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ABSTRACT

Information Acquisition in Conflicts

by Florian Morath and Johannes Munster *

This paper considers incentives for information acquisition ahead of conflicts.
We characterize the (unique) equilibrium of the all-pay auction between two
players with one-sided asymmetric information. The type of one player is
common knowledge. The type of the other player is drawn from a continuous
distribution and is private information of this player. We then use our results to
study information acquisition prior to an all-pay auction. Depending on the cost
of information, only one player may invest in information. If the decision to
acquire information is observable for the opponent, but not the information
received, one-sided asymmetric information can occur endogenously in
equilibrium. Moreover, compared with the first best, information acquisition is
excessive. In contrast, with open or covert information acquisition, the cut-off
values for equilibrium information acquisition are as in the first best.

Keywords: All-pay auctions, conflicts, contests, information acquisition, asymmetric
information

JEL Classification: D72, D74, D82, D83
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ZUSAMMENFASSUNG

Informationsbeschaffung in Konflikten

Dieser Aufsatz untersucht Anreize fir Informationsbeschaffung im Vorfeld von
Konflikten. Zunachst charakterisieren wir das (eindeutige) Gleichgewicht eines
vollstandig diskriminierenden Wettkampfs (all-pay auction) zwischen zwei Kon-
trahenten mit einseitig asymmetrischer Information dariber, wie die Kontra-
henten den Gewinn bewerten: Die Bewertung eines Spielers ist allgemein be-
kannt, und die Bewertung des anderen Spielers ist gemal einer stetigen
Verteilungsfunktion verteilt und private Information dieses Spielers. Anschlie-
Bend verwenden wir unsere Ergebnisse, um Informationsbeschaffung im Vor-
feld einer all-pay auction zu untersuchen. Abh&ngig von den Kosten der Infor-
mationsbeschaffung investiert lediglich ein Spieler in Information. Falls die
Entscheidung tber Informationsbeschaffung fur den Gegenspieler beobachtbar
ist, jedoch nicht die Information selbst, kann einseitig asymmetrische Infor-
mation im Gleichgewicht der Entscheidungen uber Informationsbeschaffung
entstehen. DarUber hinaus investieren die Spieler verglichen mit dem
Wohlfahrtsoptimum zu viel in Information. Im Gegensatz dazu ist die
Informationsbeschaffung effizient, falls entweder gekaufte Information offen
beobachtbar ist oder weder die Information noch die Entscheidungen uber
deren Beschaffung durch den Kontrahenten beobachtet werden kdnnen.



1 Introduction

Contest theory studies the interaction between agents who spend resources in order
to increase their chances of winning a prize. A large number of economic environ-
ments can fruitfully be analyzed as contests - e.g. advertising of firms, patent races,
rent-seeking and lobbying, political campaigning, or litigation. In many of these
environments, the competitors do not know exactly what value they would derive
from winning, or how costly it is to expend effort. They may, however, be willing
to invest a significant amount of time or money in order to find out about the prize
that is at stake, or about the cost of competing. Such investments in information
have important implications on the interaction in the contest, both on the amount of
resources spent and on allocative efficiency. Moreover, as a consequence of informa-
tion acquisition, contestants may differ in the quality of the information they have
about their own or their competitors’ valuation.

Asymmetries with regard to the information the contestants possess are a fea-
ture of many contests. These asymmetries can arise from decisions on information
acquisition prior to the conflict. In other cases, they are features of the environ-
ment the contestants compete in. As an example, consider the case of the Brent
Spar oil rig that the owners, Royal Dutch Shell and Exxon, wanted to sink in the
Atlantic Ocean. Following a worldwide campaign organized by the environmental
group Greenpeace, they abandoned this plan and decided to re-use a large part of
the rig. This contest was characterized by a one-sided asymmetry of information
about the valuations of the contestants. There were publicly accessible estimations
of the cost of the on-shore dismantling of Brent Spar, including estimations published
by the owners themselves. There was, however, very little public information about
the value Greenpeace placed on the prevention of the deep sea disposal so that the
owners of Brent Spar had to rely on their guesses about how far Greenpeace would
go. Such one-sided asymmetric information is also prominent in many situations
where an incumbent competes with a newcomer, for example in regulated markets
or in election races.

Private information of the contestants, however, often results from information



acquisition. A firm entering a market will try to find out about the market conditions
and the potential gains before competing with an incumbent. As another example
for investments in information consider again the contest over Brent Spar. One of
the first actions of Greenpeace was to enter the Brent Spar and to take some samples
of how much toxic material was on it. This clearly allowed Greenpeace to learn more
about the value that was at stake.

In this paper, we first study one-sided asymmetric information in a perfectly dis-
criminating contest or all-pay auction between two risk neutral players. The all-pay
auction has been used to model a number of contests such as rent-seeking contests
and lobbying (Hillman and Riley 1989, Ellingsen 1991, Baye et al. 1993, Polborn
2006), election campaigns (Che and Gale 1998), and also R&D races (Dasgupta
1986); see Konrad (2009) for a recent survey. We characterize the (unique) equi-
librium of the all-pay auction between two contestants, where the valuation of one
contestant is common knowledge, whereas the valuation of the other contestant is
drawn from a continuous distribution and is his private information. In equilibrium,
the player whose valuation is commonly known randomizes continuously, whereas
the player with private information plays a pure strategy.

We then analyze information acquisition ahead of conflicts and the players’ incen-
tives for such investments. Suppose each player initially only knows the distribution
of his type, but that he can learn his true valuation by investing some amount. We
distinguish between three different cases depending on how much the opponent can
observe if a player invests: (i) the opponent can observe whether a player has in-
vested in information, but not the realized valuation of the opponent in case the
player invests, (ii) the opponent can observe the outcome of information acquisition
(open information acquisition), (iii) the opponent cannot observe at all whether a
player has acquired information (covert information acquisition).

In case (i), if no player invests in information, the resulting contest is similar to
an all-pay auction with complete information where, by risk neutrality, the benefit
of winning is the expected valuation. If both players acquire information, the all-pay
auction turns into the well-known framework with private information. If exactly

one player invests in information, then the ensuing contest has one-sided asymmetric



information: there are common beliefs about the type of one player, while the type
of the other player is his private information. In this setting, information acquisition
has a strategic effect on the behavior of the opponent in the contest. We show that
players are willing to spend a considerable amount on information. Moreover, for
intermediate costs of information acquisition, only one player will invest. To be more
precise, there are two asymmetric equilibria where exactly one player invests, and
there is also a symmetric equilibrium where both players randomize their investment
decision. Thus, the case of one-sided asymmetric information can arise endogenously
in an equilibrium of the game with information acquisition. Rent dissipation is
incomplete, although players are symmetric ex ante. Compared with the first best,
information acquisition is excessive in case (i).

In cases (ii) and (iii), the players’ equilibrium investments are again guided by
cut-off values concerning the cost of information acquisition. We show that, however,
these cut-off values are exactly equal to the cut-off values for first best investment in
cases (ii) and (iii). Since in case (i), the players’ willingness to pay for information is
higher, this suggests that there is a strategic value of information acquisition if the
players’ decisions are observable, but not the information itself.

The paper is related to several studies of the all-pay auction under different as-
sumptions on the information available to the contestants. Hillman and Riley (1989)
study the all-pay auction for the two benchmark cases: complete information and
private information about the individual valuations. Baye et al. (1996) characterize
the set of equilibria of the all-pay auction with N players and complete information.
Amann and Leininger (1996) show uniqueness of the equilibrium with two-sided
asymmetric information and two ex ante asymmetric players. Morath and Miinster
(2008) compare private versus complete information in auctions, and find that for
the all-pay auction, revenue is smaller under complete information, while bidders’
payoffs are the same in the two information structures. Krishna and Morgan (1997)
consider the case where the players’ signals are affiliated. Konrad (2009) charac-
terizes the equilibrium under one-sided asymmetric information where one player’s
value follows a two-point distribution. The all-pay auction with multiple prizes is

studied by Moldovanu and Sela (2001) in a framework with private information, and



by Clark and Riis (1998) and Barut and Kovenock (1998) with complete information.

Closely related to our work are three papers that study one-sided asymmetric
information in contests. For a logit contest success function, Hurley and Shogren
(1998a) analyze contests with one-sided asymmetric information, and Hurley and
Shogren (1998b) compare the three information structures that also arise in our
model with regard to rent dissipation and efficiency. For a more general contest
success function, Wérneryd (2003) considers an imperfectly discriminating contest
with two agents who have the same value of winning, but where there is uncertainty
about this value. He compares a symmetric information structure to the case where
one agent privately knows the value of the prize and shows that rent dissipation may
be lower under asymmetric information. We add to this literature by studying the
all-pay auction framework, and we focus on private values.!

Our paper is also linked to the literature on strategic behavior ahead of contests.
Konrad (2009) surveys this literature. Our contribution to this literature is to study
the incentives for information acquisition in contests.

In Section 2, we describe the strategies and payoffs of the players in the all-pay
auction for a given information structure. In Section 3, we analyze the all-pay auction
with one-sided asymmetric information. In Section 4, we consider the all-pay auction
in a context of information acquisition. Section 5 discusses how our result is affected
if the assumptions on the observability of information acquisition change. Section 6

is the conclusion. All proofs are in the appendix.

2 The all-pay auction

There are two players 1 and 2 competing in an all-pay auction. Player ¢ values
winning by v;. The wvaluations, or types, v; and v, are drawn independently from a

cumulative distribution function F' that is common knowledge. F' has support [0, 1]

'One-sided asymmetric information in common value first-price auctions has been studied by
Engelbrecht-Wiggans et al. (1983), among others. In addition, a growing literature considers
information acquisition in winner-pay auctions; recent work includes Persico (2000) or Hernando-
Veciana (2009).



and is continuously differentiable with F” (v) > 0 for v € (0, 1).

In Section 3, we assume that the realized value of v; is common knowledge,
whereas the realized value of vy is private information of player 2. In Section 4,
we assume that initially no player is informed about any valuation, but players can
acquire information: at a cost ¢, a player can learn his own value.? Player j can
observe whether or not ¢ has acquired information, but not the realized value v;.

Finally, players compete in an all-pay auction. They simultaneously choose their
bids x; € [0,00). The player with the higher bid wins, ties are broken randomly.
Both players have to pay their bids. Thus, i’s payoff from the all-pay auction (gross

of the direct cost of investing in information) is

Vi — Ty, Ty > Ty,
— U3
Ui = 35 —Tiy Tji=Ty,

— T, T < xy.

3 Omne-sided asymmetric information

Suppose that player 1’s valuation v; is common knowledge.® Player 2’s valuation
vy is privately known only to himself. Thus, a pure strategy of player 1 is a bid
x1 € [0,00), whereas a pure strategy of player 2 is a function 3, : [0, 1] — [0, c0) that
maps the typespace into the set of possible bids. The solution concept is Bayesian
Nash equilibrium (henceforth, "equilibrium").

Denote the bid distributions of players 1 and 2 by B; and By, i.e. B;(x) denotes
the probability that i’s bid is weakly below x. If 1 plays a pure strategy to bid x
with probability one, then B; is degenerate: By (z) = 0 for z < x and By (2) = 1
otherwise. If B; is not degenerate, 1 plays a non-degenerate mixed strategy. In
contrast, the bid distribution B, captures the uncertainty concerning vy, as well as

the possible randomization of player 2.

2Note that the investment does not change the distribution of one’s value, nor one’s ability to
compete in the contest. Investments in one’s value or ability have been studied by Miinster (2007).

3The analysis goes through for all v; > 0. For v; = 0, there is no equilibrium because player
1 will bid zero and player 2 has no best response since any strictly positive bid, however small,
guarantees victory.



Lemma 1 In any equilibrium, the bid distributions By and By have the following

properties:
(i) (Continuity) By and By are continuous on (0, 00).

(i) (Support) The supports of By and By both have the same minimum b= 0, and

the same mazimum b < vy.
(iii) (At most one mass point at zero) min {B; (0), By (0)} = 0.
(iv) (Monotonicity) B, and B are strictly monotone increasing on [0,b].

Similar properties are standard in auction theory. Continuity implies that there
are no interior mass points. Monotonicity rules out any gaps in the support. Thus
(i) and (iv) imply that B; and By have the same support.

It follows directly from Lemma 1 that, in any equilibrium, player 1 randomizes
according to a CDF that is continuous and strictly increasing on [0, 5]. To get some
intuition, suppose to the contrary that player 1 chooses a pure strategy, i.e. bids
some amount x with probability one. Then player 2 would either like to marginally
overbid player 1, or bids zero. But then bidding x is not optimal for 1, contradicting

equilibrium. Thus player 1 has to randomize. In contrast, 2 plays a pure strategy.

Lemma 2 In any equilibrium, player 2 plays a pure strategy B4 : [0,1] — [O,E} .
There is a critical value ve [0,1) such that B, (v2) = 0 for vy <v and (4 (vy) > 0 for

vy >v. Moreover, By is continuous on [0,1] and strictly increasing on [v,1].

Lemma 2 shows that player 2, whose valuation is private information, bids ac-
cording to a strategy that is increasing in his value, and low types might bid zero.
The highest type of player 2 (who has v, = 1) bids exactly b. The intuition behind
the proof is simple. Higher types of player 2 will bid higher. Thus, if some type
of player 2 randomizes over some interval, no other type of player 2 will bid in this
interval. But then B is constant in that interval, contradicting Lemma 1.

Note that (3, has image [O,l_)]. Since [, is continuous and strictly increasing
on (v,1], it is invertible on (v,1] with 83" : (0,b] — (v,1]. Furthermore, 85" is

continuous and strictly increasing on (0, Iﬂ.

7



Lemma 3 In equilibrium, B, and Bs are differentiable on (O,Z_)); moreover (5 s
differentiable on (v,1).

Given differentiability of the bid distributions, we can use first-order conditions
to determine the equilibrium and show its uniqueness. The expected payoff of player

1 from a bid z; € (O, l_)} is equal to

Eluy (v1)] = F (52_1 (1’1)) V1 — T

since 35 ! exists on (O,B]. Because player 1 randomizes continuously on (O,B},

E [u; (z1)] must be constant in this interval. Therefore,

U1

F' (85" (1)) m

—1=0. (1)

Any solution to the differential equation (1) has to fulfill
62 (1)2) =F ('02) V1 + k

for all vy such that 3, (v2) > 0, where the constant k remains to be determined.
Note that F (vy) vy + k > 0 if and only if v, > F~' (—k/v1). By Lemma 2, types
vy < F~1(—k/vy1) bid zero, hence By (0) = —Fk/vq, and thus k € (—vy,0]. For
notational convenience, let ay = —k/v; (we use the subscript ‘2’ since as = Bs (0)).

Putting things together,

0, vg € [0, F71 (ar))

Ba (v2) = { F (v9) vy — aguy, w9 € [F71 (), 1] 2)

where s € [0,1) remains to be determined.
Now consider player 2. The first-order condition for a type v, who bids a strictly

positive amount is given by
Bi (z9)vg — 1 =0. (3)



Using (2),
1 1

Byt (x2) B F-1 <12+a2v1

v1

B (2) =

)
)

has to hold for all x5 > 0. This is solved by

T2 1
B1 (ZKQ) = / ——dz + aq
0 F-1 <Z+a2v1>

U1

B85 (z2)
- / UaF (0) + (5)

F-1(ag) (%

where a; remains to be determined. Note that oy = B; (0) € [0,1).
To determine a;; and «o, we use the fact that, at most, one of the bid distributions

has a mass point at zero (Lemma 1(iii)):
min {B; (0), Bz (0)} = min{ay,as} = 0. (6)

Moreover, player 1 will never bid higher than the highest type of player 2, thus
By (fy (1)) = 1. By (5), we get

/1 DaF (0) + a1 = 1. (7)

*1(042) v
Equations (6) and (7) uniquely determine the mass points a; and as.
Lemma 4 (i) If
1
/ Bar () > 1, (8)
0o U

then a; = 0 and oy is the unique solution to

/1 UaF (v) = 1. 9)

F~1(az) v



(11) If (8) does not hold, then as =0 and o is the unique solution to

/1 DAF (v) + oy = 1. (10)

v

Using Lemmas 1-4, we can now state the main result of this section.

Proposition 1 Suppose that player 1°s valuation is common knowledge and player
2’s valuation is his private information. The all-pay auction has a unique equilibrium.

Player 1 randomizes according to

. L ——~dz+ oy for 21 €[0,(1—az)v)
By (x) =24 " () (11)
1 for 11> (1— ) vy

where ay and ap are defined in Lemma 4. Player 2 plays the following pure strategy:

By (v2) = (12)

F (v2) vy — aquy  for vy € [F1 (), 1]

{ 0 for vy €0, F71 (a))

In equilibrium, player 1 randomizes according to a (concave) distribution func-
tion. The probability that he bids zero is equal to ;. Thus, whenever a;; > 0, player
1’s expected payoff is zero, since he is indifferent between bidding zero and any pos-
itive bid in (0, (1 — aq)v1]. Player 2 bids zero for all types that are smaller than
v= F~!(ay), i.e. with probability a,. For all other types, player 2 bids a positive
amount [, (vy) and gets a positive expected payoff which is increasing in his type.
From an ex ante point of view, player 2’s equilibrium payoff is strictly positive. His

bid distribution is given by

_ x
By (13) = F (52 ' (%)) =y + U_z
1
where xo € [0, (1 — ag)v1]. Hence, player 2’s bids are uniformly distributed on
(0, (1 — ag) v1) with (possibly) a mass point at zero. This is similar to the all-pay
auction under complete information: in order to make player 1 indifferent, player 2’s

bids have to follow a uniform distribution with slope 1/v;.

10



Note that, if v; is weakly larger than player 2’s expected valuation E (V3), (8) is
always fulfilled. This follows from

/1 YLaF (v) > /1 EW2) ik () > 1 (13)

v (%

which is true by Jensen’s inequality (£ (1/V2) > 1/E (V3)). Thus, if v, is sufficiently
large, By (0) > B;(0) = 0 : player 1’s willingness to bid more aggressively induces

player 2 to bid zero if he has a low value.

4 An application to information acquisition

In the following, we use our results of the previous section to analyze a game of in-
formation acquisition in conflicts, focussing on the case where the decision to acquire
information can be observed by the opponent, but not the acquired information it-
self. (We discuss the cases of open and covert information acquisition in Section 5.)
As before, the players’ types are independent draws from a CDF F' that is common
knowledge. Prior to the all-pay auction, the players simultaneously decide whether
to purchase a perfectly informative signal about their own valuation at a cost c.
The realization of the signal is private information, but whether or not a player has

acquired information is common knowledge in the all-pay auction.

Case 1: No information acquisition. Suppose that no player acquired infor-
mation. Maximizing his expected payoff in the all-pay auction, a player i’s optimal
strategy is to choose his effort as if his valuation were equal to his expected valuation
E(V;) = Uv::()l vdF (v). Hence, the all-pay auction is reduced to a game where the
(expected) valuations F (V;) and E (V) are common knowledge. The equilibrium of
the all-pay auction under complete information is in mixed strategies and is derived

in Baye et al. (1996): both players randomize uniformly with support [0, E (V7)].

Fact 1 (Baye et al. 1996) Suppose that no player acquired information. In the

unique equilibrium of the all-pay auction, expected payoffs are E [ui] = E [ug] = 0.

11



If no player invests in information, and both players have the same expected

valuation, there is full rent dissipation in the all-pay auction.

Case 2: Two-sided asymmetric information. Suppose that both players have
acquired information and know their own type, but only know the distribution of the
opponent’s type. In this case, the equilibrium of the all-pay auction is well-known.*

Each player’s bid is strictly increasing in his valuation.

Fact 2 (Weber 1985, Hillman and Riley 1989) Suppose both players acquired infor-

mation. In the unique equilibrium of the all-pay auction, expected payoffs are

Bu] = Eus] = /0 /0 " (05 — ;) dF (0;) dF () — c. (14)

The support of the bid distributions is [0, £ (V1)], as in the case without infor-
mation acquisition. Without information acquisition, however, the distribution of
the bids first-order stochastic dominates the bid distribution in the case of private
information. Therefore, expected expenditures in the contest are lower with private
information, and the players get a positive expected payoftf. Moreover, the allocation
of the prize is efficient in the case of private information since the player with the
higher valuation wins with probability 1. Obviously, whenever ¢ is sufficiently small,

both players are better off than they are without information acquisition.

Case 3: One-sided asymmetric information. Suppose that only player 2 ac-
quired information. Then player 2’s valuation is private information, and player 1’s
optimal strategy is to bid as if his true valuation were E (V7). Thus, we can build
on the results of Section 3 by just replacing v; with E (V;). Since E (V) = E (V3),
it follows with (13) that By (0) = as > 0, and «s is defined by (9). Since player 2

bids zero for types smaller than

v=F"1(ay) >0, (15)

“See, for example, Krishna (2002), pp. 33-34. Uniqueness of the equilibrium follows from Amann
and Leininger (1996).

12



the uninformed player 1 has a positive expected payoff,
Elu)=F (v) E(V1) > 0. (16)

A type vy >v of player 2 that bids a strictly positive amount gets a payoff of

B1 (8, (v2)) v2 = B, (v2) = /VU2 (M

v

- E(W)) dF (),

Player 2’s ex ante expected payoff is therefore equal to

Elus] = /Vl / (@ - E(Vl)) dF () dF (vy). (17)

We now turn to the implications for the incentives to invest in information.’
Proposition 2 There are two critical values ¢ and ¢ with 0 <c< ¢ such that:

(1) If the cost of information c is strictly smaller than c, both players acquire infor-

mation.

(ii) If ¢ < ¢ < ¢, there are two equilibria where exactly one player acquires infor-
mation. Additionally, there is a symmetric equilibrium where player i acquires

information with probability p = (¢ — ¢) / (¢ — ¢).
(iii) If ¢ > ¢, no player acquires information.

The critical value ¢ (¢) is the maximum amount a player is willing to spend on
information given that the opponent does (does not) acquire information. It is crucial
to show that 0 <c< ¢. Since the willingness to pay for information is smaller if the
opponent acquires information (c< ¢), an interval (c, ¢) exists where only one player

invests in information (or both players randomize).

Note that players have no private information when they decide whether to acquire information.
Any reasonable belief about the opponent’s type is simply the prior distribution F'. Moreover, any
continuation game has a unique Bayesian equilibrium. Therefore, we study the 2-by-2 game defined
by the payoffs described in Facts 1-3. This amounts to studying the perfect Bayesian equilibria of
the game defined in Section 2.

13



Elu],

E[u, | only player 2 informed]

E[u; | both informed] .
1 Ef[u, | only player 2 informed]

E[u, | no player informed]

11,
6 2

c=

Figure 1: Payoffs dependent on ¢ (for F' (v) = v).

Figure 1 illustrates this result by showing the players’ expected payoffs dependent
on the information cost and the information decisions for uniformly distributed types
(F' (v) = v). Obviously, for sufficiently high cost of information, no player will buy
it. On the other hand, for sufficiently low cost of information, at least one player
has an incentive to acquire information due to the complete rent dissipation in the
case of no private information. For any continuous distribution function F', however,
there is an intermediate range of information costs where it only pays for one player
to acquire information.

We conclude this section by studying the efficiency of equilibrium information
acquisition. We compare equilibrium information acquisition with first best invest-
ments by a social planner who is ex ante uninformed about the valuations, but can
observe the outcome of any information acquisition. For concreteness, assume that
the social planner derives no value from the bids in the contest and allocates the

prize to the player with the higher expected valuation.

Proposition 3 In an equilibrium without randomization concerning information ac-

quisition, the number of players acquiring information is higher than in the first best.

In the appendix, we show that first best investments are characterized by two
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Case1: c<c"

First best 2 1 0
Equilibrium 2 1 0
Il T L > c
0 c [ c" c
Case2: c>c"
First best 2 1 0
Equilibrium 2 1 0
— r > C
0 c ek c c

Figure 2: The number of contestants who invest in information, in the first best, and
in an equilibrium without randomization of information acquisition, as a function of
the cost of information acquisition c.

critical values ¢ and ¢’ (with ¢ < ¢”) for the cost of information: if ¢ < ¢, both
players should invest, if ¢ € (¢, "), one player should invest, and if ¢ > ¢”, none
should invest. The critical values that determine the social planner’s investments
are lower than the corresponding equilibrium thresholds of Proposition 2: ¢’ <c and
" < ¢. Depending on the functional form of F', ¢’ can be higher or smaller than
c.’ Figure 2 compares equilibrium investments with the first best. In equilibrium,
there is more information acquisition: if ¢ € (¢, ¢), both players acquire information
although only one player at most should, and similarly, whenever ¢ € (¢”,¢), at least

one player acquires information, though neither of the players should.”

SFor example, for F (v) = v, c< ¢’ < ¢, and for F (v) = v3, we have ¢/ <c< ¢.

"In the symmetric equilibrium with randomization of information acquisition, under some pa-
rameter constellations, it may happen that ex post no player invests although in the first best one
player should invest. To be more precise, if ¢’ <c, then the number of players acquiring information
is always weakly higher than in the first best. On the other hand, if ¢/ >¢, then for any ¢ € (¢, "),
in the first best exactly one player acquires information, whereas in the mixed equilibrium the num-
ber of players acquiring information is zero, one, or two, depending on the realizations of players’
randomization.
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5 Observability of information acquisition

The analysis in the previous section builds on a crucial assumption on the observ-
ability of information acquisition: we assumed that the players’ decisions whether to
acquire information are observable, but the information itself is only privately known
to a player. In the following, we discuss this assumption by modifying it in two dif-
ferent directions. On the one hand, we consider the case where both the players’
decisions and the information is publicly observable (open information acquisition),
and on the other hand, we discuss the case where neither the information nor the
players’ decisions are observable by the opponent (covert information acquisition).
With open information acquisition, there are three different situations that can
arise in the all-pay auction. If no player acquired information, the equilibrium is as
described in Fact 1. If only player i acquired information, ¢’s valuation is common
knowledge, and j bids as if his value was E (V;). If both players acquired information,
both v; and v; are common knowledge. In all three cases, the equilibrium is similar
to the equilibrium under complete information characterized by Baye et al. (1996).
Comparing the expected payoffs in the three cases determines the amount that the

players are willing to spend on information.

Proposition 4 With open information acquisition, in any equilibrium without ran-

domization concerning information acquisition, players invest as in the first best.

If the information that players acquire is observable, cut-off values exist for the
cost of information such that both, only one, or none of the players wants to invest
in information. These thresholds, however, are exactly the same as the thresholds a
social planner would set (¢’ and ¢”). Thus, if the information is publicly observable,
players invest less in information, and information acquisition is efficient.

Now turn to the case of covert information acquisition where a player cannot
observe whether or not the other player has acquired information. Intuitively, for a
very low cost of information, both players invest, and for very high cost, no player

invests in information.
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Proposition 5 With covert information acquisition, (i) there is an equilibrium where
both players invest in information if and only if ¢ < ¢, and (ii) there is an equilibrium

where no player invests in information if and only if ¢ > ”.

For the sake of brevity, we do not characterize the equilibria for the entire range of
cost parameters ¢,® but, interestingly, the cut-off values for ¢ such that both players,
or none of the players, acquire information are as in the first best. Thus, a player
is willing to spend more on information if the decisions are observable than if the

decisions are not observable by the other player.

6 Conclusion

We considered the all-pay auction between two players with one-sided asymmetric
information. The asymmetry accounts for the fact that there may be superior in-
formation about one of the contestants, for example an incumbent, compared to the
other contestants. We showed that if one contestant’s value of winning is publicly
known and the value of the opponent is private information, the all-pay auction has
a unique equilibrium, and we characterized the equilibrium strategies.

Building on this result, we studied the contestants’ incentives to invest in infor-
mation before they compete in the all-pay auction. We distinguished between three
different scenarios: (i) the opponent can observe only that a player has acquired
information, but not what information he received, (i) the opponent can observe
the information itself (open information acquisition), and (iii) the opponent does
not observe the decision to acquire information (covert information acquisition). In
all scenarios, if the cost of information is sufficiently low, it is outweighed by the
value that the information has in the contest. For intermediate cost of information,
however, only one player may invest in information. Therefore, in scenario (i), in

the all-pay auction one contestant may have private information whereas there are

8For ¢ € (¢, ), one has to include situations where players randomize their information choice,
in which case i bids against an informed player 7 with some probability. The equilibrium of the
all-pay auction is then as if types are private information and drawn from a continuous distribution
function exhibiting one interior discontinuity.

17



common beliefs about the other contestant’s value of winning. Moreover, in equilib-
rium, more information is acquired than in the first best. In contrast, with open or
covert information acquisition, the cut-off values for the cost of information acquisi-
tion are as in the first best. In all three scenarios, although players are symmetric
ex ante, rent dissipation is incomplete unless the costs of information acquisition are
prohibitive.

An interesting extension of our work could be the case of N contestants and
asymmetric information. For example, if a monopolist tries to defend the monopoly
rents against multiple entrants, there might be asymmetric information in the sense
that one contestant’s type is common knowledge and the other (N — 1) contestants’
types are private information. The structure of the equilibrium should then be similar

to the two-players case.

A Appendix

A.1 Proof of Lemma 1

(i) (Continuity) Suppose that B; exhibits a discontinuity at some & > 0. This implies
that a bid of ; = Z has strictly positive probability. Thus, there exist ¢,&’ > 0 such
that player ¢ strictly prefers x; = & + ¢ over all x; € (& — €', %) : shifting probability
mass from (Z — &', ) to Z+¢ only involves an infinitesimally larger cost of effort, but
strictly increases the probability of winning.? Since player ¢ will not bid in (Z — €', 7),
player j can strictly increase his payoff by bidding 7 — %/ instead of 7.

(ii) (Support) Let b; (b;) denote the maximum (minimum) of the support of B;.
Suppose that b; > Bj. Then B; (z) =1 for all x > Bj. Thus, player ¢ prefers to bid
T = (x’l + (_Jj) /2 to any bid x> b;, contradicting b; > b;. Hence, by = by = b. Since
player 1 can ensure a payoff of zero by bidding zero, we must have b < v;.

Suppose that b; >b; > 0. Then any bid z; <b; loses with probability one; player

j could increase his payoff by bidding zero instead, which is a contradiction.

91f i = 2, this argument assumes vy > 0. But this is inconsequential since type v = 0 has zero
probability.
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Now suppose b; >b,; = 0. Then player j strictly prefers a bid of zero over all bids
in (0,b;), thus B; has no probability mass in (0,b;). Since B; has no mass points
(except possibly at zero) it follows that B; is constant on (0,b;]. But then there
exists € > 0 such that player i strictly prefers a bid of £ over any bid in [b;, b; + ¢):
a bid of € has strictly lower costs but only a marginally lower probability of winning.
This is a contradiction to the definition of b;.

Finally, suppose b; =bs =b> 0. By (i), B, (b) = 0, and there exists an ¢ > 0
such that z; = 0 is preferred to any bid x; € [b,b+ ¢), which contradicts b; > 0.
Combining these arguments shows that b; =bs = 0.

(ili) (Mass points at zero) If B, (0) > 0, there exists an ¢ > 0 such that player ¢
prefers x; = ¢ to x; = 0. Hence, B; (0) = 0. This shows that the bid distribution of
at most one player can have a mass point at zero.

(iv) (Monotonicity) Suppose that B; is constant in an interval (z,z"”) where
0 < 2’ < 2" < b, further suppose that 2 = max{z|B; (z) = B;(2')}. Then
B;
prefers x; = 2’ to all z; € (2/,2” +¢) : by bidding 2" player i reduces his prob-

(z') = B;(2") < 1 since 2/ < b. There exists an ¢ > 0 such that player i

ability of winning only by (at most) an infinitesimally small amount, but strictly
decreases his expected cost of effort. Thus ¢ does not bid in (2/,2” + ¢). Since B;
has no mass points, we have B; (') = B; (2 + ¢€) . But then j prefers bidding 2 over
any bid in [2”, 2" 4+ ¢] and thus we must have B; (2" 4+¢) = B, (2'), contradicting
2" =max{x|B; (z) = Bj (2) }.

A.2 Proof of Lemma 2

First we show that no type of player 2 randomizes. Suppose to the contrary that
some type vj of player 2 does randomize. Let ¢; (¢;,) be the infimum (supremum) of

the support of the distribution of bids made by type v5. For any ¢ > ¢,

Bi(¢)vy— ¢ > By (c)vy — ¢ (18)
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for otherwise v could gain from shifting probability mass to ¢.!® From (18),
c—q > (Bi(c)— By (q)) v).

Since By is strictly increasing, for any v < v}, we have
c—c¢ > (By(c)— Bi(¢)) vy

or
Bi(¢)) vy — ¢ > By (c)vy — ¢

ie. type vj strictly prefers to bid ¢; over bidding c. Therefore, for all vy < v},

the supremum of the support of the distribution of bids made by type vj must be

weakly smaller than ¢;. Similarly, for all v’ > v5, the infimum of the support of the

distribution of bids made by type v’ must be weakly higher than cj,. Therefore only
type v} bids in (¢, ¢) . Since the distribution of types, F), is continuous, it follows
that By is constant on (¢, ¢p,) , contradicting Lemma 1.

It follows that player 2 plays a pure strategy 3, : [0,1] — [0,00). Moreover, 3,
is weakly increasing. Now suppose that v < v§ and (3, (v5) = B, (v5). Since 5, is
weakly increasing, it follows that [, (ve) = B, (vy) for all vy € [v),v5]. Therefore By
has an atom at 3, (v}) (the size of the atom is at least F' (vy) — F'(v})). Since By is
continuous except possibly at zero, this atom can only be at /3, (v}) = 0.

This shows that there is a ve [0, 1) such that, first, for all vy <v, 3, (ve) = 0, and
second, f3, is strictly increasing on [v, 1] . Since By is strictly increasing, /3, has to be

continuous as well.

10T ¢; has strictly positive probability, type v} gains from shifting this probability mass to c. If
¢; has zero probability, then, for any ¢ > 0, the interval (¢, ¢; 4+ €) has positive probability. By
continuity of By, if (18) does not hold, then for small enough € > 0, By (¢, +¢€)vh — (a1 +¢) <
B (¢) v — ¢, and shifting probability mass from the interval (¢;, ¢; 4 €) to ¢ is beneficial.
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A.3 Proof of Lemma 3

We first show that B; is differentiable at any z, € (O,B) . Let vy, = 35" (1) and
consider a strictly increasing sequence v§ with v§ € (v,1) and lim,,_,» v} = v,. For
notational brevity let 2% = £, (v5). Then 27 is strictly increasing and lim,, ., x5 =
ZT9.

Bidding =7 is at least as good as bidding x5 for type v%, thus

By () vy — x5 > By (zg) v§ — 9

or B B, (an
1> 1(72) — nl(%)'
Taking lim sup, we get
B — By (o} 1
lim sup ( 1 (22) : <$2)) < —. (19)
Ty — Ty (%]

Similarly, for type vq, bidding x5 is at least as good as bidding x5. Thus
Bl ($2) Vg — X9 Z B1 (ﬂ?g) Vg — fL'g

Rearranging and taking lim inf, we get

lim inf <Bl (z2) = By <x3)) > Uiz (20)

1’2—1‘3

From (20) and (19), it follows that

lim (Bl (2) — By (fUEL)) _ 1

Ty — Ty Uy

z5 T2
A parallel argument, that considers a strictly decreasing sequence vy with limit vs,

shows that
(Bl (z2) — By (5'3@) _ 1

Ty — vy

lim
xy | T2
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Thus B; is differentiable at vy, with

— lim (Bl (z2) — By (»’US)) _ 1

To — Ty ()

dBl (.’E)
dx

n
Ty —I
r=2 272

We next show that the bid distribution B is differentiable. Since B is strictly
increasing on (O, 13), player 1 must be indifferent between all bids x € (0, B) . Fix one
xr, € (O, B) . Consider a sequence z7 with limit x; and with 2} € (0, Z_)) for all n. For

all n, player 1 is indifferent between bidding x} and bidding x; :

BQ (I‘Tll) V1 — I? = BQ (Z’l) V1 — 1

Rearranging,
By (21) — By (af) _ 1
T, — xf U1
Thus n
lim (32 (21) = Ba ("”1)) _ 1
n—00 R U1

and therefore B, is differentiable.
Since F is differentiable by assumption, it follows that 3, must be differentiable

as well.

A.4 Proof of Lemma 4

(i) Suppose to the contrary that «; > 0. Then as = 0 by (6) and thus

1
v
B (8,(1) = [ 2P (0)+ar> 1
0
contradiction. Thus «; = 0. Inserting a3 = 0 in (7), we get (9). The left-hand side
of (9) is strictly greater than one for a, = 0, it strictly decreases in s, and is equal
to zero for iy = 1. By continuity, there is a unique ay € (0,1) such that (9) holds.
Part (ii) can be proven similarly. From (i) and (ii), it follows that «; and ay are

uniquely determined.
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A.5 Proof of Proposition 1

Uniqueness follows from the discussion in the main text. It remains to establish that
the strategies are an equilibrium. Consider player 1 and suppose player 2 follows

(12). The expected payoff of player 1 for a bid x; € (0, (1 — az) v1] is equal to

Euy (z1)] = F (83" (z1)) v1 — a1

since 35! exists on (0, (1 — o) vy]. Inserting (12), we get E [u; (21)] = agv; for all
x1 € (0, (1 — ag) v1] . Moreover, if (8) does not hold, then as = 0 and player 1 has
a payoff of zero; thus in this case he is indifferent between all z; € [0, (1 — ag) vy].
Bidding more than (1 — as)v; is always suboptimal. Thus (11) is a best response.
Now consider player 2 and suppose he has a valuation v,. Given By, his payoff

By (x) vy — x is strictly concave in his bid x since

2 x
Bl ()= o /ﬁi_)d :%@<0.

v1 v1

If vo > F~!(ay), then the first-order condition (3) describes the unique maximum.
If vy < F~! (), then for all x5 > 0,

Bi(Ig)UQ—lz ?)2—1<0.

U1

F-1 (Z2+a201 )

Therefore, (12) is a best response.

A.6 Proof of Proposition 2

Suppose player j does not acquire information. If ¢ does not acquire information
either, he gets an expected payoff of zero by Fact 1; if ¢ acquires information, his

payoff is described by (17). Hence, i’s best response is to acquire information if and
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only if ¢ is smaller than

¢im /Yl / (%JV)U - E(V)) dF (v;) dF (v7) (21)

where, from (15), v= F~! (a;) > 0, and v is defined by

/1 EWV) ik (o) =1. (22)

v

Note that from (22), it follows that v< E (V).
Now suppose that j acquires information. If ¢ remains uninformed, he gets
F(v)E(V), as in (16). If i acquires information, his payoff is described by (14).

Thus, i’s best response is to acquire information if and only if ¢ is smaller than

v

¢i= /01 /0 (v — v;) dF (v;) dF (vi)—/ E(V)dF (v) (23)

0

where again v is defined by (22).

Let
= By, v, [max {v;,v,}] — E,, max {E (V) ,v;}].
(In Appendix A.7, we will show that in the first best, both players acquire information

if and only if ¢ < ¢/.) The following lemmas will be used repeatedly below.

Lemma 5

c':/ol /0 (vi—vj)dF(vj)dF(vi)—/OE(V) (E (V) = ;) dF (v) > 0.
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Proof. For the equality,
d = vy [max {v;, v;}] — E,, [max {E (V) ,v;}]
= / / v;dF (vj) dF (v;) / / vidF (v;) dF (v;)
B(V)
_/ E(V)dF (v;) - / vidF (v;)
E(V)
E(V)
_ // vi — v;) dF (v;) dF (v;) — / (E (V) = v;) dF (1)
0

The inequality ¢’ > 0 follows from Jensen’s inequality. To see this, define

1
g (v;) = / max {v;, v; } dF (v;).
0
Since g is strictly convex in v,
Ey, [g (vi)] > g (Ey, (v:))

or equivalently
By, v max {v;,v;}] > E,, max {E (V) ,v,}].

u
Lemma 6 (i) ¢> ¢ and (ii) ¢ >c.

Proof. (i) Using Lemma 5,

E(V) v
e d = /0 (E(V)—vj)dF(vj)—/o E(V)dF ()
E(V) v
= [ @W - w)ir )~ [ wr ).

0

25



Adding and subtracting both f; V) vdr (vj) and ny(V) y%;/)dF (vj) yields

(- = /Ov<v—vj>dF<vj>+/vE(V) (r0) -4y -2 ) ar )

Uj
E(V) EV) g
—/ de(vj)—i—/ v (V)dF(vj).
0

v Uj

First observe that

/E(V)YE(V) dF (v;) —

Uj

1<

[ / BV p ) - / LBy @j)]

v Uj E(WV) Yj
L )

_ y[l— / <V)dF(vj)}
E(WV) Yj

where the second equality uses (22). Therefore,

v E(V) — ) (v — v
¢ = [w-warw+ [ EW) =) 5 =9) oy

Uj

v 1—/0E(V)dF(vj)—/1 E<V>dF(vj)

E(WV) Y5

v

which is strictly positive.

(ii) With (21) and (23), ¢—c is equal to

[
7 / / V) dF (vj) dF (v;) / / v; — v;) dF (vj) dF (v;)

_ / h (v dF (1)

0

F <v>) 0F () dF (v,)

where



if v; <v, and

hv) = / (M—E(V)) dF (v;)

+/OVE(VJ) dF (v;) — /O (vi — ;) dF (v;)

if v; >v. Then, it is sufficient to show that h (v;) > 0 for all v; € [0, 1].
Case 1: v; <v. From (22), it follows that v< E (V'), and thus

/ E(V)dF (v;) > / CwdF () > / (05— v;) dF (u).
0 0 0
Case 2: v; € (v, E(V)]. Here, h (v;) is equal to

/ (0= 0) (BV) =) o,y / CEW) = v+ o) dF (1)),

Uj

The first term is strictly positive because v; < v; < E (V) and v; >v. The second
term is strictly positive as v; < E (V) and, by (15), v> 0.
Case 3: v; € (E(V),1]. Since v is independent of v;, we get

) = [ E ) - [Carw).

B (v;) = mF’(vi)—F/(vi),

Vj

hence, h is strictly concave for v; > E (V). Moreover, as v; — 1, h' converges to

/VlE(v>dF(vj)—/oldF(sj):1—1:O.

Uj

(The first integral is one by (22).) Thus, A’ must be positive for all v; € (E (V),1)
and thus h (v;) > h (E (V) > 0 where the last inequality follows from case 2. m

We are now in a position to prove Proposition 2. From Lemmas 5 and 6, it

follows directly that ¢ >c¢> 0. Thus, (i) if ¢ <c, information acquisition is strictly
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dominant. (ii) If ¢< ¢ < ¢, a player invests in information only if the opponent
remains uninformed, and there exist two asymmetric equilibria where exactly one
player invests. Moreover, there is a symmetric equilibrium where both players invest
in information with probability p = (¢ — ¢) / (¢ — ¢) : if player i acquires information,
he gets

A=p)(c=c)+p(F ) EV)+c—c)=pF(v)E(V)

which is equal to his payoff if he remains uninformed. Thus, ¢ is indifferent be-
tween investing and not investing in information. Moreover, for all p that are strictly
smaller (greater) than this critical value, i strictly prefers (not) to acquire informa-

tion. Finally, (iii) if ¢ > ¢, not investing is strictly dominant.

A.7 Proof of Proposition 3

Consider the decision of the social planner. If she does not acquire any information,
she gives the prize to any player and realizes a welfare of F (V). If she acquires
information about the valuation of one player, it is optimal to give the prize to this
player if and only if his valuation is higher than E (V). In this case, welfare is equal
to £, [max {E£ (V) ,v;}] — c. If the social planner acquires information about both

players, welfare equals E,, ,, [max {v;,v;}] — 2c. As above, let

d = E,,,, [max {v;,v;}] — E,, [max {E (V) ,v;}]. (24)

i
Moreover, let

¢ = Ey [max{E(V), v} - E(V)

%

1

_ / (v — E (V) dF (v;). (25)

E(V)

If the cost of information acquisition equals ¢/, welfare is the same if two players
acquire information as if one acquires information. At ¢’, welfare is the same if one

player acquires information as if no one does.

Lemma 7 (i) 0 < < and (i) ¢ <c and " < ¢
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Proof. (i) In Lemma 5, we have already shown that ¢/ > 0. Moreover, using Lemma
5,

¢ = // vi — ;) dF (v;) dF (v;) — /E(V)(E(V)—v])dF(vJ)

_ /0/0 (vi — E (V) dF (v;) dF (v3) // V) =) dF (v;) dF (v;)

_/01 /OE(V) (E (V) = v;) dF (v;) dF (v;)

-/ 1 [ 6y ar e+ [ tv) / (V) (B (V) = w)dF (v;) dF (1)

E(V) (E(V)
_/O / (E (V) — v))dF (v;) dF (v;)

which is strictly smaller than

/01 /0 (v; — E(V))dF (v;) dF (v;) </El(v) /0 (v; — BE(V))dF (v;) dF (v;)
< /El(v) /01 (vi — E (V) dF (v;) dF (v;) = "

(ii) The first inequality is Lemma 6, part (i). Moreover, by (21) and (25), ¢ > ¢”

is equivalent to

/Yl /Vu <%j)vZ _ E(V)> dF (v;) dF (v;) > /El(v) (v; — E (V) dF (v;) .

By (17), the left-hand side is i’s ex ante expected payoff if i acquired information and
J remained uninformed. Since, in this case, j never bids higher than his expected
value, the LHS must be weakly higher than the RHS, because the latter is the payoff
i could ensure by bidding E (V) for all types v; > E (V) and bidding zero otherwise.
It remains to show that for some realizations of v;, ¢ can do strictly better. Note first
that F~! (a;) =v> 0, i.e. j’s maximum bid is b = (1 — a;) E (V) < E (V). Hence,
for all realizations v; € ((1 —a;) E (V) , E(V)), i can ensure a strictly positive payoff
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by bidding (1 — «;) E (V), and hence the LHS must be strictly larger than the RHS.

[ |

The inequalities in (i) allow us to characterize first best information acquisition:
if ¢ < ¢, both should acquire information; if ¢ € (¢, ¢”), exactly one player should
acquire information; finally, if ¢ > ¢”’, no one should. With (ii), we can compare
equilibrium investments and first best investments (see Figure 2 in the main text).
If ¢ < ¢, both players invest as in the first best. If ¢ € (¢/, min {c, ¢’}), both players
acquire information although exactly one player should. If ¢ € (min{c,c"},"),
in the asymmetric equilibria exactly one player acquires information, as in the first
best. If ¢ € (¢”, ¢), at least one player acquires information, but neither of the players
should. Finally, if ¢ > ¢, no player invests, as in the first best. Therefore, the number

of players investing in information is higher than the first best.

A.8 Proof of Proposition 4

If no player invests in information, both get an expected payoff of zero. If only
player i invests, i’s expected payoff is E,, [max {v; — E'(V),0}] — ¢, while j gets
E,

By, v; [max {v; — v;,0}] — c.

. [max {E (V) —v;,0}]. If both players acquire information, each of them gets
Now suppose that j remains uninformed. Player i’s best response is to acquire
information whenever ¢ is smaller than F,, [max {v; — E (V'),0}] which, with (25),

is equal to ¢’. If j acquires information, i invests whenever c¢ is smaller than
By, v, Imax {v; —v;,0}] — B, [max {E (V) — v;, 0}]

which, by Lemma 5, is equal to /. Since 0 < ¢’ < ¢”, both players (no player) acquire
information if ¢ < ¢ (¢ > ¢”). If ¢ € (¢, "), there are two equilibria where exactly
one player acquires information, and a mixed strategy equilibrium where players

acquire information with probability (¢’ —c¢) / (¢’ — ¢).
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A.9 Proof of Proposition 5

(i) We first analyze whether there can be an equilibrium where both players acquire

information with probability 1. If this is the case, then they bid as in Fact 2 and

/ / ) dF (v;) dF (v;) —

Now suppose that i deviates and remains uninformed. Then, his optimal bid is as if

both get a payoff of

he had a value of F (V') which leads to a deviation payoff of

E(V)
/0 (B (V) = v;) dF ()

Hence, it pays off to save the cost of information whenever c is larger than

/ / , —v;) dF (vj) dF (v;) — /OE(V) (E (V) = v;) dF (v;)

which, by Lemma 5, is equal to ¢. Thus, if and only if ¢ < ¢, an equilibrium exists
where both players acquire information.

(ii) Now suppose that both players do not invest in information with probability
1. Then, both get zero payoff. If i deviates and acquires information, his optimal
bid is zero if v; < E (V) and E (V) if v; > E (V). (The type v; = E (V) is exactly
indifferent. Thus, lower types prefer a bid of zero, and higher types prefer a bid at
the upper bound of the support of j’s bids.) The deviation payoff is

/ (v; — B (V) dF () —

E(V)

Therefore, if and only if ¢ is larger than ¢’ (from (25)), there is an equilibrium where

no player acquires information.
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