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Abstract

The focus of this paper is the endogenous formation of peer groups. We study a
model in which agents choose their peers prior to making decisions on multiple
issues. Agents differ in how much they value the decision outcomes on one issue
relative to another. While each individual can collect information on at most one
issue, all information is shared within the group. Thus, the group’s preference com-
position affects the type of information that gets collected. We characterize stable
groups, groups that are optimal for all their members. When information costs are
low, stable groups must be sufficiently homogeneous. Furthermore, stability re-
quires more similarity among extremists than among moderate individuals. When
information costs are substantial, a free rider problem arises, and makes extreme
peers more desirable, as they are more willing to invest in information acquisition.
We show that, as information costs grow, polarization appears and becomes increas-
ingly pronounced in stable groups.

JEL classification: D82, D85.
Keywords: Homophily, Polarization, Group Formation, Information Collection
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1. INTRODUCTION

There are many 'rea'lms in which individuals choose whom they interact with, socially and strategically.
Individuals choose which Internet forums to participate in, clubs to join, neighborhoods to live in,
schools to go to and s0 on. In fact, new platforms such as online somal networks blogs, etc. allow users
to choose their peers without any physical or geographical constraint. Interestingly, a vast emp1rlca1
11te1ature in sociology suggests consmtent patterns of group formation. Indeed, agents appear to
assoc1ate with those similar to them (e.g., in demographics, political op1n1ons or beliefs).! Moreover,
in an era in which the Internet penetration rate in North America is 73% (and 87% among teenagers),
concerns have been raised about the consequences of unconstrained socialization among individuals of
similar, and possiloly extreme, views.? A

While, over the decades, the analysis of st'raﬁegic intera,otions across. domains has received wide
Vattention, theoretically aﬁd empirically, the group of players is usually assumed to be._ determined
exogenously.> The foous of the ourrent ‘paper is the analysis of an extended game in which, first, agents
choose their group of peers and, second, a strategic interaction (namely, a public good game) takes
place. The >goal' is to underst}and how the interplay between the group formation stage and the strategic
interaction stage determine the propefties of the oeer groups that arise in equilibrium, In particular ‘
we prov1de a taxonomy of environments generating groups. that consist of similar, heterogenous, or
highly polarized agents in terms of their fundamental characteristics. ‘

We study a model in which agents make individual dec131ons on two different issues, and their .
ut111t1es dlffer in the relative weight they put on each issue. These issues can be a metaphor for life-
decisions regarding parenting and retirement, choices concerning conéumption goods for different uses

(e.g., food and books), etc. For example, depending on their personal circumstances and demographic

!See the literature review for a brief summary of the work on this phenomenon, known as homophily.

?The leading enline social networks contain a large volume of miembers. As of mid-2010, MySpace had over 200 million
members, while Facebook had over 400 million members. In 2007, Forrester Research estimated that 50% of teenagers
of age 12-17 visited online social networks at least weekly. Since then, analysts have reported persistent growth (see
Lipsman (2008)). The public sphere has continuously scrutinized the role of the web in enabling.extreme and intolerant
behavior, For example, in 2003 the U.S. Army created the Counterterrorism Center to follow online extremist groups,
and in 2006 an Internet Radicalization Task Force was formed by the Homeland-Security Policy Institute (see Thomas,
2009). Furthermore, the Columbine shooters reportedly learned how to construct sophisticated bombs through their
Internet activity. In the massacre’s aftermath, some measures have been taken in U.S, jurisdiction to limit minors' access
. to onhne communities (e.g., the Children’s Internet Protection Act). :

88ee below for a description: of several exceptions,
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characteristics, ageﬁts may vary in how much they worry about their children’s educational prospects
(iniportant'for younger vindividu‘als) as opposed to their savings (that are very important for individuals
nearing retirementj. Similarly, depending on their personal tastes and hobbies, they might differ in.
how much they are concerned with the quality of food they eat relative to the selection of books they
read. Fach agent’s taste is' characterized by a parameter in [0, 1], proxying for how much she cares
about one issue relative to the other.

We assume that there is some uncertainty about the optimal choice on each of the two issues. Prior
to makmg decisions, each individual can exert costly eﬂ'ort in collectmg information on, at most, one
issue.* Besides gatherlng information directly, wé assume that 1nd1v1duals have access to mformatlon
through their peers. In our model, agents have the possibility of forming groups and what -defines a
peer group ts that the mformation"‘c.ollected by each member is made pubﬁc wz’th_z’n the group.

For any fixed group of individuals, we characterize the equilibrium choice of information collection;
a mépping from the composition of tastes of the agents in the group into the volume of information
collected on each issue. | | ‘ ,

‘To capture the notion that new technologies allow individuals to connect on platforms thét are
not bounded by local geography, we then step back and consider the group of peérs as an object
of choice. Depending on her tastes, and foreseeing the amount and the type of informatioh that is
collected within each group, each indi\.fidual prefers certain peer groups to others. We chargcterize the
peer group’s unconstrained optimal composition for each individual’s taste. We show that, for each
individual, there is a large equivalence class of optimal groups, pdtenfia,lly with maximal variance. of’
tastes. |

lStable groups are ones that satisfy natural equilibrium constraints in the groﬁp—formatiop stage.
That is, a group 1s stable if it is optimal for all its members. |

Our first main result provides a chdracterization of stable groups when information gathering
has very low costs, or is free. The case of free infogmation is relevant for situations in which some
form of information collection is par for the course, and individuals féce only a choice on ‘the type

of information to gather— e.g., which websites to visit while 'sﬁrﬁng the Internet (those directed at

1This is a simplification capturing the idea that agents may face constraints on the effort they can exert on iﬁformation
gathering., As discussed below, the analysis is unchanged if we allow each agent to collect multiple pieces of information.
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child-rearding or those.focus,ing oﬁ investment advice), which part of the newspaper to read in the
morning (the food section or the book reviews), and so on. We show that stable groups of a fixed
size are identified by a partition of the tasfe parameter range [0, 1] into sub-intervals. In pa,rticﬁlar, a
groﬁp is stable if and only if there exists an interval in this partition that contains the taste pararheters
of all the groﬁp members. This result suggests that if each member has some 1evérage in choosing
her peers, stability occurs when tastes are suﬁiciently cloéé."’ Intuitively, a group is stable only when _
all its members agree on the optimal way to allocate the group’s information gathering across' the
two issﬁes, aﬁd this occﬁrs wheﬁ tastes are suﬂici.éntly similar. The intervals identifying stable groups
exhibit interesting comparative static,s. Specifically, these intérvals are wider for moderate tastes and
become narrower as tastes become more extreme. This implies that stability }"equires more similarity
for extreme individuals than for moderate ones. 7
' Thié comparative statics has s;crong holding empirically. For example; in recent years 'theire has
been an increasing pre‘valenée of online platforms targeted at individials with extreme tastes (rangihg
from fbod aﬁciona.dos, to gossip followers; to heavy metal music fans). Even mainstream social netwof_k
‘sites (such as tfibe.net, ning.com, some of the new interfaces under Facebook, etc.) were created to
provide channels ’chat allow like-minded individuals to connect more easily. “
~We also show that as the group size grows large, for non-extreme individuals, stability remains
consistent with groups composed of members of different, although sufﬁciently‘close, tastes. That
is, - intermediate intervals in the partiﬁion do not converge to singletons. In fact, the only intervals‘
converging to siﬁgletohs are the two extreme ones. This suggests that, as groups become larger (due
td, say, the growth of online corhmunitiés and forums, or even the initial introduétion of email, sms,
etc.), heterogeneity persists in groups composed of moderates, but similarity becomes stronger within
groups of extremists. |
Next, we focus on the case of higher informatioq costs, which is relevant to many environments,
ranging from focused wine or book clubs (in which paftiéipants‘ have to jointly provide resources, be

- it money or time), to computer programming forums, whose members- decide whether to invest in -

In fact, new technologies that allow less constrained choices of peers correspond to the emergence of more homo--
geneous groups. For example, Lynd and Lynd (1929), illustrates how the introduction of the automobile increased the
prominence of clubs and coincided with an increase in peer connections based on common interests,




SIMILARITY AND POLARIZATION IN GROUPS } 4

learning a new coding strategy.

- When information gathering becomes costly, a free rider problem can arise within groups that are

stable absent information costs. Since more extreme individuals have greater incentives to acquire

information on the issue they care about, introducing group polarization‘ha,s the benefit of mitigating
the free riaer problem by weakening the incentive conétraints i1|1~thé information-collection stage.

Our second main result characterizes stable groups for higher information costs. When groups.are
small, fhe free rider pfoblem»is not severe, and stable groups are the same as those we descfibe for _thé
low information costs case. As the group size increases, the ffee rider p‘rbblem becomeé acute and, for
Suﬁicienﬂy large groups, stabi_lity ‘entails extreme prafe%enc_e polarization. Nonetheless, fof intermediate
group sizes, two tyi)es' of groups are stable, First, we show that some of the (sufficiently homogeneous)
stable groups iﬂ the low information costs éase survive as stable. Second, we characterize stable
mildly polarized groups. These groups in;clude both some extremists, who collect informatio_n on their
p‘r‘eferred issue, and some moderates, who are close enough in their preferences to agree on the optimal
ailocation.' of the number of signals collected across issues. '

Since the driving force behind the appearance of stable heterogeneity is the free rider problem,

: reducing the cost of information collection plays a similar role to a reduction of group size: they both

alleviate the free rider prdblem. A decrease in the cost of information may occur with the development
of a new technology fbr information ga.theririg (such as the Internet, or a search engine). .Thus, our
results suggest tﬁat, as technolégy improves, stable groups exhibit more similarity in tastes. fndeed,
when information costs_'are high, polarized individual are necessary in a group to gather information

on some issue. As information costs decrease, information gathering becomes feasible for moderate

.individuals also. Thus, agreement on the optimal way to go about collecting information becomes the

promihent criterion around which stable groups form. This is consistent with a large body of empirical

work studying the effects of new information technologies on social affiliations., For instance, Sproull

and Kiesler (1991) depicted how the introduction of the telephone affected connection between similar

individuals. Recently, Rosenblat and Mobius (2004) studied coauthored papers in top economics
journals between the years 1969—19'99. They showed how the introduction of the Internet in the early

1990’s is linked with a 20% decrease in the realization of projects with av dissimilar coauthor.
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Our baseline notion of stability is a strong one, in that each individual can potentially deviate to
g‘roupé composed of agents with any taste combination. This framework fits environments in which
the population is very large, such as those pertaining to many online communities and social networks.
Nonetheless, in smaller populations., deviatjons are restricted by the existing partition of agents into
groups. We study the case of a small population 6f agents in~Section 5. We call a partition of the
population stable if no .agent prefers to join a group (an element in the partition) different than the one
she is in or to remain by herself. Certainly, the grand coalition containing all agents is alwa&s stable .
and is the most efﬁcien‘g stable allocation. Moreover, we show 7_tha,t in any stable partition simi_lar
agents tend to cluster together. Qur Iaét main result provides conditions under which full segregation;
a partition into groﬁps that contaiﬁ only agents with the same taste, can arise as a stable allocation.
We exploit the comparative statics developed in the low information cost case to show that, in a similar
spirit, segregation is easier to sustain for individuals of extreme tastes than of moderate ones.

To conclude, we make two important remarks to highlight the range of environments our results
can be applied to. Firét, since our analysis is presented in the absénce' of e%ternalities other than
inférmational ones, it fits most literally social connections having information sharing vas a driving -

force (Internet forums; information networks, blogs, etc.). However, information shalring is one of the ‘
motives behind a much wider class of social ties, such as friendships, éollaboratvions, and many others. |
The framework we present allows us to extract the implications of the information component in the
choice bf peers. In fact, in thé last part of the papér, we discuss how the presence of other externalities,
n addiiion to informational ones, affects our results.
Second, while our model is presented through an information-collection game, \ilts crucial elements
v afe that agents have a 1imitedAamount of (possibly costly) effort that they can exert on either iss‘uge
and that thé resulting utilities for all agents e#hibit decreasing marginal returns with respect to the
total effort exerted on each issue. In fact, in Section 6.1, we show that our results hold for a large
class of production functions of publ_@'c go'ods. This more general mbdel fits communities that.aggregate
around the production of some public goods (e.g., freeware .developmen’c groups, student associations,

urban neighborhdods, vohinteering groups, and many more).’
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Section 6 also illustrates the generality of our results with respect to the number of issues at hand, ‘

and the protocols restricting agents’ moves from one group to another.
g ag group

'Relatredeiterature. Lazarsfeld and Merf'on (1954) coined the term homophily — litefally ‘meaning
“love for the same” — capturing the tendency of socially cor;nectéd individuals to be similar to one
another.ﬁ In reéeﬁt years, there has been a growing bodyA of work identifying homophily across fields,
ranging _from economics (see Benhabib, Bisin, and Jackson (2010)), to polifiqal science (see Huckfelds
and Sprague (1995)), to sociology (see McPherson, Smith;L(;vin, and Cook (2001)).

| In general, similarity of connected individuals on malleable traits (such as political affiliation, ed-
‘ucation, etc.) can be rooted in one of two processes: (i) selection, or assortative matching, in which

Similarity begets association, the process modeled in this paper; or (it) .sociali;zation or convergence,
in which social ties generate similarity. One way to diSentangle these processes entails a study of
exogenous characteﬂstics, such as height or race (see Goeree, McConnell, Mitchell, Tromp, and Yariv
(2010), Marmaros and Sacerdote (2006), and Mayer and Puller (2008), who identify signiﬁcant levels
of homophily with respect to these attributes). Another approach is to consider longitudinal data, as.
in Kandel (1978). She sfudied adolescent fﬁendships and the extent of similarity across dyadic connec-
| tionjé regarding four attributes (frequency of current marijuana use, level of‘ educatié)nal aspira;c‘ions,
political orientation, and participation in minor delinquency) at several stages of f‘riendship‘formation
and 'dissblution. Kandel found that observed ,hoinophily was the outcome of a significant combination
| of both types of processes.

On the theoretical side, several recent bapers directly address p;efefences for similarity. Currarini,
Jackson, and Pm (2009) assume homophilic behavior and study its consequences in a friendship
formation model.” Peski (2008) derives a preference for similarity endog‘enously.. He assumes certain
properties of preferences over friends (complementarities between direct friends and second-degree
friends) and the possibility of confusing people who are similar to one another. The necessity to

differentiate friends and enemies as much as possible then leads individuals to form friendships with

~8The observation that people connect to those similar to them is, in fact, a rather old one. Aristotle remarked in his
Rhetoric and Nichomachean Fthics that people “love those who are like themselves,” Plato commented in Phaedrus that
“similarity begets friendship.”
"Bramoullé and Rogers (2010) study a related model of friendship formation in which agents of the same ‘group’ are
more likely to meet (and befriend) one another. They characterize the resulting connection characteristics.
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those who are similar.

The..underlying idea that the group of players in a strategic situation is, in itself, endogenous
motivates some éf the wér’k on club formation (see, e.g., Ellickson, Grodal, Scotchmer, and Zame
(1999) and Wooders, Cartwright, and Selten (2006)). The basic model of that literature assiimes some
form of externality across individuals and studies endogenous group formation (often in a general
equilibrium setup) in the presencé of these externalities. Our approach differs in that externalities |
in our setting arise only through the sharing of information (specifically, 1o goods are traded after
groups are formed). Furthermore, we focus on the characteristics of the emergent groups (namely, the
distribution of tastes as a function of the environment’s fundamentals). |

Several elements of our model are reminiscent of work in other areas. First, the idea that agents
may choose peer groupslthat match. their preferences is anlongoing theme in the theory of public choice,
going back to Tiebout (1956). These models define municipalities by the government services and tax
rates ’_chat they oife_r. Individuals choose a community that maximizes ﬁheir utility. Nonetheless, the
: strafegic interaction that follows and the structure of utilities are very differenf. Furthérmore, much
of that work is concerned with the efficiency of such processes, rather than with thé similarity or .
heterogeneity of eqﬁilibrium Communi‘oies.8 Second, the idea that agents’ preferences may alleviate
incentive constraints in Qolléctive settings with costly information appears iﬁ sc;me recent mechanism
design literature.” Third,‘ the nofion that ag’énts optimally select thosé ‘with whom they communicate
appears also in Calvé—Armengol, De Marti, aﬁd Prat (2009).10 Théy consider a set of connected -
agents who differ in the accuracy of their ezogenously provided private information, and are ex—anté
identical otherwise, Furthermoré, externalities in their model arise through both (costly) information
' sharing, as well as through ultimate actions that are taken. In contrast, we characterize the endogenoufsr
similarity or heferogeneity within groups in which all agents freely communicate with all others (a;ld
the only externalities present are information-based). |

Recently, there has been a proliferation of work illustrating the potential explanatory power of

8 Regarding this line of research, our results in Section § share some common elements with Greenberg and Weber
(1986) -and Demange (1994). We refer to that section for a detailed comparison hetween our approach and theirs,

?See Che and Kartik (2009) and Gerardi and Yariv (2008).

1%While in our model this choice amounts to selecting agents out of an infinite pool of individuals of all types, in their
setting agents choose the intensity of their communication (pertaining to both transmission and reception) with each
other agent separately. ‘ '
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socml connections regardmg individual outcomes across contexts, covermg public goods provision,
crime, _]Ob ‘search, pohtlcal alhances, trade, frlendshlps, and information collection.!! Particularly
in view of the vast literature on homophlly, an important empirical issue in this literature is thaﬁ
correlations between behavior ar_ld outcomes of individuals and their peers ﬁay be driven by common
unobservables and, \the'refore, be spurious (see Evans, Oates, and Schwab (1992) and Manski (1993,
2000)). Understanding similarity patterns is potentially.impor“sant for m’itigating. such endogeneity

pr'oblems.

2. THE MODEL
- There are two issues at stake: A and B, each taking a value in {0,1}. The values of A and B are
determined ihdependently at the outset of the game. For expositional simplicity, we assume that each
issue I € {A, B} has equal probability' of receiving the vaiue 0 or 1.12 Issues can stand for many
problems, ranging from choices of the best food shop and bookstore, to selecting-physicielms in two
different areas of expertise (say, a dentist and a'pediat'rician). '

Each agent needs to make a decision on each issue — that is, pick an action v = (va,vB) €
{O 1} x {0 1}. Each agent is characterized by a taste parameter ¢ € {0, 1] The utilify of an agent of

taste t from choosing v when the realized issues are A and B is given by
u(t,v; A, B) =t1a(va) + (1 —t) 1p(vg),

where 1 7(+) is an indicator function, receiving the Valule of 1 whenever the argument coincides with
issue I, and 0 otherwise. Thus, the agent’s gdal is to match her actions with’ the realized issues.
The taste parameter ¢ measures how much an agent’s ﬁtility is a.ffected by making the right decision
on each issue.!® For examiple, all agénts benefit by choosihg a superior supermarket and a supérior
bookstore, but, debending on their consumption pattern.s, théy may- differ in how much one affects

_their utility with respect to the other. Similarly, agents may be affected differently by the selection of

"'"This literature is too extensive to survey here. Important work includes Coleman (1966), Conley and Udry (2005) :
Foster and Rosenzweig (1995), Glaeser, Sacerdote, Scheinkman (1996), Granovetter (1994), Katz and Lazarsfeld (1954),
and Topa (2001).

2 The entire analysis of the paper can be extended directly to asymmetric priors, _

184 hile in this setting the issues are common value (so, the right decision for all agents is identical), our analysis would
follow the same lines if agents had different opinions on what is the right decision: conditional on the realized issue.
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an able dentist relative to a pediatrician depending on their age, health, and family status.

Prior to making a decision, each agent can select simultaneously one of two information sources,

o ér B, or forego information collection altogether. Information source a provides the realized issue
A with probability go > 0. That is, upon choqsing information source «, ‘ﬁhe agent observés‘ a signal
s € {0,1, @} according to: _ _
. | Pr(SZA):qC;, Pr(s=@)=1-¢a.

Similarly, informaﬁon source  provides .the réalized issue B with probability gz > 0. In what
follows, we sometimes refer to a signal collected from sources  and 3 as “a—signal”. and “B-signal,”
respectively.!* The idea behind the assumption that eacﬁ a,gent- can gathef at most one signal is
that each agent has a 1imited budget of resources to allocate to inforhlation gatheﬁﬁg.ls We assume
that accessing information is costly: observing a signal of either source comes at a cost of ¢ > 0.9
The informatiéncolléctioh cost ¢ is strictly positive in any context in which ex_pertis‘e requires effort
(e.g., following online reviews, reading specialized magazines, efc.). An agent who decides to forego
informatiori coilection does not incu; any information coliection cost.

A group consists of a set of n > 2 agents.!” What defines a group of peers in our model is
information sharing. That is, after all information jources are selected, all signals are realized and
made public wz’thm the group.

This fully deﬁh,es a géme, the mformatibn—col'lection game. Note that, once information is collected',

_ agents’ best response is to follow the signal whenever the realization of an issue is revealed, and to
“choose any action if the issue is not revealed (all actions leading to the same expected utility). In that
sense, for any group composed of agents with tastes (¢1,...,%,), expected payoffs are fully identified

by the profile of chosen signals (1, ..., T, ), where z; e {o, B, D} is the source chosen by agent 1, and

Hnformation sources related to one issue can be, for example, a specialized magazine, a TV channel an Internet
search, and so omn.

Y The analysis of the paper does not change if we assume that each agent can acqulre any fixed number of signals
h > 1. We return to this generalization in Section 4.

¥ Note that all types ¢ € [0, 1] face the same cost to gather information on either dimension. Our analysis is robust to
the extension in which individuals face a lower cost of accessing information on the dimension they care mostly about,

17 Assuming that the group size is exogenous captures situations in which agents face a fixed contraint on how much
time and effort they can invest in communication, or social interactions. While the group size is exogenous throughout

- Sections 3 and 4, it becomes endogenous in the analysis in Section 5. In fact, some evidence suggests that there is

a cognitive cap on the number of active social ties humans can maintain. Projecting from Primates, Dunbar (1992)
estimated this number to be around 150, while more recent work suggests that the number in modern times is closer to
300 (see, €.g., McCarty, Killworth, Bernard, Johnsen, and Shelley (2000)). :
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@ stands for agent 4 ﬂot -acquiring information.

Asa tz’e-brédkmg .mle, we assume that an agent who is indifferent between acquiring and not
acquiring a signal invests in information, and an agent who is indifferent between an a- and a (B-signal
chooses an a-signal (this simpliﬁés the ekposition, but our analysis remains qualitatively intact for
any other deterministic tie-breaking rule). o |

Throughout our analysis, the expected utility of an agent for any given allocation of signals in ‘the
group will play a crucial role. Regardless of their action, an uninformed agent makes the right decision .
on issue I with probability % Therefore, when there are k% ‘agents in one’s group choosing signal =,

. the probability that an agent'(who uses information thimally) makes the right decision on issue ié
1= % (1 - qw)kw , for © = o, B. Thus, any agent of t-as-te ¢’s utility when £ and k# are the number of

signals chosen from source « and f3, respectively, is given by:

Ut ke ) =t L (1 q>’“] “1-o)1- R

| It follows that the information-collection game can be identified with J onefshot complete infor-
mation game ’inbwhich each agent’s actions are given by the 'availéble signals {o, 8, @} and utilities
are specified accofding to 1. Wé focus on equﬂibria'in pure strategies of this induced game. "As it
turns out, vgiven 'vour ;tieébreakingv rulé,v a pure equilibrium exists. Throughdut the paper, _We agsume

that the most (utilitarian) efficient such equil‘ibrium is selected. As it turns out, there is a simple

characterization of an efficient equilibrium.

Lemma 1 (Existence) For any group of n agents with tastes t1 > tp > o = tn, there exists
7% € {0,...,n} and 8 € {1,...,n+ 1}, 7% > 7%, such that all agents i < 7° ac,quz'm'hg the a-
" signal, all agents i > 78 acquiring the B-signal, and all_ other agents not acquiring information,

constitutes an efficient Nash equilibrium of the information-collection game.

Giveﬁ a group of n agents with tastes 1 > to > 2 tn, Lemma 1 allows us to concentrate on
equilibria (z1,...,z,) identified by two thresholds 7 € {0,...,n} and 7% € {1,...,n + 1} such that
Ty = .., = ﬁvTa =oaand x5 = .. =2, = (in parti‘culdr, if 7¢ = 0 all agents choose a f-signal,

and if 7% = n, all agents choose an a-signal). . In words, we focus on equilibria in which any agent
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choosing the source o cares mofe’ about the issue A than does any agent not choosing any source or
'cﬁéosing the sourée B. When ¢ is sﬁﬂiciently small, the proof of Lemma 1 illustrates that, in fact, any
equilibrium of the in-formationécollection game is efficient (so that the number of o-and équilibrium
signals is determined uniquely).

In the proof of Lemma 1 we show that equilibrium outcomes are ranked according to the volume of 4
- information collected: on each issue. That is, whenever more a-signals are collected in one equilibrium
relative to another, Iﬁore B-signals will be collected as well in this equilibrium. As a consequence, all
" agents agree on their most preferred equilibrium outcome. Furthertﬁore, the volume of informa‘cioﬁ
collected on each issue corresponding to an efficient equilibrium outcome is uniquely detefmined.

| It is important to note that information collection equilibria may involve agents not coﬂecting
informatio,n.. The fact that inforfnétion is costly intfoduces a free rider problem. Indeed, in any
equilibrium in which 78 > 7% + 1, the égents b, T < i< T8, db not have enough incentives to collect
information on either issue. Of course, if ¢ = .O, the free rider problem disappears and all agents
acquire a signal in equilibrium (le., 8 =71% + 1).

We now ,cénsider an extended game bomposed of two stages. First, each agent of taste ¢t € [0, 1]
cén choose the tastes of the remaining n — 1 agents in her group.’® Second, the information-collection
_ game descr_ibed above is played. .

Since Lemrﬁa 1 gqaranteeé that the number of o-signals is determined uniquely in the efficient
equilibria of the information-collection game, - the ageﬁt’s optimi‘?ation problerﬁ in the first stage of
'the extended game is well defined. We'den_otethe set of optimal groups chosen by agent t. at ‘thev first
stage by O(t), each element of which contains ¢ as a member. We deﬁﬁe stability in the ﬁrst stage of

the extended game as follows.

Definition (Stable Group) A gfoup (81, .., 1) 15 stable if it is optimal for all its members - i.e.,

(b1, -y tn) € N1 O ().

In a stable group, each agent maximizes her expected utility given the tastes of others in the

group, foreseeing the equilibrium played in the information-collection game that ensues, This notion

18 Por now, we assume that the pool ‘of potential agents to choose from is infinite and that any combination of tastes
is feasible, In Section b, we restrict the set of agents to a finite population.
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of stability is, therefore, a natural equilibrium condition for the group-selection stage in an environmént
_ that allows individuals to connect in a1 unconstrained way. For example, online forum users may join
any forum that fits their needs. A forum is then stable if all of its active members are satisfied with

-the set of other active members.

3. Group ‘COMPOSITION‘
The goal of this section is to ahalyze the group properties entailed by the stability notion introduced
in Section 2. To do so, we first fix the taste paf_ameter of one agent and identify that agent’s optimal
peer group choice. We then provide a full characterization of the stable groups.-

Thé following definitions are ﬁseful for our analysis. | »

First, denote by n® (¢) the optimal number of a-signals the agent with tasté parameter ¢ would
choose out of a total of n available signals. That is, given ¢t € [0,1], n® (¢) is the maximal integer k
such that _ , - |
| Ut kyn— k) > Ult, b — 1n— k+1) o @

is satisfied. If (2) is not satisfied for any k, we define n® (t) = 0. Let nf(t) = n — ﬁa(t). Therefore,
(n® (t),nP(t)) represents the unconstrained obtirhal allocation of n signals for an agent of taste
o |

Naturally, n® (¢) increase%; with ¢ and with the group size n.

Second, for ¢ = o, 8, let n®(t) denote the maximal number “of -m-s‘ignals acquired’l'in‘ a group for
which an agent of taste ¢ is willing to acquire an ai—signal rather than no signal at all. We term nZ(t)
the attainable number of a-signals for an ‘individu'al of taste ¢. Formally, for any ¢ > 0, n%(t) is

the maximal integer h such that, no matter how many w f-signals are acquired, |
A ' t :
U(t) h, ’LU) - U(t> h— 17 ’U)) = 5 (1 - qa)h—-l qa Z c. : (3)

7 Similarly, the attainable number of B-signals; n’g (t), is defined for any c >.‘0 as the maximal

intéger h such that, no matter how many w a-signals are acquired,

. V — h—1" ’
-U(t,w,h)—U(t,w,h—l):l—Zj(l—qﬁ)' #>e @)
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When ¢ = 0, we denote ng(t) = n? (t) = oq, corresponding to each agent willing to collect a free signal
. regardless of the number of signals already available.

Next, le’cbn;"nax be the maximal attainable number of a-signals that corresponds to agents'

with the most extreme taste parameter t=1. That-is, ng ., = ng(1). Analogously, for S-signals, the
maximal attainable number of f-signals is - = nf (0). Note that n&(t) is increasing in ¢ and
, .

me (t) is decreasing in ¢, Therefore, NS ox and 1y are the maximal number of a- and B-signals that
can be expected to be bacqt{lired, respectively, in any eé_[uilibr_ium of the information-collection game.
Fihally, let an A-extremist be an agent of taste ¢ such that ng(t) = n oy In ‘words, A-extremists
are agents who are Wﬂling to acquire 'the maximal numbe_r of a-signals. Likewise, B-extremists are
agents of taste t such that nf () = nBox. Tt is easy to see that A— Vand B-extremists are agents with
“sufficiently extreme” tastes to be willing to acquire the maximal péSsible number of signals, and théir

tastes lie in two intervals of the forms [t%, 1] and [O,E’? ], respectively.

3.1, . AO.ptimal Groups. In many environments agents are allowed to choose whom to connect to
among a very large populations of individuals of all types. Given a group size n, we now analyze the .
optimal group composition from the point of view of an agent with taste parameter ¢ € [0, 1].
‘When information is free, any ﬁrst-best group for the-é,gent W‘ith taste parameter ¢ is composed
5o that n® (¢) agents collect an a-signal, and nP () agents collect'aﬂ—signal, therefore aéhieﬁing the
unconstrained optimal alléca_tion for an agent of taste t. Groups consisting of all agents sharing the
taste paramet_er t are, therefore, optimal. Nonetheless, since extreme agents of ta;ste t=1 (ort=0)
'always“be.st respond with the choice of a- (or S-) signals, an optimal group for the agent of taste ¢
“can also be composed of just the right number of extfemiéts on each side, thereby achieving maximal
polarization. |
When iﬁforméution is costly (i.e., ¢ >'0), in choosing a group, an individual has to consider her

peers’ incentives to acquire information (not only their choice of informational source). In particular,

T

fax for any source z = «,f. Therefore; the agent’ of taste

the number of 2-signals cannot exceed n;
parameter ¢ has hope of achieving her unconstrained optimum only if n®(t) < Ninax for €= o, B.

The following Propositiori describes the optimal groups.
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Proposition 1 (Optimal Groups) Oonsz'der an agent of taste parameter t. In any optimal group,

the agent

1. achieves the unconstrained optimal allocation (n®(t),nP (t)) if and only if it is feasible,
ie., n®(t) < n¥,. for x = o, B, and it induces the agent to invest in info'rmdtz‘on, i.e.,

n®(t) < n2(t) for at least one x € {o, BY};

2 zmplements at most nZ, . signals © for each = a ,6 Jor which n®(t) > n% ..

In particular, if information is free (¢ = 0), any optimal group achieves the unconstrained optimal

allocation. Such optimal groups must involve n®(t) agents who care enough about issue A so that they

choose an a-signal in the information-collection game, and nf = n — n* (t) agents who -care enough
about issue B to choose a f(-signal in the 1nformatlon-collectlon game Thus, optimal groups must
be characterized by two thresholds — one assuring that n® (¢) agents.have a suﬂicrently high taste
parameter, and the other assuring that nﬂ (¢ ) agents have a suﬂimently low taste 'parameter.
V Therefore when information is free, in situations in Wthh one agent has leverage in choosing her
’ group partners the agent cares only about order-statistic type of attrlbutes of the group’s distribution
of tastes. Therefore, optimal groups can entail maximal polarlzatlon, containing extreme agents on
both sides of the taste spectrum.
When information is costly (¢ > 0), the pressure to choose more extreme individuals is even more
prorlounced as these are the agents with the highest willingness to acquire information. In other words,

the presence of the free rider problem may induce an agent to select more polarized sets of peers.

3.2. Stable Groups ~ In the previous section we described the optima,l group choice for any indi-

Vldual of a given taste t. However, in most applications, all members of a group of peers have some
leverage in choosmg the other members The goal of this sectlon is to characterlze stable groups,
Wthh are optlmal for all of their members. For 1llustrat10n purposes we first characterlze the stable
groups for very low costs of information gathering (or free information). We then expand the analysis
-to arbitrary _information costs, showing how ‘rhe structure of stable groups changes as the information

gathering cost ¢ increases.




SIMILARITY AND POLARIZATION IN GROUPS _ 15

3.2.1 Low Information Costs

As discussed above, if information-is free, an a,gent’s optimal groﬁp entails her unconstrained
optimal e.llocation vof n signa'ls across the sources o and B being selected in the information-collection
game. Thus, in a stable group in which all agents optimize on their peers’ tastes, all agents have to
agree on the optimal allocation of signals aeroSs the tv&;o sources. In particular, a group formed by
identical agents is always stable and stable groups always ezist in this setting. More generally, when

information is free, stable groups are characterized as follows.

Proposition 2 (Free Information — Stable Groups) For any grbup size n, there exists a pariz’—
tion {TPY"_y of the interval [0,1], where T = [0, ¢(1)), Tf = [t(k), t(k+1)), for k=1,..,n—1,
and T = [t(n), 1] such that: | ‘

1. A group comprised of agents with tastes (t1,...,t,) is stable if and on.ly if there ewists k = '
0, S such that for all i,t; € T3 _Th,at.»’is, all taste parameters in the group belong to the
same element of the partition. ' ‘

2.b The length of the intervals {17} ”:1 is inereasing for k = 1,.% and décreasmg for k =
%, . ,n -1, where % is such that % 5 € I or te T£+1‘ Thus, the intervals {T7}7-1 are

narrower for extreme tastes, and wider for moderate tastes.t®

While Proposition 1 shows that, from an individual point of view, optimal groups can er_ltail extreme
polarization, the first part of Proposition 2 guaraﬁtees that stable groups can be formed only by agents
whose tastes are close enou'g_h — namely, they lie in one of the intervals 17", |

Furthermore, the length of the intervals {T,?}}gzo provides a ‘proxy for equilibrium homophily: the
narrower an interval is, the closer the agents’ testes have to be in order for them to form a stable group.
The second part of Propositioh 2 addresses how the intervals’ lengths are affected by the proximity
of the intervals to the extreme tastes. In particular, point (2) of Proposition 2 implies that stability
requz'res more similarity for extreme individuals than for moderate ones. _

As we mention in the Introduction, this comparatlve statics prov1des insights into the recent

popularity of online platforms targeted at individuals with extreme tastes (e.g., food aﬂcmnados

71 the Appendlx, we show that, under mild conditions on qu, gg, and n, this result extends to the entlre sequence
{T3}aeo. For example, (1~ qa) (1 —gp) < 1/2 and n high enough, are sufficient to guarantee this.
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Figure 1: Stable Groups in the Free Information Case |

gossip followers, heavy metal music fans, etc.). To exploit this trend, some of the mainstream social

network sites (such as tribe.ne't, ning.com, and some of the new interfaces under Facebook) have taken

-~ action to facilitate connections between like-minded individuals.

In order to see the intuition underlying these results, it is useful to cor.lsider‘the optimal number
of a-signals n®(t) that each agent of taste ¢ would choose. Indeed, denoting by m® (t) the real number
achieving equality within: constraint (2), we get that n® (&) = |m®(¢)] if m*(¢) € (0,7, n(t) =0 if

m®(t) < 0, and n*(¢) = n if m*(t) > n. Roughly speaking, m® (t) captures the point at which an

_ ageht of taste ¢ equates the marginaﬁl return from an a-signal with the marginal réturn from a SB-signal.

The function m® (¢) is depicted in Figure 1.

Each intervél in the partition {T/?}g:o includes all taste i)arameters of agents who agree on a given
optimal allocation of signals. In Figure 1, agreement on the number of a-signals n® () = k corresponds
to the interval of taste parameters that is projected from [k, k + 1)'0n the y-axis. That is, the interval
of tastes for which m® (t) € [k, k- 1) and n® (t) = k. »

Let us turn to points (1) and (2) of Proposition 2. First, as t.increases, an agent with taste

parameter ¢ cares more about issue A and so that agent’s optimal allocation entails more a-signals,
I 7 g
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As a result, m®(¢) is strictly increasing. The monotonicity of m®(t) guarantees the sorting result in
the first part of Proposition 2: the set of taste parameters agreeing on the optimal allocation of signals
must be an intervél. v

_ Second, note that an agent with taste parameter ¢ :.% cares equally about both issues. In
particular; by raising ¢ above‘%, the relative valué of an a-signal increases since the agent cares moré
about issue A than issue B. However, a countervailing force is in effect. . Indeed, -when the optimal
number of ozl—sig'nals vincree.xses wifh ¢t (and the oﬁtima_l number of ,B;signals decreases), the marginal
return of an a-signal relative to a $-signal decreases. For the Sa,ké of simple intuition, let us focus on
the symmetric case g = gg = ¢.- The optimal number of a-signals for ap agent of type ¢ > 1/2 is
approximately m®(t) (in precise terms; it is the integer part of m“(t)) That is,

¢ gp(lmg 0

1=t ga(l - go)m" -1

= (1 - g, )

. Both sides of condition (b) are increasing in f, the left hand side éapturing the first, direct effect
~ of an increase in ¢, and the right hand side re.presenting the marginal return of a S-signal relative to

an a-signal.

Deﬁmng the function correspondmg to the right hand side of condition (5) as M (k) = (1—g)"~2+1,

it is easy to see that Mj\yg(z)) is equal to a constant, namely, (1 — ¢)~2. Thus, the relative marginal

returns of an «-signal decrease (i.e., M (k) increases) at a constant rat'e. On the other hand, the left
Vhand side of (5) increas_es at répidly increasing rates when ¢ > 1/2. This implies that, as ¢ increases,
m* (t) has to incréase ab .incr'easi’ng rat:es to satisfy (5) In other wdrds, m®(t) must be convex for
¢t > 1/2 and concave for ¢ < 1/2. This induced shape of m® (¢) implies the property described in point
(2) of Propositioﬁ 2‘direc.tly.20’21 |

Notice that for sufficiently low costs, all agents are willing to acquire any signal regardless of the

0 The reason why the extreme intervals can generally follow a different pattern is the following. Note that t}}e extreme
intervals collect all the taste parameters ¢ such that the problem of the optimal allocation of signals across sources o and
8 has a corner solution, Then, for example, for a given gg, if both g and n are very low, there is a wide range of t's
for which it is optimal to get n B-signals (the marginal returns from source « are very low). In order for the pattern to
carry through for the extreme intervals, the signal accuracies and the group size need to be sufficiently large.

1 These intuitions are generalized in §ect10n 6.1. While here we assume a particular signal generation process, as long
as the information technology is such that the optimal number of signals on one issue is monotonic in the type parameter,
stable groups exhibit sorting as in point (1) of Proposition 2, When the marginal return of a 51gnal does not decrease
“too quickly,” the comparatlve statics described in point (2) of Proposition 2 holds.
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allocation of signals in their group (formaliy, n2(t) > n for all.'t, T = oz,.,B.).. Therefore, for sufficiently
low costs the characterization of stable groups is precisely fhat of Proposition 2.

From an empirical point .of view, these results are important for undersuanding the link between
group composmon and extremism of opinions. Some of the recent social psychology literature (see
Myers (2007)) suggests that more homogeneous groups tend to exhibit far more extreme opinions
than heterogeneous ones following group interactions. While the social psychology literature focuses
on mechanisms by which group dynamics generates extremism, our results imply that it is important
to account for the way these groups are created to begin with. Specifically, the comparative statics
we 1dent1fy indicate that more extreme individuals would be more likely to form homogeneous groups '
in the first place -

'To conclude, it is interesting to study how the similarity requirements for stability (i.e., the length
distribution of the iutervals) depend on the accuraoies of the signals. Intuitively, When’Signal accuracies
are both very high, the marginal ret.urn'from an additional signal when n/2 a-signals and n/2 g-
signals have been collected (corresponding to the largost middle interval) is very low. In particular,
the marginal return froru an additional a-signal is not that different from the marginal return from an
" additional ﬁ-signal and so the class of types who find the allocation (n/2,n/2) optimal is rather large.
In other words, as accuracies increase, the size of the large middle interval increases, and stability is

consistent with more ingroup heterogeneity.

3.2.2 Costly Information

| We now turn to the characterization of stable groups when information entails non-trivial costs.
First -of all, note that stable groups always ewist. Indeed, having n agents of taste ¢t = 1 and
~min {n,n%,,} all acquiring an a-signal, or analogousl}'r,. having n agents of taste t = 0 aud min{n, n I
all acquiring a f-signal, both: constitute stable groups.?? Our goal is to characterize all stable groups
in the presence of information costs. We show that the structure of stable groups depends crucially
on tho g‘roup’s size n.

While we present the analysis for different group sizes, our results have a natural analogue.in terms

22 We avoid issues of equilibrium selection in that we assume that when a subgroup of agents of identical tastes acquires
information, they cannot guarantee lower investment in information by shifting to a different group in which a different
agent acquires their specific signals.
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of informatioh gathering costs: increasing the size of the group is 'tantamount to increasing costs in
that both make the free rider problem more severe. Fo_rmall'y, note thét by increasing.c, we reduce the
number of attainable signals n¥(¢) for all t, & = o, 8 (in particular, we lower ng,, and nﬁmx). Thué, our
results shed light on the effects of new technologies that decrease costs of information gathering (é.g.,

the introduction of the telephone, Internet, search engineé, etc.).. Similarly, they tie to periods of time

in which media spread was experienced, effectively decreasing the costs of information acquisition.

Large Groups. Given the definition of n%,, and nﬁmx, the maxirha,l numbBer of attainable signals that
can conceivably be acquired in equilibrium is n%ax+nﬁmax._ In that respect, we refer to groups containing

more than n®

ax T niax members as large. The following proposition provides the characterization of

large stable groups.

Proposition 3A (Stability — Large n) When n > nﬁmx —I—.n'gmx, stable groups take one of the fol-

lowing forms:

1. A-extremists and ngax B-eztremists;

@
nmax

2. n agents with taste t =1, or n agents with taste t = 0.

The first part of Proposition 3A describes stable groups in which the number of signals gathered in
the information-collection f)hase is maximized. When groups are very large, any agent with ¢ € (0, 1)

would desire a group in which the maximal amount of information on both issues is acquired. The

@

max agents are

only way to achieve this volume of information is to have a group in which at least n
A-extremists and at least nﬁ,éx agents are B-extremists. Note that, while in the free-information case

stability always entailed some degree of similarify, the first ﬁart of Propositic;n_ 3A suggests that for
large group sizes, stability is consistent with extreme group polarization.?®

In the second part of Proposition 3A we describe groups that are alwdys stable, in which all agents
Have the same, extreme, taste parameter. This_ is a kﬁife—edge case in which all agents get no utility

from signals on the issue they do not care about. In such groups, the maximal attainable number of

signals is collected on the issue all of the members do care about.

BWe refer to groups that contain at least one A-extremist and one B-extremist as extremely polarized, In fact,
Proposition 3A suggests that as n increases (or ¢ decreases) there will be a greater volume of agents on each side of the
taste spectrum. These groups are stable in the free-information case only when all agents agree on the optimal allocation
of signals, :
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Going back to the analogy between large group size n and high information cost ¢, as noted, a
higher 1nformat10n cost ¢ lowers both Ny and nmax Thus Proposition 3A suggests that high costs

induce extreme polarlzatlon

Small Groups. In general, the 61)tima1 composition of signals f01; eaéh agent entails the collection
of signals from both sources. When groups are small, the Vfree rider .problem ié weaker, implying the
possibility of the unconstrained optimal allocation being consistent with stability. |
The‘following Lemma will be useful in linking stable groups with costly informétion to those
identified in the free-information case through Proposition 2. For any t € [0,1], we define n, (t) =
ng(t)+n2(t) as the total attainable number of signals for an agent of taste ¢. It is the maximal

number of signals that a group of agents of the same taste ¢ would be willing to acquire in equilibrium.

Lemma 2 (Individual Incentives and Group Size) Whenever n < ne(t), n®(t) < nZ(t) for z =

a, B,

Lemma 2» links the size of the group and the persbnal incentives to acquire information of an.
individual of taste t. As long as group ‘size is sufficiently small (re'*lative to the total aftainable
number of ,signals for an agent of taste t), the agent engages in information acquisition when her
unconstrained optimal allocation of mgnals is mstated To see why this is the case, suppose that

n®(t )—l—nﬁ t)=n< nc(t) but, for instance, n*(t) > ng(t). Then, it must be the case that n? (£) < nf(t).

Since n*(¢) and nP(t) represent the uriconstrained optimal allocation, they are selected in a way

. that (approximately) eqtiatés the marginal returns from signals on either source. . However, since-

nB(t) < nf(t), the marginal benefit from the 7 (t)-th B-signal is greater than c, Thus, the marginal

benefit from the n*(t)-th a-signal should be greater than ¢ as well, in contradiction to n(t) > nZ(t).

We now turn to the characterlzatlon of stable groups when n < ng . + nﬁm First, some of the
homogeneous groups descrlbed in Proposmon 2 are still stable when information is costly. Denote by
m&(t) and mf (t) the real numbers achieving equality Wlthm the constraints (3) and (4), respectively.
For z = «, f3, nf(t) = [mg(t)] if mZ(t) > 0 and nZ(t) = 0 if m&(t) < 0 (by construction-, mi(t) <
N ot 1 for & = o, 8). The number m2 (£) captures the point at which an agent of taste ¢ equates the

marginal return from an 2-signal to the cost ¢. The total attainable number of signals for an agent
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Figure 2: Small Group Size (Low Costs)

of taste ¢, or nq(¢), is then ,épproximated by the function L£(t) = max {mg(t),0} + max {mf(t),O}
depicted in Figure 224 Tt is easy to seei that £(0) = nbax, £(1) = n&.,, and, as we show in the ‘
Appendix‘,. L(t) is 1$iece-wise concave and reaches a maximum at { ¢ (0, 1) when it is concave and
~ positive.2 | v . A
Looking at Figure 2; when min {nf{mx, n,‘im} < n < ng(t), there'is always a set of taste peﬁameters
' T such that for any t € T, n < ne(t). By Lémma 2, this guaréntees that groups formed by agents shar-
ing the same unconstralined optimal allocation (corresponding to stable groups in the free-information
cage) and with tastes within 7', are able to achieve their. opt_ima,l allocation in the costly—informatioﬁ
case as well. Tﬁat is, if stable groupé'qf size n in the free;_informati.on case are characterized by the
partition {T,?}Z:O, when information comes at a cost of ¢, for all the- elements in the partition such
that 77 N T # @, any group of n agents in T} N T is stable. 7

We now focus our attention on polari_zed'groups. The extremely polarized_groups appearing_‘for

large. groups (Proposition 3A) are not stable for smaller group sizes.?8 Nonethéless, for interme-

“The shape portrayed in Figure 2 corresponds to sufficiently low costs. See discussion below regarding comparative
statics with respect to ¢ for a description of the dependence of L(t) on c. '

*»The concavity of £ (t) is a direct consequence of the decreasing marginal returns from signals.

*To see why, consider a polarized group in which some agents are A-extremists (and their optimal groups entail
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diate group éi.zes\,A ones for which information on at least one dimension can be maximized (i.e.,
n > min {nmax,n&ax}); ‘mildly polarized groups in which some agehtg have extreme tastes, while
others have moderate (and siinilar) tastes, can be stable. Indeed, suppose that n > NS axe We no§v
illustrate that a stable group can be comprised of a sub-group of A-extremists that get ng ., a-signals,
_ and a sub-group of moderatés, who all acquire S-signals. Formally, assume that nf‘nax agents care suf-
ficiently about issue A4 so that: (i) they are A-extremi‘stsl(i.e., they have strong enough incentives to-

collect n&

& ox d—signals); and (ii) their unconstrained optiinal allocation involves at least NS,y c-signals

(so that they do not prefer groups with greater S-signal acqujsitidn). To capture these restrictions, .
we define for z = o, §:

- {t ’ ﬂ (t) - nmax a,nd nw (t) 2 nmax}

It is easy to see that W and W? are .inﬁervals of the form W = [t,1] and WP = [O,f]. Sﬁpjaose
an“nax of the n agents have tas’vce‘parameters in the interval W“ By construction, these agents are in an
optimal group whenever the number of a- and ﬂ—éignals collected is ng ,, and n — ng,, respectively.

We choose the remaining n.— ng@x agents to satisfy twd conditions: (i) they care enough ébout
issue B to have sufficient incentives to collect n — ng,, B-signals; and (ii) they care enough about
ié_sué A so that they would not prefer a group in which moré than n — n% ﬁ—signals are collected.

Formally, for o,y = a, 8, z # vy, we define:
= {t [ng (t) 2 n” (t) and n® () =n - Mmax) -

. Thus, if wé select the remaining n =N agenté to have taste parameﬁers within Z4, by construction
these agents will be in an optlmal group. In partlcular, combined with the n2 . agents with tastes in
W®, they form a stable group. Note that for any taste parameter ¢ in Z#, nf (t) = n — n®__ < nfax.

'Therefore, ZP does not contain the extreme taste parameter t = 0. This implies that the stable g;roups
we just constructed involve a milder degree of polarization with respect to the large-group-size case..

The following proposition summarizes our discussion and provides the full characterization of

stable groups for small group sizes (where we continue using the -notation of {T}'}:_, for the partition

Nmax O mgnals), and some agents are B-extremists (and their optimal groups entail n,mx B-signals), Clearly, when
N < N ax -+ Nbax, not all agents can be in their optimal group.
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correspohding to stable groups in the free-information case).?”

Propos1t10n 3B (Stab111ty Small n) When n < n2.. + B ax, stable groups ta/ce one of the fol-

lowing forms:

1. If there. is an interval T such that n < ng (t) for all t € T, then, for any k = 0,...,n for

: whzch T ﬂT” # &, a homogeneous group comprised of any n agents of tastes in TNTY.

2, lf n > nfnax, a mildly polarized group comprised of Nonax 0gents with tastes in W<, and

n— agents with tastes in ZY.

max

3. n agents of taste t =1, or n agents of taste t = 0.

e '
Regarding the case n = ng,, + nmax, whenever n¥ . > 1 for. x = «, 3, the groups described in

max

Proposmlon 3A are the only stable-ones. However, if n® .. = 1 for some z, say «, the full characteri-

max
zation of the stable groups includes additional types of groups consisfing of nBax a‘gents on the t=0
extreme and one moderate égent._ Since the full characterization involvés some minor t,echni‘cal sub-
tleties without adding qualitative novelties, we refer the interested reader to Proposition 3‘0‘ presented
in the Appendix.28

Note that a consequence of our results is that there is a set of moderate tast;e parameters such that
indiv.iduals with those tastes can oniy be part of stable groups that are either small (emulating the
free-information environment) or very large (m which the moderate a;gents free ride on the extremists
in the group, who collect all the information). |

The analogy between small group size n and small information cost ¢ suggests that, as ¢ decreases,

some polarization can still pérsist in stable groups (point (2) of Proposition 3B), but it is milder

2" Note that whenever n < min {nmax,nmax} part (3) of Proposition 3B is subsumed in part (1).

Bt is mterestmg to consider the consequences of side payments. When groups are small, so that stability entails the
acquisition of the same signal profile of the free-information case, side payments have no consequence. For large groups,
side payments allow agents to share the cost of information and invest (albeit indirectly) in more than one signal. In
that case, the availability of side payments gerierates more information acquisition. In particular, for large group sizes,
the introduction of side payment will tend to generate more similarity in stable groups. To see why, consider a polarized
group (i.e., a group formed only by extemists on both issues). In such a group, an extremist on issue A will have an
incentive to pay an extremist on issue B to acquire an a-signal rather than a S-signal. However, the same goal could
have been achieved at a lower cost by selecting another extremist on issue A as a peer in the first place. This suggests
that extreme polarization still arises in groups that are sufficiently large (but the lower bound on group size for extreme
polarization to arise is higher than in our settlng)
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Figure 3: Stable Groups as Costs Increase

than the extreme polarization e'rnerginé for high c. Eventually, for sufficiently low c, polarized groups
disappear. Moreover, as ¢ decreases, homogeneo.u's‘ groups identical to those_identiﬁed as stable in the
- free-information case emerge as stable (point (1) of Pronosition 3B).

A message. that comes out -of our anaiysis is that when information gathém‘ng becomes .cheaper .
(as a result, for instance, of better information technologies), stable groups tend to becorne more
homogeneous. As mentioned ‘i'n the Introdliction this insight is backed up by a large body of empirical

Work For example, the introduction of the telephone made social a.ﬂihatlons depend far more on shared
-1nterests (e g, Sproull and Kiesler (1991)). Similarly, the 1ntroduct10n of the Internet is associated

with a significant increase in the similarity of acadernic coauthors (see Rosenblat and Mobius (2004)

and references therein).

The Effects ef Costs on Homogeneous Groups. Information costs affeet the total attainable
signals and then, via Lemma 2 a_nd point (1) of Proposition 3B, the interplay between group éize
- and the selection of stable homogeneous groups from the free-information case. When costs are low,
any agent is willing to acquire at least one signal on either issue (i.e., for all £, n2(t),n2(t) > 1). In

that case, L(t) takes the form depicted in Figure 2. In terms of the stable homogeneous groups, as
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long as n < min {n;’fm, ngmx}’ (for instance, n in Figure 2), any stable group in the free-information
.A..e_YI.l.V_iIQnment‘ is also stable when information comes at a cost ¢. As n. increases,.the set T shrinks and
contains lesé extreme taste parameters (for instance, n in Figure 2). Thus, when costs ére low, as .
groﬁp size increases, .the homogeneous stable groups that survive are those composed of members wz‘tﬁ »
more moderate tastes. |

As costs increase, extreme agents are willing to acquire informaﬁion only Qﬁ the issue they care
most about, and L(t) becomes piece-wise concave (see panel (a) of Figure 3). For suchAsifuations,
ﬁomogenous stable groups are composed of members with either moderate or extreme tdstes..

As costs increase even more, there may be a range of moderate types who are not willing to acquire
information on either issue and L(t) has a dip for a range of moderate tastes (see panel (b) of Figure
3). In that case, whenevér n < E(t) for some ¢, either n®(t) = 0 or n?(t) = 0. Suppose ng(t) = O
By construction, nf(t) < n(¢). From Lemma, 2, it must then be the case that n®(t) < ng(t) = 0. In
particular, ¢ belongs to the extreme intérval . An analogous analysis pertains to the case in which

B

ne (t) = 0. We therefore deduce that when costs are high, and n is sufficiently low, the homogenous

. stable groups_, correspond to extreme stable groups in the free<information case.

4. GRroup SI1ZE

Many recent technologies, such as e-mail, instant messaging, online networks, étc., allow individuals
to connect to one another with greater ease. It has been empirically observed that larger groups tend
to be char'acterized by an increased degreeb of similarity.?° In light of this evidence, we now look at
how the fesults in Section 3.2 are affected by arbitrarily. increasing group size. -
* . First of all, note that for any ¢> 0, we can identify the maximal number of attainable signals on
both iséues, Noax T nﬁmx Thus, for any group size n/ > nf,‘r‘l;x + nﬁlax, the only stable groups are the
ones characterized in Proposition 3A, with an arbitré;rily large number of agents free riding on the
information collected by N ax A-extremists and N ox B-extremists.

Therefore, we now focus our attention on the free-information case ¢ = 0. Although this is a
lcnifeQedge case, it applies to a wide range of exafnples inﬂw.hich some form of iﬁformation collection

is par for the course — e.g., whichi Internet forum or online social network to join, which part of the

*¥See, for instance, Currarini, Jackson; and Pin (2009) and references therein.
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newspéper to read in the morning, and so on.

_ As before, we denote by {T7'}p_, “t_.he partition of the unit interval into sub-intervals. defining .. -
stability. We call the stable‘groups that cHoose all signals from the same source (i.e., have taste
parameters in either 7§ or in T) extreme stable groups. We call all other stable groups non-extreme

stable groups.
Proposition 4 (Free Information-Large n) For any two agents of taste parameters Lt

1. If they both belong to a non-extreme stable group of size n > 2, then they both belong to a

non-extreme stable group of some. size n' >n.

2. If they both belong to an ewtreme stable group of size n, th,en they both belong to an extreme
stable group of any smaller szze n' < n. Fu,rthermore extreme stable groups become fully
homogeneous (containing only, the most extreme agents) as group size becomes mﬁmtely

large.

Since all agenﬁs‘ with taste vparémeters belonging to the same interval T} have to agree on how to
optimally allocate n signals across the a- and B-sources, on'e'maylconjecture thét, as n grows arbitrarily
large, these intervals cbnverge to singletons, larger groups displaying greater homophily. Pro_position
4 illustrates that this is the case only for extreme stable groups. Nonetheless, for non—e?ctremel stable
groups, Proposition 4 shows that this 'conjecture does not hold, and the same degree of similarity found
for small group sizes tends to persist for larger sizes as well. In particular, the first part of Proposition
4 guarantees that, as the group size increases, the non—emtreme intervals. {T,;‘}Z 11 do not converge to
smgletons It is sufficient for two different agents to agree on an optlmal source allocation for a given
group size n > 2 for them to keep on agreeing on an allocation for larger and larger groups.3?

Let us compare the results of Proposition 4 with the empirical observations suggesting more ho-
mophily in larger groups. Since we indeed find that, asn increases, the extreme intervals tend to break
down into an increasing number of smaller in‘ﬁerva.ls, our result does not necessarily contradict this

ev1denCe Instead, it qualifies it. Proposmlon 4 hlghhghts the fact that the locatlon within the taste

8 Moreover, in the proof of Ploposmon 4, we show that any such two agents can disagree on at most one s1gnal for any
larger group 31ze (that is, their taste parameters must belong to either a umque interval or to two contlguous intervals
of the series {T} e for any n’ > ny. :
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spectrum may play an importanf role in identifying these sort of‘comparativé statics: The tendency
of larger groups to display more similarity should be stronger for estreme taste parameters than for
moderate ones. | ' |

The intuition for this result is the following. For simplicity, assume that ¢, = g = ¢ and that ;cwo
agents of differiﬁg tastes agree on the optimal way to allocate the number of signals 7. This implies.
that, for each of these two agents, the marginal utilities' of the two signals o and B generated by »this'
allocation are roughly the sarrie. Suppose, now, that we give the tWQ agents the possibility to allocate
two more Signals (that is, n’ = n 4 2). The best way to keep on equalizing the marginal utilities of
the signals must be to allocate one signal to source « and the other to 8. Thus, these agents still
share the samme. optimal allocation for n+ 2 signals. Formally, notice that when & of n signals are
a-signals, the marginal return for an agent of taste ¢ frorh an a-signal is proportional to ¢ (1 — q)k,
while .t-heir marginal return from a fS-signal is proportional to (1-t)(1 - q)”_k. The ratio of these
marginal retqfns remains the samé if we increase k by | and n by 21. In other words, if k a-signals ard
n — k B-signals is an optimal allocation for an agent of taste ¢ when there ére n signals available, &+ {
a-signals and n + ! —k B-signals would be an optimal allocation of n + 2I signals for thaf agent, Iq
particular, the-_intermediat’e intervals characterizing stable groups rema,in. the same for even (or odd)
group sizes (their number increases with n, however).31,32

5. STAﬁILITY IN A FINITE POPULATION

Thus far, our notion of stability has imposed no res’prictions on the groups available for the agents to
join. Indeed, agents contemplate all possiblé combinations of tastes when choosing their-optimal peer
group. This is a good descriptioﬁ for very 1arge (strictly speaking, inﬁnitg) populations, and allows
us to derive a clean characterization of stable groups in differént contexts. However, when a finite
population. of agents is partitioned into groups, there is a restricted set of groups that is coﬁceivably

available to an agent. In this section, we study partitions of agents into groups that are “endogenously”

31 For extreme stable groups, the argument is slightly different. Indeed, extreme stable sets contain agents for whom

the optimal allocation of n signals is a corner solution, which does not equalize the marginal utility of signals, As the
number of signals n increases, more agents whose tastes are not at the extremes of the interval [0, 1] tend to reach interior
solutions, ’ ) .
" 2 Note that the comparative statics with respect to group size n are fully isomorphic to a comparative statics exercise
in which the group size is fixed, but we increase the number of signals that each agent acquires from 1 to any h > 1,
In this case, group stability requires all agents in the group to-agree on how to allocate n x h signals. Thus, the same
considerations made for changes in group size apply to changes in i as well, '
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stable. That is, we look for partitions of the population into groups such that no feasible dev1at10n of :

_an agent to a dlﬁerent _existing group (or to a singleton),. is. proﬁtable T

Suppose, then, that. there is a finite set of agents NV = {1,..;,1}. Let N; C N be the set of agents
with taste ¢; and let |V;| = m;. Thus, we can write N = UJ_ 1 IV;. Wlthout loss of generahty, we assume
1 > > b

In analogy with our baseline setup, the extended game that the agents rn the set IV play consists of
two stages. First, the ‘]L3013u1atr.on N is partitiorred.into groups. - Let g ={G1,...,Gs} be r;he resulting

partition of N.%3 Impor‘c.smtly'7 here we do not exogenously fix the size of the groups compoéing the

~ partition G.

The second stage of the game coincides with the information—'colleotion game describod in Section
2. In order to extract the effects of finiteness on stabilir;y, and not corifound them with free rider
problems we focus our dlscussmn on the free- 1nformat10n case. Thls implies that, within each group
G, an information-collection equilibrium entails all agents acquiring a signal and corresponds to the
description in Lemma 1. Thus, to complete the analysis of this game, we can focus on the group-
formation stage. | |

We now define stability in this setting as follows.

Definition (Stable Partition) A partition § = {G1, ..Gs} is stable if there exist no Gy, G € G

and a € G; such that agent a prefers either the group G; U {a} or the singleton {a} to G;.

| This notion of a stable partition is reminiscent of the notion of the core, which also require§ a typo
of group stability. Nonetheless; there are sexreral important distinctions. First, the setup is different
— cooperative games Irormal-ly specify group values, rather than individual values within groupé that
are derived endogenously from a strategic interaction. Second, cooperative solutions (e.g., the core) .
are more restrictive in that they allow for arb1trary group devmtlons, not only unilateral ones. Thus,
if we take a group’s value to be the sum of its members’ expected utilities, the set of stable groups we
look at corresponds to a superset of the core, which in thls settlng corresponds to the grand coalition

only. Fmally, the core identifies stable allocatlons of resources, rather than a characterization of the

830 that G NGy = & for all i # j and | J Gi = N, : ‘.
. =1 . P
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emerging partitions themselves.

Since adding a member to a group is costless, and a new group member provides more information

to the other members in the information-collection stage, groups always benefit from adding more _
members. Thus, we do not have to attend to any issues pertaining to the willingness of a group to
accept a new member.34 |
Certainly, the grand coalition G = {N} is always a stable partiti‘en. and, in fact, it is the welfare-
maximizing partition.35 . In what follows, we explore whether inefficient eolutions can arise, i.e., we
study the st‘abilify of other partitions. |
As a first sfep, Lemma 3 addresses two properties of any stable partit;on., namely, agents of similar.

tastes cluster together, and all agents sharing the same-taste must be contained in the same group:
Lemma 3 (Consecutive and Minimal Groups) In any stable partition G,

1. All groups are consecutz’be i.e., if t; > t; > ty, and two agents with tastes t; and t; are in

a group Geg ‘then any agent.with taste t; must be in G as well;

2. All agents with the same taste are contamed in the same group, i.e., for each tw, there exists

a unique G € G such that N; C G.

Point (1) of Lemma 3 is aws'orting result in the spirit of the analysis of point (1) in Prep‘osition
2: In any étable partitiorr groups are characterized by individuals that are similar enough in taste,3
Point (2) of Lemma 3 1mphes that the maximal number of groups contained in a stable partition is
bounded by the total number r of different taste parameters in the populamon
' Intultlvely, consider the first part of the lemma. If the agent of type t; prefers a different gr‘oup
G' than the group G containing agents of types t; and ¢y, then G must involve the collection of either
more a-signals or more S-signals relat‘i.ve to G’ '(or else the t;-type agent would benefit by switching

"to G). Suppose more a-signals are collected in G. Since the agent of type t; care even more than

3 1f communication from agent to agent is costly, a group may be unwilling to accept new members, or prefer particular
new members to others. We elaborate on this in Section 6.

35 This is in contrast to the underlying assumption in Demange (1994), who studies a similar question in a setup where.
the grand coalition generates inefficient outcomes and, unlike here, any collection of agents can jointly deviate. -

% The notion of ‘consecutive groups’ is reminiscent of the one adopted by Greenberg and Weber (1986) in the context
of characterizing the core in Tlebout multi-jurisdictional economies.
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the ¢;-type agent about issue A and her switch to G would assure an even greater number of signals ‘

collected (in & ,a.ugmentedvwi.t.h..hels_.palzt.iéipation), the tp-type agent cannot be.optimizing. . .

The intuition for poin"c (2) of Lemma_3 is similar. Suppose that two agents a@ and o’ with the same
taste pai"ameter t; belong to two different groups G and G/ ‘,A respectively. Consider the agent a of taste
parameter ¢; in G Since G is stable, this agent must prefer to stay in G rather than being in G’ U {a}.
However, since a and a’ have the same tastes, and a shift of agent a’ to group G would entailleven
more information collected, this implies that agent a’ must prefer being in G U{a'} rather than in G,

which contradicts the stability of §.

- Next, we define the fully segregated partition. to be the partition in which each set is formed only
by agents of the same type, the partition G = {N1, Ng,...,N,}.

Since Lemma 3 guarantees that agents of the same type cannot be divided across different groups in

‘ any stable partition, we can conclude that the fully segregated partition is the least efficient partition

that could be stable. In what follows, we aim to identify the conditions under which this partition is,

indeed, stable.

Consider a.fully segregated partition, and consider an agent a of type ; vbelonging‘ to group N;

'WhOv is considering deviating to the group N; U {a}. By staying in IV;, agent a is able to implement

her optimal allocation of m; gignals across the sources o and £ in the information—col‘lect‘ion~stage.A
Deviating to N; U {q,} cannot be strictly pfoﬁtable if ﬁj < m;. On the other hand, if m; > my,
the group Nj U '{a} is bigger than _Ni, which irﬁplies more information gathéred in the information-
collection stage. Thus, a deviation to N; U {a} tends to be less beneficial if: (i) the taste parameters
t; and t; are far from one another (as égent o finds herself in a group in which other agents’ optimal
choice of sigﬁal sources is very different than hers); and (ii) the size of the groups m; and m; are close
to one another (as agent a benefits less from an increase in gi"oup size). To focus on the first issue
(identifying taste distributions that allow for segregation) and simplify our exposition, from now on

we assume that |V;| = m for all i (we discuss the implications of relaxing this assumption at the end

~ of this section). A consequence of the above is that a necessary condition for full segregation to be a

stable partition is as follows.
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Lemma 4 (Heterogérieity and Segregation) Full segregation is a stable partition only if there are

_no t; # t; sharing the same optimal allocation of m._signals, i.e., there are.no t; # t; such that

n”‘(ti) = n"‘(tj).

The complete characterization of the necessary and sufficient conditions for the fully segregated
partition to be stable directly expl(;its the characterization of the stable groups via the sequence {77'}
developed in Proposition 2. In order to ease the description of our results, we agsume that the sufficient
conditions for ﬁhe full Sequeﬁce {1y, to follow the pattern désc‘ribed in point (2) of Proposition 2
are met.37 | ‘

Consider an agent a.with taste parameter ¢; € {ti,..,t,}. In the fully segregated partition, such
an agent belongs to the group N;. To show stability, we need to consider all possible deviations of
agent g to any éet N; U {a}, j # . Since |N;| = my for all § = 1,,.‘,7", checkiﬁg that deviations to the
groups closést in tas.tes,_ N;-1U{a} and Ny U {a}, are not profitable is suﬁicieqt.%’ Thus, requiring a
deviation from N; to Ni1 U {a} not to be profitable allows us to identify an upper bound for t;41 for

segregation to be stable. Similarly, requiring a deviation from N; to N;—1 U {a} not to be profitable

allows us to identify a lower bound for t;_1 for segregation to be stable. Such bounds can be used to

define an interval 7; around each t; such that full segrégation is stable if and only if for any i # 7,

t; ¢ 7;. That is, t; and t; are sufficiently far from each other.

The idea that agents in other groups have sufficiently different tastes is then captured by them _

agreeing (among their cohesive groups of m agents) on very different allocations of sigﬁals. In particu-
lar, it can be shown that the intervals 7; correspond to unioﬁ_g of the original intervals in the sequence
{T,?”‘}Z;O. Figure 4 illustrates graphiéally the structure of the-intervals 7; and 741 as unions of sets
of the original sequence {T7"}7,. '

We now turn to the robustness of the basic comparative statics obtained in Section 3. Recéll that
the main insight from our baseline analysis was tha.t similarity in stable groups is stronger for extreme
than for moderate tastes. In the same spirit, in the finite population case we show that segregation

18 easier to achieve for extreme types than for moderate ones. Intuitively, suppose that agent a has

%7 These conditions are briefly discussed in Footnote 19 and formally derlved in the Appendix. Recall that they amount
to qa, gs, and m being high enough.
BWe have to consmler just one potential dewatlon for agents with extreme tastes ¢; and ¢,
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Figure 4: Segregation Intervals

taste parameter t;, and consider a deviatiorr from the group N; to Nipq U {a}. As mentioned above, -
the benefit for agent a from joining Niy1 is to be in a group formed b)r m -+ 1 agents rather than m
agents On the other hand the cost of joining Nji1 comes from the expected sub-optlmal allocatlon‘
of m+1 51gnals across the sources o and . From Proposfmon 2 we know that the intervals {Tm} 0
each contammg all the t s that correspond to the same optimal allocation of m srgnals are narrower

for extreme taste parameters and wider for moderate taste parameters Thus, for a given distance

‘between i and tit1, the dlsagreement between agent ¢ and the agents in Ny is stronger if ¢; and ¢;41

are taste parameters closer to the extremes than if they are moderate. In other words, the intervals

{7;} follow a similar pattern described in Section 3 for the interval sequence {T7"}7..

This implies that moderate individuals can be qut_te heterogeneous without segregation emerging,
whereas extremists can be less heterogeneous in comparison and still allow for multiple small and ho-
mogenous groups. In particular, in the case of a finite populatlon uniformly distributed on equidistant
points on the interval [0,1], the most segregated stable partition that can emerge W111 tend to display
large, heterogeneous groups of moderate agents and multiple, smaller groups of extremists.

Proposmon b formalizes the above chscussmn
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Proposition 5 (Segregation) Any t; is contained in an interval 7; such that:

1. Full segrééation is a stable pd.v"-t‘z{tz'on if and oniy'if_for any @ # J, t and t; are sufficiently

far from each other: t; ¢ T;.

2. Full segregation is easier to sustain as stable for extreme tastes than for moderate tastes:
there exists i such that the intervals 71,73, ..., T; are increasing in length, similarly, there

- exists J such that the intervals T;, Tjya, ..., T are decreasing in length.

To conclude this section, let us address the implications of relaxing the assumption that IN;] =m
for all 1, aﬁd allowing for the sets of agents sharing the same taste pafameter to be of different sizes. -
Note that agents of the séme taste will always want tb be in the same group, following the lines of
Lemma 3 above. No§v, the larger the number of individuals of al, particular taste parameter is, the
more appealing the group that contains these individuals becomes (by the éheer volume of information
they collect).. Therefore, in order to ach.ieve' stable segregaﬁon, the other agents need vt,o. be further. .
away in terms of their preferences. So, the band around a parﬁcuiar type that guérantees segregation
increases in width with the number of agents of that type.

This result can be applied to derive straightforward cbmparative statics with respect to the popu-
lation distribﬁtion. For example, consider two cumulative distributions over tastés in the population
G and G’ such that G is a mean-preserving spread of G'. InA this case, the most segregated partition
corresponding to G’ will be charactérized'by larger and-more heterogeneous groups of moderates, and
smaller and motre fractioned groﬁps of extremists relative to the most segregated partitiqn correspond-

_ing to G. | |
6. CONCLUSION AND EXTENSIONS
The model developed in this paper addresses fhe properties of peer groups that arise in equilibrium
when individuals have different tastes and share the information they gather with mémbers of their-
group. If information gathering costs are low, ‘s.'table groups are composed of individuals that are
sufficiently similar in t;a,stés. This similarity is more pronounced for extreme agents than for moderate
ones. If information gathering costs are'high, stable groups display taste polarization, which becomes

more extreme as the group size increases. Finally, when the population is small, it is natural to
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consider stable partitions of the population into groups such that agents’ deviations are restricted to

_ joining one of the other groups in the population, or_creating a_group by themselves. In. this setup, we D

showed that full segregation is easier to achieve for agents with extreme tastes than for agents with

moderate ones. In what follows, we discuss some natural extensions of our model.

6.1. General Production _Flmctior'ls. A crucial element of our analysis is that agents’ uﬁilities
exhibit decreasing marginal returns with respect to the total number of signals oollected from each
soufce. The more signals an agent receives (directly or indirectly) on a particular issue, the lower
the value of an additional signal on that issue. Qur information—basod setup pinned down precisely
the shape of agents’ utilities correéponding to any allocation of signals colleoted within a group.
Nonetheless, the idea that utilities exhibit decreasing marginal returns to effort is a rocurring' theme

in many models, where effort can have many meanings, ranging from information collection, as in the

current paper, to investment levels in projects, to physical exertion on the job, etc.

The main assumptlon in our model is the way units of effort on each dlmens,lon (in our case,
51gnals on dlfferent issues) are transformed into utiles (throughout the paper, captured by (1)). In a

more general setup, agents have to invest effort on tWO dimensions « and £ that correspond to two

- different public progects (e.g., volunteering, freeware development, student associations activities, and

many more). Each agent can invest a unit of effort on either dimension (for instance, signals as in our »
baseline model), To compare this setting with the baseline résults in Section 3.2.1, assume that effoft
comes at no cost '(or sufﬁciently low costs). Agents differ in how much they care about either project,
and utility takes the form U (t,k”‘, kP),where t c [0,1] is the agent’s type, and k® is the number of
units of effort invested in dimension z, z = o, 8. We a,ésume that U is_concave in k® and kP,

For an agent of taste ¢, the optimal number of « units out of n is given by n® (t) = [m® (t)|, where
m® (t) solves | '

U(t,m*(t),n — m*(t)) = U(t,m*(t) — Lin—m®(t) +1) (6)

- Note that the techniques introduced throughout the paper to chara,cterlze group stablhty can still be
used.

First, let us consider the sorting result in point (1) of Proposition 2. For sorting to arise, the set
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of types that agree on a particular allocation of units of effort (k%, kP) must be a connected set. In

pér-ticﬁlan,-- if the- optimaLal-loeation~--reae-ts-~-monotoni<;all-y—te the-type-ti-sorting emerges:- Assuming-
Uis well—behaved, monotonic behavior of the optimal allocation corresponds to %&% being signed,
which is, up to a re-directioning of the type.space, essentially a single crossing property.-

Let us now turn to the comparative statics pertaining to the potential dispersion within stable
groups, 1i.e., point (2) of Proposition 2. Naturally, the generallzatlon of thls result depends on the
shape of U. In order to make the comparlson with the basic model of the paper transparent, suppose
U is linear in ¢. Agents’ utilities can then,be described using two productlon functions, fn(k%) and
fﬁ(k}ﬂ ) that éorrespond to the mappings between effort units and utiﬁty returns on dimensions « and
B, respectively. We assume that f, 'ahd /s are increasing and concave,3? Thus,.if k® is t;,he ngmber of
units of effort invested in the préject fx, © = o, B, the general utility for an agent of taste ¢ € [0,1] is
given by: .

U(t, k% kP) = tfa (k) + (1 — t) f5(kP),

- which generalizes (1).40

For 2 = a, 8, define ¢,(k) = full + l) — fo (k) and e (k) = f. (k+1) = f. (k). Applying the

Implicit Function Theorem to condition (6), we get

1

dm*(t) _ )
- di ey, ¢ nome)’

balm™=1) T Gglnmme)

’ 2 O .
which is positive.*! Recall that, in our previous setting, the sign of d—%gﬁ‘) is positive for £ > % and

~ negative for ¢ < %, which determines the interval pattern described in .poiht (2) of Proposition 2. In

this more general case, differentiating again, and rearranging terms, it is easy to show that the sign of

% Note that in terms of our information story, this allows for signals within a-dimension to be correlated.

""In our analysis in the previous sections, fo(k*)=1-1 L qa)’“ and fﬁ (kﬂ) =1-1@1- qg)"ﬂ ,
Oour assumptions on the production functlons guarantee that ¢, (k) > 0 while (ﬁ(l)(k) < 0 for ¢ = o, B,
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%ﬁ depends on the third derivative of the production functions.*? In general, the third derivative

___of the production functions plays an important role in a,ffgctmg the curvature of m® and, consequently,._u_ B,

the relative lerigths of the intervals that characterize the stable groups. Intu1t1vely, as descrlbed in
Section 3.2.1, the curvature of m®(¢ ) is the result of two effects: as ¢ mcreases, the marginal utility
of a unit of effort on dimension d increasés. On the other hand, since the optimal number of these
contrlbutlons increases with ¢, the marglnal returns of any effort on dlmensmn o decreases with ¢. For

m® (t) to be convex to the rlght of t =3 L (and, analogously, concave to-the left of t = _—) the ﬁrst'

- force must prevaﬂ In particular, the marginal return of fo, ca,'rmot dec'rease too rapidly. ThlS in turn,

translates 1nto bounds on the magnitudes of the third derivative of the productlon functions.

To shed some light on the link between the production functions and the structure of the stable

' groups, assume that f = f, = fg. It is easy to show that

sign [f(l) (k)] = (D" forig 3 M

- isa sufficient condltlon for the functlon m*(t) to be convex for sufficiently 1arge t and concave for

sufﬁclently low t. Thus in those ranges of t, the characterlzatlon of Section 3.2.1 stﬂl holds. That is,
stability requires more similarity for more-extreme tastes.

Two examples of commonly used production functions that satisfy condition (7) are the following:

1" f (k) = k7, where v € (0,1). Note that
i -t -
FOm)y = T[(v=9)| k" foralli>0,
Jj=0

which satisfies (7).

12 Formally, for @ = o, §, denoting (/),(2) (k) = fm (k+1)— fm (k) , sign (MT(—)) coincides with the sign of the following:

A 40 e )P m K
{‘.im )[40 (e - 14 (1 - 1) 6 (n—m®)]| = [$a (m* = 1) + 5 (n—m“)]}+

dm*(t)

S [t (™ - 1) = (1= )6 (n = m™)] X [$e (m" = 1) + 85 (n - m)]
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2. f(k)=1-e"" where § > 0. Here,

BCE S

so that, again, (7) is satisfied.

Finally, in the same spirit of Proposition 4, it is possible to show that, under conditions that
bound i@%ﬂ above uniformly, the subintervals of types that agree on the optimal allocation of n

signals across the two dimensions do not converge to singletons as the group size diverges.

6.2. Multiple Issues.' Qur results extend'to amulti—dirﬁensional setting wiﬁh h > 2 issues. In this
case, the type space is T' = {(tl, Wt >0 Z?Zl'tl = 1}. Each ¢ represents the weight an individual
assigns to issue [ = 1,.., h, and the accuracy of a signal on issue [ is givén by q;. _

In this setting, the analysis is essentially analogous to that presented for two dimensions in Section |
3.2, If information gathering is free, ais in Section 3.2.1, stable groups are composed of agents who .
agree on an allocation .o'f signals (k1, ..., k) across the h issues. Stable groups are then characterized o
by (h — 1)-dimensional polyhedra, which display patterns similar to those described in point (2) of
Proposition 2. v '

For illustration purposes, consider the simple case of 3 dimensions z»mdA ideﬁtical accuracies of signals
across the dimensions given by ¢. To identify the sets of (t1,t0,t3) that agree on an allocation (K1, ka2, k3)
of signals across the three dimensions, one has to.look at 6 relevant constraints, chresponding to a
‘shift of one signal from one dimension to the other. For example, an agent would like the allocation
(k1, k‘z,]'{/'3) over (ki — 1, ko + 1, k3) whenever

(1= T g2t (1- g et 2 (1 - g Ty, . ®)

Similar inequalities correspond to the other 5 signal shifts.
Three aspects are important to note: (i) The sorting result in point (1) of Proposition 2 (i.e., the
sets of taste parameters sharing the same opfimal_allocation of signals being convex) holds in this

setting. As discussed in Section 6.1 for the two-dimensional case, it does not depend crucially on

18 Namely, we need to require that for any ¢ € (0,1) there exists v such that for all n, dl%:(—") < v,
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the linear specification of the preference or on the specific production functions we have adopted; (ii)

‘The linearityof U_in-¢;-implies. that.restrictions such-as (8)-are linear, implying that stab'le-‘-se-ts AL -

identified by polyhedra; (iii) Finally, it is straightforward to see that the set allowing for the maximal
heterogeneity between types (i.e., the largest maximal Euclideah distance between two types) contains
types.that ére moc-lerate‘— that is, those that‘ agree on an equal allocation of signals across the multiple
dimensions. This comparative statics mirrors point (2) of Proposition 2,

The analysis cbrresponding to the costly information case in Section 3.2.2 can also be directly ex-
tended to the multi—dimensioﬂal setting, I_ndeed, agerits thatr are extremist on one-particular dimension
are still the ones with the highest incentives to co.ll-ect information onr that dimension. Thus, for any
dimension [ = 1, .., h, we can identify the maximal attaina,ble number of signals that can be collected
extremely polarized groups (i.e., groups containing

in equilibrium as n,,,. Whenever n > S0 nl

max* ma,x’

extremists on each dimension) are stable, as in Proposition 3A. On the other hand, if the group size is

small enough, stability entails the acquisition of a signal profile no different than that acquired in the

free-information case, and the characterization of stable groups is similar to that in Proposition 3B.

" Adding New Members. In the setup presented in Sections 2, 3 and 4 the group size is
fixed. This assumptlon is relaxed in Section 5, Where individuals can opt to leave thelr group and -
join another one. However, in that analysis, the other group members always benefit (at least weakly)
from the addition of a member of any taste. Nonetheless, if adding new members is limited or costly, a
group could prefer certain additional members over others, or stop accepting new members altogether.
As a natural extensidn, fhen, we now consider the problem of a group tﬁat ié given the gpportunity
to add one new member and has to select the membef’s ta%ﬁe pémrame.ter. |

Consider a group of agents with .tastés t; > ... > t, and let k* be the numb_ei“ of a-signals collected
in equili‘brium in this group. Supp‘ose that an agent of taste t* _ (the “principal”) chooses an additional
agent for the group.* | |

The following proposition illustrates the optimal range of tastes for an additional member that an

“The principal can be thought of as contemplating the addition of an expert to an already existing team, a new
member to a club, new peers to a circle of friends, etc. -Alternatively, the principal can be thought of as the pivotal
member in a grotp using an election to determine the tastes of an-additional member in any of the above contexts. If
adding a new member requires unanimity, the principal is one of the agents with most extreme tastes. In general, the
principal may or may not be part of the original group of agents.
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agent with taste parameter t* would choose.

Proposxtlon 6 (Optnnal Add1t10nal Memberé) sz.‘hze're emists t € [0 1] “such that

1o If tpeyq <t<tf, thevi’c_my agent with taste t > t is optimal.
2. If tP <t < b +1, then any agent with taste t <7%is optimai.
3. In all other cases, any agent is optimal.
"The proof is straightforward, and, therefore, omitted. Intuitively, if, in the original group, precisely

k* agents chose source o, then adding a member can shift the number of agents choosing source «

to k € {k*,k* + 1} . Thus, when the principal cares sufficiently about the realization of issue A, she

would like £* -+ 1 a-signals to be collected in the new group. Then, two cases are possible: if there are

alteady k* + 1 agents who are willing to chOose.d—signals in a group of n + 1 agents (i.e., they agree
with the principal on the allocation of the new available signal), then the additional member’s tastes
are inconsequential. cherwise, a new member who agrees with the principal on the allocation of the

-new available signal has to be introduced.*

6.4. Externalities. In our setup, once information is collected, all agents in the group agree on

which is the more likely realization of each isse.- Therefore, adding positive action externalities (say,
by requiring all agents in a group to make the same collective decision, determined by a t‘hr‘eshold vote),
would not alter our results. A natural extension of our setﬁp would allow for non-trivial externalities
in actions. In our model, this would require adding another dimension of heterogeneity, one pertaining
to reactions to information. That is, agents may differ in their inclinations to choose the aétion 1 én
either issue.%® Externalities in actions would then take the form of agents' caring positively about the

number of agents in their group who make similar decisions to theirs.4” In such a model, there is an

interplay betweenboth types of heterogeneity (that regarding issue weights, and that regardihg actions

514 follows that £ is the taste parameter that identifies an additional agent who would be indifferent between k* and
k* + 1 a-signals (in the new group of n + 1 agents).

15 For our information structure, as long as each agent wants to match the realization of each issue to some extent, this

type of heterogeneity would play a role only when the 1eahzat10n of one issue does not get 1evealed in the information
collection stage.

47 For example, if A sta,nds for food and B stands for books, the two realizations within each issue may be thought of
as two restaurants and two bookclubs, respectively, and agents care about how many of their peers join them in each,
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within each issue). Indeed, action externalities ‘may affect agents’ inceﬁtives to acquire information

S .__'_____on_..ei.th_er._dimension.fﬂ..‘ln_o.urv baseline_analysis, such_a_setup_would, if_anything, generate_stronger . _. _. |
similarity with respect to issue weights. It would also lead to limited heterogeneity in tastes over

choices within each issue, |

In reallty,' there are many examples in which there are no action externalities (e.g., Internet forums,

long-distance friendships; online social networks, etc.). Conceptua,lly, one of the contributions of our

analysis_is to show that, even in the absence of action extemla-lz'ties, homophily can still arise through

pure information—i:)ase_d motives. Moreover, inforination—based 'homo’phily follows some intereéting

comparative statics patterns.

7. APPENDIX

Proof of Lemma 1. Let t; > ... > t,. BEach agent ha,é to depide whether to acquire an a-signal, a
‘ B-signal, or forgo information gathering,. | | |

To construct an efficient equilibrium in the information-collection game, let u* be the maximal
integer h such that Eﬁ (1- "‘)h"1 o >. c .(thisbis inequality (3) in the text). Similarly, let 1P be the
minimal 1nteger h such that _ﬂl (1= )h '#>ec (this is inequality (4) in the text)..

First, cons1der the case in which p® +1 > 1P, so that all agents could be induced to acquire
information. We first construét an equilibrium entailing all agents acquiring information. We consider
ban equilibriﬁm as proposed by the Lemma’s cl'aini, so that 7¢ =78 — 1 = 7" Note that if an agent of

_ taste t prefers getting an a-signal over a S-signal, so would any agent of taste ¢ > t. Similarly, if an
agent of taste :t prefers get’c‘ingva B-signal, so would any agent of taste ¢/ < t. In éuch an equilibrium,
the agent with the lowest taste parameter who chooses an a-signal is the agent with taste tT* From

our tie-breaking rule, it follows that the threshold 7* is determined as the maximal v € {1,...,,n} for

which agent 7 weakly prefers an a-signal over a fB-signal, or for which
Ultr,m,n—7) 2 U(tr,7—1,n—7+1)

is satisfled, This inequality is constraint (2) for taste t,. If (2) is not satisfied for any agent in the

18Note that in such a setup, an agent needs to worry, about the effect of an additional signal on éither issue not only
on their own action, but also on others’.
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group (i.e., U(t1,0,n) > U(t1,1,n— 1)) then 7% = 7% = 0 and 78 = 1 defines an equilibrium. In order

__to_show _that choosmg ™ =0 1f (2 )_,___ t satlsﬁed for any positive integer and-7* as the maximal -

integer between' 1 and n satisfying (2) otherwise defines an equ11ibrium all that remains to be shown
s that incentives to acquire information are satisfied. Notice that for any agent 7 < 7%,
Ultr,myn—1) = Ultr, 7 - Ln—7+1) =[U(ty,7,n— ’r) U(tT,'r 1,n—7)] |
~Utrm7=1,n—74+1)=U(ty,7.— Ln-7)20

and so, the incentives to acquire an o-signal are greater than' those to acquire a (-signal.. Similarly,
for agents > 7*, the incentives to acquire .é B-signal®are greater than those to acquire an a-signal.
Since M“" 41> pf, it follows that the identified profile constitutes an equilibrium.

Consider now the case in which u® + 1.< ,'u,ﬂ., and define 7¢ = u® and 7% = uf. From our

definitions of u® and pf, in order to illustrate that the suggested profile constitutes an equilibrium,

all that remains to be shown is that an agent acquiring a signal z = @, B does not prefer to acquire a

signal ¢ # z when all other agents follow the profile. Indeed, suppose that 1 < 7% < 7P and observe
that N .
Ulty,7*,n — 78 +1) = e > Ulty, 7® — 1,An~r’8 +1) > Uy, 7 —1,n =78 +2) — ¢,

where the first inequality follows from inequélity (3), and the second from the fact that pu® -1 < 1@,

Thus, an agent of ‘taSte t; does not pfoﬁt from deviating to a choice of a B-signal instead of an a-signal. "

-

An analogous argument holds for i > uf > W

Suppose now that there are two equilibria, one of which entails k% a-signal and k:ﬂ [B-signals and
one that entails & a-signals and kB (B-signals. We now show that either k% < ke and kP < kP or
ke >k and kP > Eﬁ . Suppose, for instance, that‘ k> k* and kﬂ < kP, This implies that there is
" an agent with taste ti that in the first equilibrium acquires an a-signal, and in the second equilibrium

acquires either no signal or a ﬂ—signal.r However, notice thai: for any such t;
U(ts, k%, KP) — U(ts, b — 1, k) <UL,k + 1, kP — U (8, k%, k°) and

Uty kP — Ut k® — 1L,EP +1) S U, k* + 1,55 — 1) — U, k&, kP),

in contradiction to ¢; using a best response in both equilibria. Other cases are shown similarly.
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“Since the equilibrium identified above establishes the maximal volume of signals, it follows that it

is_also_the most_efficient,. Furthermore, whenever.c.is_small .enough.so-that.. any-equilibrium-entails-all .. .

agents acquiring information, the equilibrium number of a-signals is determined uniquely. |

Proof of .Propositibon 1. In order to show that the conditions in (1) are sufficient, we construct
an optimal group as follows. If an agent is selected fo be part of the group and is to collect, say, an
a-signal, then she must have a taste parameter ¢’ such thét (1) she prefers to gather an «-signal rather
than a B-signal, that is, t' > I(t), as desc;ribéd in the text for the ¢ = 0 case, and (ii) she has enotigh
incentives to gather an c-signal rather than no signal, that is ng(¢') > n®(¢). Thus, n®(t) < nf,,, is a
necessary condition for the unconstrained optimal allocation (n®(t),nP(t)) to be achievable. Moreover,
to achieve her optimal allocation (n®(t),nP(t)), the agent of taste parameter ¢ has to have incentives
herself to acquire a signal from at least one source. That is, n®(t) < ni(t) for at least one w € {a, ﬂ}
Note that if such incentives cannot be pr@ided, nié_aning n®(t) > n2(t) for x = a, B, an optimal group
would entail the optimal allocation short of one signal'. :

' To show (2), suppose, for example, that n*(t) > nf. and nP(t) < nbax. Then, there is no
selection of gfoup members that allows our agent to achieve n*(t) signals from source a. Thus, after
" choosing ng .« agents that collect a-signals (agents chosen in the interval [t%, 1)), the agent is better off
choosing the remaining agents so that they collect as many [-signals as possible (this can bé achieved,
for instance, by chobsing them in the interval [O,‘Zﬁ ]). This could lead to more B-signals than in the
unconstrained solution. »
If both n%(t) > n,, and nf(t) > ngax, the agent chooses a group in which n®,, and nPy signals
. frovm sources o and [ are collected; respectively. ’I‘hlis can be achieved by selecting nf‘nax agents in the

" interval [t 1] and nlay in the interval [O,Eﬂ ] ' - _ . m

Proof of Proposition 2,
1. For any k = 1,...,n, denote by & (k) the taste parameter with which an agent is indifferent

between k — 1 and‘k a-signals. That is,

U(t(lc),k—1_,n—k+1)=U(t(k),k,ﬁ—k).
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It follows that an agent with taste parameter ¢ would like no ar—signals whenever ¢ € [0,¢(1)), would

1ike--n-a=signals—whene-\}er—t—@—[t~( 75 1] -and-would-like-n®(¢)-=-k-¢- {1 5n-—1}-as=signals-if-and-only——— -
ifte [t(k), t(k+1)). Since,'f'rom Proposition 1, if ¢ = 0 each agent can achieve her optimall allocation
of signals with some group, stablhty boils down to all of the group members agreemg on the ideal
" number of signals of each source that are to be collected. The claim follows.

2. From the definition of n® (¢) , we have n® (t) = [m®* ()] if m*(t) € [0,n], n®(t) = 0 if m*(¢) < 0,
and n*(t) = n if m®(t) > n, where m® (t) is the number aChievi.ng equality in condition (2). Simple

algebraic manipulation yields:

vln(%—l) —I—‘nl.n(‘l—q,rg){lr}(lrfrqa)—i-lng—z '
In(1—ga) +1n(1 - gp) '
Differentiating m® (t) we get:

- dm*(t) 1

dt = (1 t)ln (1 lkv)(l qﬂ) > O
Pm(t) 1-2¢
di? ' [E(1—)]* In[(1—ga)(1-qg)] "

T_herefore, m® (t) is an increasing function that is concave up to t = %— and convex thereaffer. Since for
any. k=1,.,n—1TF=(m*) " ([kk+1)), this implies that the sequence of intervals {TpYi=t is
such that the intervals are increasing in length until‘ the iriterval T£ such that 1/2 € T£ and decreasing
thereaftér. ‘ V

We now address the extreme intervals T and T3} We will show that these intervals follow the same
pattern of {T7'}7=1 if either gu,qs are high enough, or  is high enough. Recall that T8 = {0,4(1))

~and T” [t(n),1]. From the definition ‘of t(k) above, we get

(1—g8)" " gp
(1-4a)" " go+(1—gg
We have that (1) < £(2) — ¢(1) (L.e., interval T§ is shorter than T7*) if and only if

(k) =

)'ri—k g5 ' . (9)

20-g)""g8 _  (1-g5)" "¢

+(1-g8)""qp " (1~ qa)da+(1~gp

)n-—2 Qﬁ :
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Rearranging, the above condition is satisfied if and only if

20 (1~ ) (L—g9) + (1 —gp)" g5 < o S

Condition (10) is a necessary and sufficient condition on gg, s, and n such that the interval T follows
the same pattern of the sequence {T]*}7=1. Note that, since (1 — z) x is maximized in [1,1] at z =1/2,

G, 48 2 % is a sufficient condition to guarantee (10), as we have

1
< =< g
SSEk

NI

2(1- ga) o (1= qp) + (1~ 48)" " 45 < (1~ 0a) G +

Moreover, if (1 — ga) (1 — gg) < 1/2, condition (10) holds for n'l'a,rge enough.
The interval T} is shorter than 7,7, if and only if 1- t(n) < t(n) —t(n — 1). After rearranging,
this is equivélent'to . ' ‘ :
295 (1 — ga) (1 — gp) + (1 ~ ¢a)" ' qa < . (11)
As before, it is easy to see that if (1 = ga) (1 — gp) < 1/2, condition (11) is satisfied for large enough

n, and that q.,qp > % is a sufficient condition for (11) to be satisfied for any n. |

Proof of Proposition 3A. Suppose n > ng,, + "B ax. Any agent of taste ¢ = 0 is in an optimail' .

group as long as there are n{,, agents who are acquiring an o-signal.- Similarly, any agent of taste
t =1 is in an optimal group asllong as there are nlax éugents who are acquiring a S-signal. Aﬁy agent
with ¢ € (0,1) is in an optimal group as long as tl;lere are nﬁ‘l;x and ngax.agents acquiring an a- and
* B-signal, respectively (indeed, she can contemplate a group with n&,, a,nd n{”nax agents of t‘éste t=1

and t = 0, respectively). Theréfore,' stable groups take one of the forms (1) or (2). [ |

Proof of Lemma 2. Suppose.t_hat n®(t) > n2(t). Then, it must be the case that nf(t) < nf(¢)
(otherwise, n= n®(t) + nP(t) > n2(t) + nh (t) = ne(t), contrary to our assumption). That is, nf(t) >

- nP(t) + 1. In particular,

}—_g—t [1 B (1v_ qﬂ)nﬂ(t)-i—l]' _ % [1 ~-( _ qﬂ')”ﬂ(ﬂ]v Zc
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From the definition of n® () , 7P (¢),

1= 0= a0 £ [ (1 )]

E (1 - )0 |+ 1—;? [1- (1- a5)" O]

v
DO o+ O] vjk

which is equivalent to

t[1- (=g ) = [1= (1 - @)
> (-0 [1- (-9 O"] -1 ﬂﬁ—a 3”0 2 ¢

and ng (t) > n* (t), which contradicts our hypothesis. Identical arguments follow if n? (¢) > n? (¢). M

Analysis of L(t). The shape of n(t) plays a crucial role in our discussion. As described in the text,

we define m¢ and mf as the real numbers achieving equality in (3) and (4), respectively, so that

lnc—lnt,—ln(ja —In2

mcv(t) = n (=) +1 .
Inc—In(1—-1%)~Ingg —In2

8 ; 5 .

m (1) = 50— a) +1

andn(t);Lm( Jlfm()>0’andn"() Oifm (t)<0form%aﬂ ‘

Assume c is suﬁimently small so that < (1 4%) < 1 and ——73—0(1 <) <1, ie, ng(t),n > 0, for all ¢.
(1-t)q .

Ignoring roundmg, the relevant function for s.tudymg ne(t) is:

L) = max {mg(t),0} +max {ml(t),0} =

M_.lnc—lnt—lnq"‘—an+lnc—ln(1—t) Ing? - 1n2+2
a In(1-q%) o In(l-¢f) '

The unconstrained maximizing ¢ is given by:

~

1-f_In(1-g®) In(1-¢f)
i T In(l-¢f) 7 In(l-¢*)+In(1—¢f)" .

£ is the taste parameter maximizing £(t).
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Consider the derivative of L(t):

1 1 1 1
A—t)In(1—¢f) tln(l—g¢%)

L(t) =

Notice that it is positive up to ¢ and négative afterwards. Indeed, £(t) is concave.

g0 B . .
When there exists a ¢ for which'c—(lfgf,?—) <1 and % > 1, these conditions hold within [0, ],

‘and L(t) takes the form * _
‘ Inc—1Int—1ng* —1n2

ty =mS(t) = . - , 1
£0) =m0 e e
which is decreasing and concave. Similar analysis pertains to ranges for which %ﬁﬂ > 1 and
o(1-¢%) ' ' '
o St

" Proposition 3C If n=n%,, + nrﬁnax, stable groups take one of the following forms:

1. n.x agents whose taste falls in [t*,1] and n ax agents whose taste falls in [O,Zﬂ J;
2. n agents of taste t =1, or n agenté of taste t = 0,

3. If nGax =1, then - agents of taste 0, and one agent of taste t € (0, 1), where ¢ satz‘&ﬁ‘es ‘

~ one of the following:
(a) n®(t) =0 and U(t,0,n80x) > U(t, 1, nfax — 1); or
(b) no(t) = n&(t) = L.

Similarly if nfax = 1.

Proof of Proposition 3C. The analysis in Proposition 3A carries through as long as ng‘@x, nﬂmax > ‘1,
and the classes of group compositions in points (1) and' (2) constitute all of the stable allocations.
Regarding (3), suppos.;e that. Max = 1. (a) Assume that ng(t) = 0. First, consider ¢ for which
n?(t) = n2(t) = 0. The group consisting of an .agent of type ¢ and N ax agents of taste 0 is stable,
since the agent with non-extreme taste parameter ¢ does nc;t have énough inéenfivés to get ianrmafion

on one issue, even when she is the first to acquire a signal relevant to it. Moreover, the remaining -

agents have an extreme taste parameter, so have no incentive to acquire a signal other than the one
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pertaining to the issue they care most about. In this case, we have

’ U(t7 0"’””3’12}){) - U(t> 1, nﬁmax - 1) Z U(t>0> nlﬁmx + 1) - U(t: 1, ng’lax) 20,

where the last inequality follows from ne(t) = 0.

Second, consider the case in which ng(t) - 0 and n?®(t) = 1. The group is stable since the condition
U(t,-O,n&ax) > Ul(t, 1,n€m - 1) éssures that the utilit_y the agent gets from the nﬁmx—th B-signal is
highef (or equal) to the utility she would get ffom the first a—éignal. :

- (b) Suppose n®(t) = ng(t) = 1. In this case, the group formed by 1B ax agents of taste t = 0 and

one agent of type ¢ is stable as the agent of taste ¢ iml)lexﬁents her unconstrained optimal allocation.

Analogous constructions can be performed when nﬁlax =1. . [ |

Proof of Proposition 4.
1. To stress the comparative statics on n, let % (n,t) = m® (t) with m®(¢), as defined before, for

group size n. Then, for any ¢ € [0, 1], we have

In(}-1) +n1n(1~‘q,3)+ln(1—qa)+1n—gl—g

a _
wf (n.1) = In(1—gq) -+ In(1— gg)
= A+Bn+cln'(% —1> :
where A :- In(1—ga) +In 22 B = In(1-g5) | a',ndAO =(In(1l - ga)+In(1 —gg))™* Consider ¢/
m(1—ga)Hin(1-gs)’ =~ In(l—ga)+In(1-gg)’ A 7 o 8/) ,

t", and n such that ¢/,¢" € TJ for some k = 1,..,n — 1. From the definition of {T,?}Z;% , this implies

that \_w;’c‘ (n,t’)J = {x;“ (n,t”)J , so that ¢/, € T[Lw;%(n,t’)J .
First, we show that there exists @ > n such that ¢, € T,f for some h =1,..,7 — 1. Let A =

max {z(t’,n) — [z(t',n)] ,z(t",n) — [z(t",n)]}. That is, A is the maximal distance between z(t',n)

and z(t",n) and their rounding down to an integer. Let r be an integer such that rB — [rB| < 1—A.

Py

" Therefore, for the integer d = L?"iBJ, we have B € [¢, #H=8) Define fi = n + r. Notice that

2(t,8) € [o(t,n)+d,a(t,n)+d+1- A

@ R) € [wt’,n)+d st n)+d+1—A).
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~ From the definition of A, it follows that (z(¢,7)] = a(’,4)] = |2(t,n)] + d. Thus, ¢,¢" ¢

Loy Wthh proves our claim

L;bf\lb,b )J+ : .
Moreover, note that, if ¢ > ¢, x§ (n t) - z§ (n, i”) Cln(#-1)~In (t,, —1)] < 1. Thus,

for any n, ¢ (n 1) —x¢ (0, ") = z$ (n, t’) - (n, t”) < 1. This implies that for any n', elther

¢ e T,f‘l, ort' e ,?4/_1 and " E.T,’LI for some h. That is, if ¢/, t/are two taste parameters for which

there is agreement on the optimal number of a-signals in {1,..,n — 1} for a group of size n, then even
if they dlsagree for some n’ > n, such disagreement can pertain to the allocation of at most one signal.

2. Observe that the interval Tg' contains all ¢ such that ¢ < % = t™(1). It follows
dat qp :

that T¢ ¢ Tg for any n/ > n and, for any goyqp € (0,1), t*(1) \m_)oo 0. 50 the interval T

shrinks to a singleton as the size of the group becomes 1nﬁn1te1y large Similarly, T;} contains all .
t > ?T—m = t*(n). It follows that 7?, C T} for any n' > n and, for any ¢a,qs € (0,1),
t"(n) /'n—oco 1, s0 the interval T shrinks to a singleton as the size of the group becomes infinitely

large as well. . ' ' : o n

Proof of Lemma 3.
1. Recall that {tl, ,tr} is the set of taste ‘parameters t; such that there is at least one agent in
N with taste t;. Let any group of agents G C N be identified by a vector (21, . ,zr) where 7 < myis
the number of agents of taste ¢; in group G. Suppose that G = {G4,..,Gs} is a stable alldcation, and
let ¢;,t;,tn € {t1,..,tr} be such that t; > t; > tp, and suppose that twé agents with tastes t; and ¢,
respectively, are in a group G €g a.ndr that an agent with taste tj isin G’ # G. Assume that in any

equilibrium of the mformatlon-collectlon game, k% a-signals and k? ﬂ—SIgnals are acqulred in group

G, and k¥ c-signals and k' (-signals are acquired in group G'. Since t; at least weakly prefers G’

over G it must be the case that either k&% < k% or k? < kP'. Suppose k"‘.< k% Certainly, if lgﬂ < kP

the other two agents (of types ¢; and t3) would benefit by switching to group G’. Assuime then that

" kB > kP, Optimality for the agent of type t; then implies:

t; (1 ~(1- qa)kiw) + (1 -1) (1 - qﬂ)kﬂl>
> ij (1 —(1- qa,)-’““) +(1-1t;) (1 - (1- Qﬁ)kﬁ>v
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t >('1;Qﬁ)'° —(1=gg)"

L=t 7 (1-ga)* — (1 —ga)®™"
t'hv

However, since = > .ltjj and the agent of type t;, joining &' would imply an additional signal

collected, it follows that an agent of type ¢, would strictly benefit by shifting from group G to group
G in contradlctlon The case k'B < kP follows analogously

2. Suppose that G is a stable allocation, and suppose that G, G/ €6, # G' both contain at least
one agent of taste t;. If one group 1dent1ﬁed by (1, ..,2,) is (weakly) preferred by an agent of taste t;
to the group identified by (a:l, o Zh), we write (@1, 0y ) 7 (2,0, 27) . Assume that G is identified
by (21, ..,7;, ..%,) -and that G is identified by (v1,. s Uiy - ,y,.) For aﬁ_ agent of taste ¢;, a deviation from

G to G' is unprofitable if

(xla oy Ty --wr) >r't, (yl: o Yi 17 o y’!‘) 4

Similarly, for an agent of taste ¢}, a deviation from G’ to G is unprofitable if
(yla "'> Yi, --7%) %t, (mlﬁ oy Tf + 17 ...’17',‘) .

However, any agent of taste ¢; strictly benefits from having her group augmented by one more member
~of her own type. Since (21,..25 + 1, ..., 20) =+, (21, .25, 1y %) , for any (21, .25, .y %) and 5, we get a -

contradiction. - o A ‘ [ |

Proof of Proposition 5. For z = a, 8, denote by z”’(i, h) = n®(t) the optimal number of x—signals
out of a total of h signals for an agent of taste t. Moreover, for any ¢1, % € [0,1], let w® (¢4, t2, hi, ho)
denote the equilibrium number of :v—_sigﬁals collected in a group that 1s composed of hy agents of taste
t1 and ho agents of taste o (Wellldeﬁned from Lemma 1A).

1. Observe that 1f 2% (t1, N) > 2% (g, N) then either w® (¢1,t9, 1, N) = 2%(tg, N)+1 (if 2%(tg, N+
1) = 2% (t3, N) + 1), or w® (¢4, 3,1, N) = 2% (tg, N) (if 2%(ta, N + 1) = 2% (t, V).

Consider a fully segregated partition and suppose that agent a € N; has taste parameter ¢; for

i.€{1,..,r}. Since |N | = m for all 4, checking that such an agent does not have a profitable deviation

* by joining N;4q U {a} and N;_q U {a} is enough to guarantee that this agent does not have profitable

deviations (note that for ¢ = 1,7, there is only one constraint to check). " Consider a deviation of
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agent a from N; to Ny U {a}. Since t; > tiv1, 2%(t;,m) > 2%(tip1,n) for alln > 1. A necessary

condition for the deviation not to be strictly beneficial is that 2%(t;, m) > 2%( tit1,m).-Suppose first .

that w® (¢, L1, 1, m) = 2% (tig1, m) +1. It follows that the deviation is not profitable whenever

P——a—%>“Mﬂ+a—mﬁ=§a—%ﬁﬁmmﬂ (12)

1. (o S N
> {1 -5 (01— (t"'“’m)“} +(1—1;) [1 - % (1 —gg)™* (ml,m)] ,
or, rearranging terms,

(1 g TR - (1= ] > (1 ) (1 g (1 gy )]
| . o (13)
For &= o, B, define v (k) = (1 — o) ~ (1 — go)**", so that v””(!c) is the marginal contribution of

the (k -+ 1)’th z-signal for z = «, 8 (up to a factor of %) Note that, for z = a, 8, v® (k) is decréasiﬁg
in k..Thus, Substituﬁing and rearrahg’ing terms, we can rewrite (13) as follows:

m—2*(typ.1,m)—1

> )

‘ t —— (tsym)

1—-t = 2*(tym)-1 ’ (14)
> ve(k)
k=2%(t;41,m)+1 ’
w1
where we use the convention that Z v* (k) = 0 for any w. Condition (14) implicitly defines a condition
ke=w

on t; and tz+1 for a deviation from INV; to Nyyq to be unprofitable.

Observe that, if w® (t;,ts41,1,m) = 2% (tip1;m), a deviation of agent a of taste parameter ¢; to
a group of m agents of taste parameter ;1 is less proﬁtable than a deviation to a group in which |
2% (tig1,m) —I— 1 out of m +-1 agents collect the a-signal, and theréfore, condition (14) is sufficient to
' guarantee that such deviation is not profitable. '

If ¢; is fixed, condition (14) is weaker the lower is t;11 (thét is, the furthef apart t; and #;, are).
This guarantees that there exists t(t') such that a deviatibri of agént' a in Nj to N¢+1 is uhproﬁtable "
if and only if t;41 <t(t;). If tip1 € T" and condltlon (14) is not satlsﬁed then #(t;) = 0. Set t(t )=0

i 2%(t, m) = 2 (tz—f-la m) = 0.




SIMILARITY AND POLARIZATION IN-GROUPS ’ - Bl

We can follow a similar procedure by considering a deviation from N; to N;—1 U {a} and defining

a taste (t;)_such that a deviation from N; to Ni-1 U {a} is unprofitable if and only if ;_y > (t;).
The intervals {Z;}}_, are obtained by setting for any i € {1,..,7}, 7; = [t(t;),%(t;)) whenever ¥(t;) <
1 and 7; = [t(t;), 1] whenever Z(t;) = 1. To see that 7; are unions of contiguous intervals of the

sequence {I}"}7 ,, observe that all ¢;41 in the same interval Ti™ share the same optimal allocation

~ (#*(tiy1,m), 2% (tiy1,m)). Thus, for a given i, if condition (14) is satisfied for ¢;41 € T/, then it is.

satisfied for any téﬁ._l e, . , ‘

2. For each 4, denote 7;” = 7; N [0,¢;] and ’Z;Jr =T; N [t;, 1] the sub—intervals of 7; that are to the
left and right of ¢;, respectively. Notice that for sufficiently lllow ti, 7,7 = [0, %], the length of Which
is increasing in t; (and decreasing in %). Similarly, for sufﬁciently high ¢;, Ti+ = [t;, 1], the length
of Whiph is decreasing in ¢; (and increasing in i). To show the claim, it suffices to illustrate that for
sufﬁcién_tly low t;, 7,%, ..., 7,* are decreasing in length and, similarly, for sufficiently high %, 77,7
are increaéing in length. | - _ |

Consider ¢ and ¢/, with ¢/ > ¢, and 'k € {1, .., 2%(t,m)}, such t};at the agent of type ¢ prefers to stay
.in her group collecting #*(t,m) a~-signals than to be the m-+1'th member of a group in which, Without
her, 2%(t,m) — k a-signals are collected. Upon joining such a gréup, the agent wouid be collecting an

a-signal, and so the corresponding incentive constraint (similar to condition (13)) implies that:

t L (L g (1 gy

Tt = (1= gy R _ (1 _ gy m) (15)
Let
A(t) =t [(1 _ qa)ma(t)”k—i-l _ (1 _ qa-)mo:(t)] and |
and recall that -
| In(3 —1)+mln(l—gg) +In(l—qa) +1n L
ma(t) = - ‘

In(1-gq) +In(1 - gg) |
Note that whenever z(¢t,m) = 2*(t',m), if (15) holds for t, it will hold for ¢, In order to show

the claim, it is therefore sufficient to focus on ¢ and t' that are at the cusps of our original intervals
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(T} , » for which m®(t) = 2%(t, m) and m®(t') = #*(#,m). For such ¢ and ¢/, (15) is satisfied whenever

—A (8)-=-B(t)-and-A(t")->-B(t"),respectively:
From the derivations in the proof of Proposition 2, recall that

dm® (t). _ 1

& t-om-wd g

Now, we have

dm® (t)
e |’

Al(t> _ [(1 _ qa)m“(t)—k-l—l — (]_ — qa)'mo‘(t)] [1 +tln (1 m Qa)

which implies that A’(t) is positive if 14¢1n (1 — ¢q) dhf;(-t B 0, which, after manipulation, is equivalent

to

In(1 _ e
In (1 - go) +1n(1 - gg)

<

Similarly, we have 4

| Bl(t).=. |:(1 . qb)m-—m"‘(t) _ (1 _ qﬂ)m——m“(t)+k] I|:—1 — (1 - ﬁ) In (1 - Qﬁ> dm;t(t)

As before, B'(t) positive if 1+ (1 —¢)1n (1 — gp) dmd—c;(t) <0, or

In(1~qg)

t < .
In(1-qa)+In(l—qgp)

thice that A(0) = 0 and A(1) = [(i— g)™ 1 - (1 —,qa)m] > 0, while B(0) = (1—gg)™ —
¢! w.q,@)"”.“]c > 0 and B(1) = 0. Since both A(t) and B(t) are decreasing for any t» >'1n(1——1;()—1ﬁ21:@’ |
and A(1) > B(1), it must be the case that for ¢ high enough, A(t) > B(¢) implies A(¥') > B(t)
whenever ¢ > ¢ (in addition, it s easy to show that both A(t) and B(t) are conéave; therefore, they

ln(l—q,g)
can cross at most once‘ for ¢t > m).

From the comparative statics of Proposition 2, it follows that for-any ¢; high énough, Tl“,'..., T~

are increasing in length, as was required. The case of low %; follows analogously. ' |
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