A Hierarchical Model

The above model can be extended quite easily by adding further random effects on a
higher or lower level. The most obvious extension is to introduce a further random
effect which is nested within the first one. This can be conceptualized by use of the
two-way ANOVA model:

yik j = µ+αi + βik + εik j i = 1, . . . , m k = 1, . . . , K , j = 1, . . . , n (10)

with σ2
α, σ

2
β

and σ2
ε being the variances of the two random effects, α and β , and

the micro-level error term. The nested random effects (β ) are assumed to be balanced
within the higher level random effects (α) with ki = k β-clusters in the ith α-cluster.
The intraclass correlation coefficient of the α-level random effect is given by

ρα =
σ2
α

σ2
α +σ

2
β
+σ2

ε

(11)

156 GESIS-Series | Volume 3



Design Effects

and the β-level intraclass correlation coefficient is

ρβ =
σ2
β

σ2
α +σ

2
β
+σ2

ε

. (12)

A two-level random effects model can be useful to account for a nesting of interview-
ers within geographical clusters or vice versa (see Section 5.7).

Estimation

The most intuitive and direct way to estimate the one-way model and to extract the
variance components is to use ANOVA techniques. Leaving out fixed effects, the
estimator for σ2

α is given by

σ̂2
α,(AOV )

=

SSB

(m− 1)
− σ̂2

ε

n
=

MSB−MSW

n

and the estimator of σ2
ε is

σ̂2
ε,(AOV )

=
SSW

m(n− 1)
= MSW.

The quantities MSW and MSB can be obtained from the usual ANOVA table. This
method, however, is based on the assumption that the data are perfectly balanced
which will, most likely, not be the case in a real-world sample survey. Besides this
one, ANOVA estimation has two further drawbacks (Faraway, 2006, pp. 154): 2.) The
errors are assumed to follow a Gaussian distribution. 3.) For more complex models,
the estimation becomes cumbersome.

An alternative approach is maximum likelihood estimation (MLE). Here, the vari-
ance components, σ̂2

α and σ̂2
ε , are fit such that the log-likelihood of the parameters

given the data is maximised. With MLE, however, one must assume a distribution
of the errors. Usually this distribution is assumed to be Gaussian, but can in fact be
any other distribution of the exponential family. The random effects model estimator
of ρ using ML techniques to estimate the variance components of the model, ρ̂(ML),
is obtained by fitting the study variable on the clusters as grouping factors, α, in
the model. Then, the estimated variance components σ̂α and σ̂ε are substituted into
formula 4.5.

Estimation can be performed with any standard statistical software. In R, however,
the random effects model can be ML estimated by use of the lmer() function from the
package lme430. The ML estimation method, however, tends to yield downward biased
estimates (Harville, 1977, 325) which will lead to underestimation of ρ.

With REML estimation this bias is reduced. Instead of estimating the parameter

30 For the function to estimate the model my ML one must specify the option REML=FALSE.
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with the full vector of observations, estimation is based on a decomposition of n− 1

linearly independent31 “error contrasts” (see Harville, 1977, 325). Numerical methods
are used to maximise the likelihood function. The general procedure is described in
Corbeil and Searle (1976). Recently, an improved method based on the GIBBS sampler
has been proposed by Harville (2004).

A third estimation method based on REML estimation and its numerical procedures
is Laplace approximation. With REML estimation, one has to iteratively evaluate
the Gauss-Hermite Liu and Pierce (1994) approximation32 to the density under the

integral derived from the log-likelihood function, a term of the form
q∑

i=1

f (x i) e
x2

i wi

with q points of approximation and weights wi . The number of points at which
the approximation is evaluated can vary – a higher number of points giving higher
precision at the cost of computation time. With Laplace approximation the density is
approximated at only one such point each time.

In the case of a binary response, variance component estimation is a bit more
cumbersome but follows the same principles as in the case of continuous responses.
A detailed discussion of these methods cannot be given within the scope of this thesis
but McCulloch (1994) gives a comprehensive overview of ML and REML estimation
for binary outcome data using the EM algorithm.

31 More generally, n− p where p is the number of fixed effects in the model.
32 This procedure is often referred to as Adaptive Gaussian Quadrature or simply AGQ (see Rabe-Hesketh

and Skrondal, 2002, pp. 5).
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Tables

Table 19: Factors of the simulation study with Gaussian study variables

no. cluster size type m ρ scale

1 equal 150 0.01 Gaussian
2 equal 150 0.02 Gaussian
3 equal 150 0.03 Gaussian
4 equal 150 0.04 Gaussian
5 equal 150 0.05 Gaussian
6 equal 150 0.10 Gaussian
7 equal 150 0.15 Gaussian
8 equal 150 0.20 Gaussian
9 equal 300 0.01 Gaussian

10 equal 300 0.02 Gaussian
11 equal 300 0.03 Gaussian
12 equal 300 0.04 Gaussian
13 equal 300 0.05 Gaussian
14 equal 300 0.10 Gaussian
15 equal 300 0.15 Gaussian
16 equal 300 0.20 Gaussian
17 equal 500 0.01 Gaussian
18 equal 500 0.02 Gaussian
19 equal 500 0.03 Gaussian
20 equal 500 0.04 Gaussian
21 equal 500 0.05 Gaussian
22 equal 500 0.10 Gaussian
23 equal 500 0.15 Gaussian
24 equal 500 0.20 Gaussian
25 unequal 150 0.01 Gaussian
26 unequal 150 0.02 Gaussian
27 unequal 150 0.03 Gaussian
28 unequal 150 0.04 Gaussian
29 unequal 150 0.05 Gaussian
30 unequal 150 0.10 Gaussian
31 unequal 150 0.15 Gaussian
32 unequal 150 0.20 Gaussian
33 unequal 300 0.01 Gaussian
34 unequal 300 0.02 Gaussian
35 unequal 300 0.03 Gaussian
36 unequal 300 0.04 Gaussian
37 unequal 300 0.05 Gaussian
38 unequal 300 0.10 Gaussian
39 unequal 300 0.15 Gaussian
40 unequal 300 0.20 Gaussian
41 unequal 500 0.01 Gaussian
42 unequal 500 0.02 Gaussian
43 unequal 500 0.03 Gaussian
44 unequal 500 0.04 Gaussian
45 unequal 500 0.05 Gaussian
46 unequal 500 0.10 Gaussian
47 unequal 500 0.15 Gaussian
48 unequal 500 0.20 Gaussian
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Table 20: Factors of the simulation study with binary study variables

no. cluster size type m ρ scale π

1 equal 150 0.01 binary 0.05

2 equal 150 0.02 binary 0.05

3 equal 150 0.03 binary 0.05

4 equal 150 0.04 binary 0.05

5 equal 150 0.05 binary 0.05

6 equal 150 0.10 binary 0.05

7 equal 150 0.15 binary 0.05

8 equal 150 0.20 binary 0.05

9 equal 300 0.01 binary 0.05

10 equal 300 0.02 binary 0.05

11 equal 300 0.03 binary 0.05

12 equal 300 0.04 binary 0.05

13 equal 300 0.05 binary 0.05

14 equal 300 0.10 binary 0.05

15 equal 300 0.15 binary 0.05

16 equal 300 0.20 binary 0.05

17 equal 500 0.01 binary 0.05

18 equal 500 0.02 binary 0.05

19 equal 500 0.03 binary 0.05

20 equal 500 0.04 binary 0.05

21 equal 500 0.05 binary 0.05

22 equal 500 0.10 binary 0.05

23 equal 500 0.15 binary 0.05

24 equal 500 0.20 binary 0.05

25 unequal 150 0.01 binary 0.05

26 unequal 150 0.02 binary 0.05

27 unequal 150 0.03 binary 0.05

28 unequal 150 0.04 binary 0.05

29 unequal 150 0.05 binary 0.05

30 unequal 150 0.10 binary 0.05

31 unequal 150 0.15 binary 0.05

32 unequal 150 0.20 binary 0.05

33 unequal 300 0.01 binary 0.05

34 unequal 300 0.02 binary 0.05

35 unequal 300 0.03 binary 0.05

36 unequal 300 0.04 binary 0.05

37 unequal 300 0.05 binary 0.05

38 unequal 300 0.10 binary 0.05

39 unequal 300 0.15 binary 0.05

40 unequal 300 0.20 binary 0.05

41 unequal 500 0.01 binary 0.05

42 unequal 500 0.02 binary 0.05

43 unequal 500 0.03 binary 0.05

44 unequal 500 0.04 binary 0.05

45 unequal 500 0.05 binary 0.05

46 unequal 500 0.10 binary 0.05

47 unequal 500 0.15 binary 0.05

48 unequal 500 0.20 binary 0.05

49 equal 150 0.01 binary 0.25

50 equal 150 0.02 binary 0.25

51 equal 150 0.03 binary 0.25

52 equal 150 0.04 binary 0.25

53 equal 150 0.05 binary 0.25

Continued on next page. . .
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no. cluster size type m ρ scale π

54 equal 150 0.10 binary 0.25

55 equal 150 0.15 binary 0.25

56 equal 150 0.20 binary 0.25

57 equal 300 0.01 binary 0.25

58 equal 300 0.02 binary 0.25

59 equal 300 0.03 binary 0.25

60 equal 300 0.04 binary 0.25

61 equal 300 0.05 binary 0.25

62 equal 300 0.10 binary 0.25

63 equal 300 0.15 binary 0.25

64 equal 300 0.20 binary 0.25

65 equal 500 0.01 binary 0.25

66 equal 500 0.02 binary 0.25

67 equal 500 0.03 binary 0.25

68 equal 500 0.04 binary 0.25

69 equal 500 0.05 binary 0.25

70 equal 500 0.10 binary 0.25

71 equal 500 0.15 binary 0.25

72 equal 500 0.20 binary 0.25

73 unequal 150 0.01 binary 0.25

74 unequal 150 0.02 binary 0.25

75 unequal 150 0.03 binary 0.25

76 unequal 150 0.04 binary 0.25

77 unequal 150 0.05 binary 0.25

78 unequal 150 0.10 binary 0.25

79 unequal 150 0.15 binary 0.25

80 unequal 150 0.20 binary 0.25

81 unequal 300 0.01 binary 0.25

82 unequal 300 0.02 binary 0.25

83 unequal 300 0.03 binary 0.25

84 unequal 300 0.04 binary 0.25

85 unequal 300 0.05 binary 0.25

86 unequal 300 0.10 binary 0.25

87 unequal 300 0.15 binary 0.25

88 unequal 300 0.20 binary 0.25

89 unequal 500 0.01 binary 0.25

90 unequal 500 0.02 binary 0.25

91 unequal 500 0.03 binary 0.25

92 unequal 500 0.04 binary 0.25

93 unequal 500 0.05 binary 0.25

94 unequal 500 0.10 binary 0.25

95 unequal 500 0.15 binary 0.25

96 unequal 500 0.20 binary 0.25

97 equal 150 0.01 binary 0.50

98 equal 150 0.02 binary 0.50

99 equal 150 0.03 binary 0.50

100 equal 150 0.04 binary 0.50

101 equal 150 0.05 binary 0.50

102 equal 150 0.10 binary 0.50

103 equal 150 0.15 binary 0.50

104 equal 150 0.20 binary 0.50

105 equal 300 0.01 binary 0.50

106 equal 300 0.02 binary 0.50

107 equal 300 0.03 binary 0.50

108 equal 300 0.04 binary 0.50

109 equal 300 0.05 binary 0.50

Continued on next page. . .
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no. cluster size type m ρ scale π

110 equal 300 0.10 binary 0.50

111 equal 300 0.15 binary 0.50

112 equal 300 0.20 binary 0.50

113 equal 500 0.01 binary 0.50

114 equal 500 0.02 binary 0.50

115 equal 500 0.03 binary 0.50

116 equal 500 0.04 binary 0.50

117 equal 500 0.05 binary 0.50

118 equal 500 0.10 binary 0.50

119 equal 500 0.15 binary 0.50

120 equal 500 0.20 binary 0.50

121 unequal 150 0.01 binary 0.50

122 unequal 150 0.02 binary 0.50

123 unequal 150 0.03 binary 0.50

124 unequal 150 0.04 binary 0.50

125 unequal 150 0.05 binary 0.50

126 unequal 150 0.10 binary 0.50

127 unequal 150 0.15 binary 0.50

128 unequal 150 0.20 binary 0.50

129 unequal 300 0.01 binary 0.50

130 unequal 300 0.02 binary 0.50

131 unequal 300 0.03 binary 0.50

132 unequal 300 0.04 binary 0.50

133 unequal 300 0.05 binary 0.50

134 unequal 300 0.10 binary 0.50

135 unequal 300 0.15 binary 0.50

136 unequal 300 0.20 binary 0.50

137 unequal 500 0.01 binary 0.50

138 unequal 500 0.02 binary 0.50

139 unequal 500 0.03 binary 0.50

140 unequal 500 0.04 binary 0.50

141 unequal 500 0.05 binary 0.50

142 unequal 500 0.10 binary 0.50

143 unequal 500 0.15 binary 0.50

144 unequal 500 0.20 binary 0.50
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Table 21: Summary of the simulation study with two-stage equal probability cluster sampling

ρ m Var
�
ˆ̄y
(HT)

(clu2)[eq] 〈•〉 {•}

�
Var
�
ˆ̄y
(HT)

(srs)[eq] 〈•〉 {•}

�
ddeff

0.01 150 0.000394 0.000324 1.2169

0.01 300 0.000349 0.000331 1.0550

0.01 500 0.000338 0.000330 1.0271

0.02 150 0.000444 0.000324 1.3685

0.02 300 0.000369 0.000339 1.0871

0.02 500 0.000351 0.000335 1.0472

0.03 150 0.000500 0.000327 1.5284

0.03 300 0.000401 0.000330 1.2142

0.03 500 0.000347 0.000340 1.0185

0.04 150 0.000552 0.000329 1.6772

0.04 300 0.000406 0.000334 1.2155

0.04 500 0.000360 0.000337 1.0709

0.05 150 0.000592 0.000328 1.8046

0.05 300 0.000437 0.000336 1.3017

0.05 500 0.000364 0.000330 1.1007

0.10 150 0.000877 0.000328 2.6749

0.10 300 0.000531 0.000328 1.6208

0.10 500 0.000399 0.000335 1.1927

0.15 150 0.001116 0.000323 3.4510

0.15 300 0.000639 0.000331 1.9312

0.15 500 0.000432 0.000332 1.3001

0.20 150 0.001396 0.000327 4.2707

0.20 300 0.000728 0.000329 2.2142

0.20 500 0.000465 0.000329 1.4146

Table 22: Summary of the simulation study with two-stage unequal probability cluster sampling

ρ m Var
�
ˆ̄y
(HT)

(clu2) [un] 〈•〉 {•}

�
Var
�
ˆ̄y
(HT)

(srs) [un] 〈•〉 {•}

�
ddeff

0.01 150 0.000422 0.000335 1.2609

0.01 300 0.000395 0.000326 1.2092

0.01 500 0.000388 0.000332 1.1669

0.02 150 0.000472 0.000332 1.4201

0.02 300 0.000421 0.000336 1.2526

0.02 500 0.000391 0.000327 1.1952

0.03 150 0.000541 0.000327 1.6548

0.03 300 0.000433 0.000335 1.2910

0.03 500 0.000390 0.000332 1.1760

0.04 150 0.000591 0.000334 1.7698

0.04 300 0.000460 0.000335 1.3712

0.04 500 0.000408 0.000325 1.2556

0.05 150 0.000633 0.000328 1.9305

0.05 300 0.000473 0.000335 1.4118

0.05 500 0.000401 0.000327 1.2284

0.10 150 0.000887 0.000332 2.6755

0.10 300 0.000562 0.000332 1.6909

0.10 500 0.000442 0.000330 1.3391

Continued on next page. . .
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ρ m Var
�
ˆ̄y
(HT)

(clu2) [un] 〈•〉 {•}

�
Var
�
ˆ̄y
(HT)

(srs) [un] 〈•〉 {•}

�
ddeff

0.15 150 0.001165 0.000326 3.5734

0.15 300 0.000679 0.000325 2.0866

0.15 500 0.000470 0.000335 1.4031

0.20 150 0.001460 0.000330 4.4289

0.20 300 0.000763 0.000327 2.3314

0.20 500 0.000503 0.000334 1.5080
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Table 23: Summary of the distribution of selected estimators of ρ with equal probability cluster sampling

ρ m Typ rel. Bias relMSE

0.02 150 AOV −0.000631 0.003189

0.02 150 F 0.003831 0.003185

0.02 150 F2 −0.000631 0.003189

0.02 150 FR −0.023157 0.003163

0.02 150 REML −0.020906 0.003860

0.02 150 ML −0.045763 0.003911

0.02 150 Laplace −0.282794 0.007997

0.02 300 AOV −0.002583 0.004942

0.02 300 F 0.001696 0.004934

0.02 300 F2 −0.002583 0.004942

0.02 300 FR −0.021843 0.004926

0.02 300 REML −0.242646 0.011248

0.02 300 ML −0.266609 0.011368

0.02 300 Laplace −0.732444 0.016462

0.02 500 AOV −0.009672 0.007584

0.02 500 F −0.005102 0.007588

0.02 500 F2 −0.009672 0.007584

0.02 500 FR −0.027620 0.007579

0.02 500 REML −0.691004 0.019870

0.02 500 ML −0.703489 0.019832

0.02 500 Laplace −0.875246 0.018344

0.05 150 AOV −0.001280 0.002318

0.05 150 F 0.001165 0.002313

0.05 150 F2 −0.001280 0.002318

0.05 150 FR −0.013617 0.002302

0.05 150 REML −0.001298 0.002319

0.05 150 ML −0.013634 0.002303

0.05 150 Laplace −0.110931 0.002675

0.05 300 AOV −0.002251 0.002679

0.05 300 F 0.000171 0.002677

0.05 300 F2 −0.002251 0.002679

0.05 300 FR −0.011425 0.002673

0.05 300 REML −0.002696 0.002718

0.05 300 ML −0.011930 0.002716

0.05 300 Laplace −0.252169 0.009986

0.05 500 AOV 0.000266 0.003676

0.05 500 F 0.002481 0.003672

0.05 500 F2 0.000266 0.003676

0.05 500 FR −0.007649 0.003671

0.05 500 REML −0.046791 0.007108

0.05 500 ML −0.056151 0.007214

0.05 500 Laplace −0.710494 0.035430

0.10 150 AOV −0.001823 0.002355

0.10 150 F 0.000916 0.002353

0.10 150 F2 −0.001823 0.002355

0.10 150 FR −0.010508 0.002343

0.10 150 REML −0.001817 0.002355

0.10 150 ML −0.010502 0.002344

0.10 150 Laplace −0.143681 0.003958

0.10 300 AOV −0.002085 0.002033

0.10 300 F 0.000297 0.002031

0.10 300 F2 −0.002085 0.002033

0.10 300 FR −0.007778 0.002030

Continued on next page. . .
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ρ m Typ rel. Bias relMSE

0.10 300 REML −0.002086 0.002032

0.10 300 ML −0.007779 0.002030

0.10 300 Laplace −0.183996 0.004996

0.10 500 AOV −0.000331 0.002298

0.10 500 F 0.001853 0.002296

0.10 500 F2 −0.000331 0.002298

0.10 500 FR −0.004829 0.002296

0.10 500 REML −0.000329 0.002298

0.10 500 ML −0.004827 0.002296

0.10 500 Laplace −0.282655 0.013233

0.20 150 AOV −0.000870 0.002179

0.20 150 F 0.000631 0.002166

0.20 150 F2 −0.000870 0.002179

0.20 150 FR −0.007263 0.002175

0.20 150 REML −0.000870 0.002179

0.20 150 ML −0.007263 0.002175

0.20 150 Laplace −0.208661 0.010303

0.20 300 AOV 0.000269 0.001478

0.20 300 F 0.001048 0.001476

0.20 300 F2 0.000269 0.001478

0.20 300 FR −0.003464 0.001476

0.20 300 REML 0.000272 0.001478

0.20 300 ML −0.003461 0.001476

0.20 300 Laplace −0.241457 0.012706

0.20 500 AOV 0.001145 0.001412

0.20 500 F 0.001694 0.001410

0.20 500 F2 0.001145 0.001412

0.20 500 FR −0.001522 0.001410

0.20 500 REML 0.001144 0.001412

0.20 500 ML −0.001523 0.001410

0.20 500 Laplace −0.288254 0.017582

Table 24: Summary of the distribution of selected estimators of ρ with unequal probability cluster sampling

ρ m Typ rel. Bias relMSE

0.02 150 AOV −0.002704 0.003265

0.02 150 F 0.001150 0.004013

0.02 150 F2 −0.003300 0.003261

0.02 150 FR −0.025823 0.003237

0.02 150 REML −0.017505 0.003712

0.02 150 ML −0.042111 0.003740

0.02 150 Laplace −0.096233 0.003120

0.02 300 AOV −0.003497 0.004944

0.02 300 F 0.001380 0.006774

0.02 300 F2 −0.003821 0.004941

0.02 300 FR −0.023081 0.004926

0.02 300 REML −0.187324 0.009743

0.02 300 ML −0.213137 0.009903

0.02 300 Laplace −0.140420 0.004347

0.02 500 AOV −0.002108 0.007763

Continued on next page. . .
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ρ m Typ rel. Bias relMSE

0.02 500 F −0.005210 0.012241

0.02 500 F2 −0.002324 0.007760

0.02 500 FR −0.020284 0.007748

0.02 500 REML −0.560319 0.018466

0.02 500 ML −0.577361 0.018467

0.02 500 Laplace −0.192726 0.006219

0.05 150 AOV −0.003717 0.002351

0.05 150 F −0.003188 0.002668

0.05 150 F2 −0.004296 0.002349

0.05 150 FR −0.016619 0.002336

0.05 150 REML −0.003579 0.002350

0.05 150 ML −0.016213 0.002336

0.05 150 Laplace −0.111969 0.002629

0.05 300 AOV 0.002295 0.002763

0.05 300 F 0.004785 0.003547

0.05 300 F2 0.001978 0.002761

0.05 300 FR −0.007208 0.002751

0.05 300 REML 0.001727 0.002766

0.05 300 ML −0.007710 0.002757

0.05 300 Laplace −0.148322 0.003349

0.05 500 AOV −0.003586 0.003674

0.05 500 F −0.000176 0.005427

0.05 500 F2 −0.003796 0.003672

0.05 500 FR −0.011706 0.003670

0.05 500 REML −0.026883 0.005281

0.05 500 ML −0.036284 0.005380

0.05 500 Laplace −0.208443 0.004936

0.10 150 AOV −0.001372 0.002416

0.10 150 F 0.001729 0.002581

0.10 150 F2 −0.001921 0.002414

0.10 150 FR −0.010607 0.002402

0.10 150 REML −0.001306 0.002389

0.10 150 ML −0.010191 0.002376

0.10 150 Laplace −0.144480 0.004014

0.10 300 AOV −0.000502 0.002071

0.10 300 F 0.002070 0.002465

0.10 300 F2 −0.000801 0.002070

0.10 300 FR −0.006498 0.002065

0.10 300 REML −0.000555 0.002073

0.10 300 ML −0.006411 0.002069

0.10 300 Laplace −0.180694 0.004879

0.10 500 AOV 0.000909 0.002346

0.10 500 F 0.003058 0.003194

0.10 500 F2 0.000709 0.002345

0.10 500 FR −0.003790 0.002342

0.10 500 REML 0.000900 0.002324

0.10 500 ML −0.003731 0.002320

0.10 500 Laplace −0.230817 0.007029

0.20 150 AOV −0.001578 0.002277

0.20 150 F 0.000134 0.002327

0.20 150 F2 −0.002065 0.002276

0.20 150 FR −0.008455 0.002274

0.20 150 REML −0.001564 0.002219

0.20 150 ML −0.008049 0.002216

0.20 150 Laplace −0.211303 0.010542

0.20 300 AOV 0.000458 0.001638

Continued on next page. . .
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ρ m Typ rel. Bias relMSE

0.20 300 F 0.001472 0.001806

0.20 300 F2 0.000191 0.001638

0.20 300 FR −0.003542 0.001636

0.20 300 REML 0.000474 0.001618

0.20 300 ML −0.003346 0.001616

0.20 300 Laplace −0.243288 0.012970

0.20 500 AOV −0.000528 0.001468

0.20 500 F 0.000183 0.001838

0.20 500 F2 −0.000705 0.001468

0.20 500 FR −0.003371 0.001468

0.20 500 REML −0.000537 0.001467

0.20 500 ML −0.003283 0.001467

0.20 500 Laplace −0.288872 0.017659

168 GESIS-Series | Volume 3



Design Effects

Table 25: Correlations of estimates for binary variables in Spain – round 1

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.962 1.000
KPR 1.000 0.962 1.000
UBE 1.000 0.962 1.000 1.000
FLC 1.000 0.962 1.000 1.000 1.000

MAK 0.908 0.874 0.908 0.908 0.908 1.000
PEQ 0.926 0.802 0.926 0.927 0.926 0.879 1.000
PGP 0.907 0.873 0.908 0.907 0.907 1.000 0.879 1.000
PPR 0.945 0.860 0.945 0.945 0.945 0.965 0.970 0.965 1.000

REML 0.861 0.720 0.861 0.862 0.861 0.838 0.947 0.839 0.919 1.000
ML 0.861 0.720 0.861 0.862 0.862 0.838 0.947 0.839 0.919 1.000 1.000

Table 26: Correlations of estimates for binary variables in Spain – round 2

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.920 1.000
KPR 1.000 0.920 1.000
UBE 1.000 0.919 1.000 1.000
FLC 1.000 0.920 1.000 1.000 1.000

MAK 0.600 0.603 0.599 0.601 0.600 1.000
PEQ 0.653 0.533 0.653 0.654 0.654 0.796 1.000
PGP 0.598 0.601 0.597 0.599 0.598 1.000 0.796 1.000
PPR 0.659 0.592 0.658 0.659 0.659 0.923 0.964 0.923 1.000

REML 0.625 0.496 0.625 0.626 0.626 0.732 0.913 0.733 0.889 1.000
ML 0.625 0.496 0.625 0.626 0.626 0.732 0.914 0.733 0.890 1.000 1.000

Table 27: Correlations of estimates for binary variables in Spain – round 3

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.978 1.000
KPR 1.000 0.978 1.000
UBE 1.000 0.978 1.000 1.000
FLC 1.000 0.978 1.000 1.000 1.000

MAK 0.299 0.328 0.299 0.299 0.299 1.000
PEQ 0.342 0.318 0.342 0.342 0.341 0.839 1.000
PGP 0.295 0.324 0.295 0.296 0.295 1.000 0.839 1.000
PPR 0.338 0.343 0.338 0.339 0.338 0.951 0.964 0.951 1.000

REML 0.731 0.611 0.731 0.731 0.731 0.127 0.209 0.125 0.170 1.000
ML 0.731 0.611 0.731 0.731 0.731 0.126 0.209 0.124 0.169 1.000 1.000
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Table 28: Correlations of estimates for binary variables in France – round 1

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.967 1.000
KPR 1.000 0.967 1.000
UBE 1.000 0.967 1.000 1.000
FLC 1.000 0.966 1.000 1.000 1.000

MAK 0.954 0.997 0.954 0.954 0.953 1.000
PEQ 0.978 0.902 0.978 0.978 0.978 0.889 1.000
PGP 0.954 0.996 0.954 0.954 0.954 1.000 0.889 1.000
PPR 0.998 0.967 0.998 0.998 0.998 0.959 0.979 0.959 1.000

REML 0.971 0.909 0.971 0.972 0.971 0.893 0.969 0.893 0.969 1.000
ML 0.958 0.892 0.958 0.958 0.958 0.878 0.963 0.878 0.957 0.989 1.000

Table 29: Correlations of estimates for binary variables in France – round 2

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.881 1.000
KPR 1.000 0.881 1.000
UBE 1.000 0.880 1.000 1.000
FLC 1.000 0.881 1.000 1.000 1.000

MAK 0.860 0.691 0.860 0.861 0.860 1.000
PEQ 0.939 0.692 0.939 0.940 0.939 0.877 1.000
PGP 0.859 0.688 0.859 0.859 0.858 1.000 0.877 1.000
PPR 0.939 0.709 0.939 0.939 0.939 0.942 0.985 0.942 1.000

REML 0.928 0.716 0.928 0.929 0.928 0.878 0.973 0.878 0.967 1.000
ML 0.928 0.716 0.928 0.929 0.928 0.877 0.973 0.877 0.967 1.000 1.000

Table 30: Correlations of estimates for binary variables in France – round 3

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.901 1.000
KPR 1.000 0.901 1.000
UBE 1.000 0.900 1.000 1.000
FLC 1.000 0.901 1.000 1.000 1.000

MAK 0.834 0.769 0.835 0.834 0.834 1.000
PEQ 0.693 0.383 0.693 0.696 0.693 0.608 1.000
PGP 0.833 0.767 0.834 0.833 0.833 1.000 0.609 1.000
PPR 0.876 0.677 0.876 0.877 0.875 0.908 0.877 0.908 1.000

REML 0.674 0.370 0.674 0.677 0.675 0.567 0.919 0.568 0.825 1.000
ML 0.674 0.370 0.674 0.677 0.675 0.567 0.919 0.568 0.826 1.000 1.000
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Table 31: Correlations of estimates for binary variables in Poland – round 1

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.964 1.000
KPR 1.000 0.964 1.000
UBE 1.000 0.963 1.000 1.000
FLC 1.000 0.964 1.000 1.000 1.000

MAK 0.960 0.949 0.960 0.960 0.960 1.000
PEQ 0.971 0.884 0.971 0.972 0.971 0.940 1.000
PGP 0.959 0.948 0.959 0.959 0.959 1.000 0.940 1.000
PPR 0.981 0.919 0.981 0.981 0.981 0.974 0.992 0.974 1.000

REML 0.915 0.837 0.915 0.915 0.915 0.889 0.937 0.889 0.933 1.000
ML 0.915 0.836 0.915 0.915 0.915 0.888 0.938 0.888 0.933 1.000 1.000

Table 32: Correlations of estimates for binary variables in Poland – round 2

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.983 1.000
KPR 1.000 0.983 1.000
UBE 1.000 0.983 1.000 1.000
FLC 1.000 0.983 1.000 1.000 1.000

MAK 0.832 0.824 0.831 0.832 0.832 1.000
PEQ 0.814 0.766 0.814 0.815 0.815 0.920 1.000
PGP 0.830 0.822 0.830 0.831 0.831 1.000 0.920 1.000
PPR 0.843 0.821 0.842 0.843 0.843 0.990 0.963 0.990 1.000

REML 0.704 0.701 0.704 0.705 0.705 0.861 0.755 0.861 0.835 1.000
ML 0.704 0.701 0.704 0.705 0.705 0.861 0.755 0.861 0.835 1.000 1.000

Table 33: Correlations of estimates for binary variables in Poland – round 3

AOV KEQ KPR UBE FLC MAK PEQ PGP PPR REML ML
AOV 1.000
KEQ 0.971 1.000
KPR 1.000 0.971 1.000
UBE 1.000 0.971 1.000 1.000
FLC 1.000 0.971 1.000 1.000 1.000

MAK 0.750 0.779 0.749 0.750 0.750 1.000
PEQ 0.758 0.775 0.758 0.758 0.758 0.971 1.000
PGP 0.748 0.778 0.748 0.749 0.748 1.000 0.970 1.000
PPR 0.756 0.782 0.756 0.756 0.756 0.996 0.986 0.996 1.000

REML 0.386 0.377 0.386 0.387 0.386 0.461 0.549 0.460 0.489 1.000
ML 0.386 0.378 0.386 0.387 0.386 0.462 0.549 0.462 0.490 1.000 1.000
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Zusammenfassung der Dissertation

In multinationalen Stichprobenerhebungen wie dem European Social Survey (ESS)
werden in verschiedenen Ländern Stichproben erhoben um substanzielle Analysen zu
ermöglichen. Ein zentrales Ziel, das es bei der Stichprobenplanung zu berücksichtigen
gilt, ist die Vergleichbarkeit von Kennwerten zwischen Ländern und Ländergruppen.
Die Erreichung dieses Ziels wird jedoch erschwert durch Unterschiede in den Stich-
probendesigns zwischen den Ländern. Diese Unterschiede gehen auf divergierende
Grundlagen für die Stichprobenziehung zurück. In einigen Ländern muss auf komple-
xe, z.B. mehrstufige Ziehungsverfahren zurückgegriffen werden während in anderen
einfache oder geschichtete Zufallsauswahlen realisiert werden können. Im Rahmen
der vorliegenden Dissertation wird jedes Stichprobenverfahren als komplex bezeich-
net, das nicht eine einfache Zufallsauswahl von Personen darstellt. Ein häufig vor-
kommendes komplexes Auswahlverfahren ist die mehrstufige Auswahl. Ein Nachteil
mehrstufiger Auswahlverfahren wird durch die räumliche Klumpung der befragten
Personen hervorgerufen: Auf vielen interessierenden Merkmalen sind sich Befragte
innerhalb eines Klumpens ähnlicher als zu allen anderen Elementen der Stichprobe.
Dieser Umstand stellt eine Verletzung der Unabhängigkeitsannahme dar, die vielen
Schätzern unterliegt. In der Folge wird die Varianz vieler Punktschätzer unterschätzt
wenn trotzdem die herkömmlichen Formeln für die Varianzschätzung herangezogen

werden (etwa
Var(y)

n−1
als Varianzschätzer für den Mittelwert). Der Grad der Unterschät-

zung wird als Designeffekt bezeichnet und ist definiert als

deff=
Varc

�
θ̂
�

Varsrs

�
θ̂
� , (1)

wobei Varc

�
θ̂
�

die Varianz des Schätzers θ̂ für den Populationsparameter θ unter

dem gegebenen komplexen Stichprobendesign darstellt und Varsrs

�
θ̂
�

die Varianz
des selben Schätzers unter einfacher Zufallsauswahl. Ist θ̂ das Stichprobenmittel und
werden durch einstufiges Auswahlverfahren m Primäreinheiten vom Umfang B aus-
gewählt und alle Elemente der Primäreinheiten erhoben, so lässt sich die obige Glei-
chung umformen zu

deffone-stage = 1+ (B− 1)ρ, (2)

wobei ρ der Intralassen-Korrelationskoeffizient ist. Die Formulierung in Gleichung (1)
wird als Design-basierter Ansatz bezeichnet, diejenige in Gleichung (2) als Modell-
basierter Ansatz. Bei einer zweistufigen Auswahl, bei der innerhalb jedes ausgewähl-
ten Klumpens eine Unterauswahl von b Sekundäreinheiten uneingeschränkt zufällig
ausgewählt wird, ist der Modell-basierte Designeffekt gegeben durch

defftwo-stage = 1+ (b− 1)ρ (3)
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und im Falle unterschiedlicher Klumpengrößen mit einem Erwartungswert der Um-
fänge der Primäreinheiten von b̄ = n

m
durch

defftwo-stage* = 1+
�

b̄− 1
�
ρ. (4)

Werden den Elementen der Population durch ein Auswahlverfahren unterschiedliche
Auswahlwahrscheinlichkeiten zugeordnet, so muss die dadurch entstehende zusätz-
liche Varianz des Schätzers (z.B. des gewichteten Mittelwerts) im Modell-basierten
Ansatz durch den Designeffekt aufgrund von ungleichen Auswahlwahrscheinlichkei-
ten, deffp, berücksichtigt werden. Der Design-basierte Ansatz berücksichtigt Designge-
wichtung direkt durch die Verwendung eines adäquaten Schätzers im Nenner von
Gleichung (1).

Üblicherweise muss der Intralassen-Korrelationskoeffizient auf Basis der Stichpro-
bendaten durch einen adäquaten Schätzer, ρ̂, geschätzt werden. Für Variablen un-
terschiedlichen Skalentyps wurden verschiedene Schätzer für ρ vorgeschlagen. Diese
werden in der vorliegenden Dissertation in Kapitel 4 zunächst vorgestellt und de-
ren Qualität in Kapitel 5 anhand einer Monte-Carlo Simulation untersucht. Auch der
Zähler sowie der Nenner des Ausdrucks in Gleichung (1) müssen anhand der Stich-
probendaten geschätzt werden. Die für die Design-basierte Schätzung des Designef-
fekts verwendeten Schätzverfahren werden im Rahmen dieser Dissertation ebenfalls
mit Hilfe einer Monte Carlo Simulation bewertet. Darüber hinaus wird untersucht,
inwiefern sich Designeffekte und Interviewereffekte trennen lassen, bzw. deren ge-
genseitiger Einfluss abgeschätzt werden kann. Die in den Simulationen gefundenen
Erkenntnisse werden anhand der Stichprobendaten ausgewählter Länder des ESS em-
pirisch überprüft.
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Design Effects:
Model-based versus Design-based Approach

Der Designeffekt gewinnt in multinationalen Stichprobenerhebungen wie dem European Social Survey (ESS) zunehmend 
an Bedeutung. Im Rahmen einer eine ex ante Harmonisierung des effektiven Stichprobenumfangs kommen einerseits 
modellbasierte Verfahren zur Prognose eines erwarteten Designeffekts zum Einsatz. Bei der ex post Schätzung des 
Designeffekts bieten sich zudem auch designbasierte Verfahren an. Die vorliegende Arbeit stellt den design- und 
modellbasierten Schätzansatz gegenüber und bewertet deren Güte und Eignung im praktischen Einsatz. Diese Bewer-
tung erfolgt zum einen auf Basis einer umfassenden Monte-Carlo Simulationsstudie, zum anderen werden Daten aus 
dem ESS benutzt.

The design effect is receiving increased attention in multi-national sample survey projects like the European Social 
Survey (ESS). On the one hand, model-based methods are applied for the prediction of expected design effects in order 
to ex ante harmonize the effective sample size of different samples. On the other hand, also design-based estimators 
can be used for the ex post estimation of design effects from sample data. This thesis compares the design-based and 
the model-based approach to design effects and evaluates their quality and applicability in real-world situations. This 
evaluation is based on a large-scale Monte-Carlo simulation study and on data from selected countries of the ESS.

Matthias Ganninger




