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Abstract

I develop an agent-based computational economics (ACE) model
with which I evaluate the aggregate impact of labor market policies.
The findings are that government-financed training measures increase
the outflow rate from unemployment to employment. Although the
overall effect is positive, this effect is achieved by reducing the outflow
rate for those who do not receive subsidies. Furthermore, the outflow
rate would have been downward-biased had one supposed a matching
function that is exogenous to policies.
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1 Introduction

The objective of labor market policies is at least twofold: to provide benefits

to those people who are unemployed in order to cushion their income loss,

and to improve the allocation of workers to job openings in the labor market.

The former usually goes under the heading of passive labor market policy

whereas measures that follow the second aim are usually referred to as active

labor market policies. As table 1 shows, a considerable amount of money is

spent on labor market policies in OECD countries each year. The interest in

the effectiveness of those policies follows quite naturally.

Nowadays, there is considerable microeconometric evidence on the effects

of training measures for individuals, mainly about whether it improves an

individual’s chance of finding a job, about how it has an impact on wages,

and sometimes also about its stabilizing role on lifetime employment and

income (see, e.g., Heckman et al., 1999). However, studies based on micro-

data cannot tell us what the aggregate effects of those labor market policies

look like. As has been proposed by Garfinkel et al. (1992), Calmfors (1994),

Schmid et al. (1996), and the OECD (2005), the aggregate impact of labor

market policies might be smaller than what evaluations on the individual level

suggest because deadweight losses and substitution and displacement effects

of labor market policies are not taken into account. This is why studies based

on micro-data should be complemented by aggregate impact studies of labor

market policies in order to arrive at sound public policy recommendations.

In this article I link individual and aggregate impact studies with an

agent-based model of the labor market. In particular, I address three issues:

a) I evaluate the aggregate impact of government training subsidies, which,

as table 1 reveals, make up a considerable share of active policies; b) quantify

how a policy that improves an individual’s chances of finding a job harms
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those who do not receive government transfers; and c) point out that eval-

uating labor market policies within flow models that depend on matching

functions that are exogenous to the labor market policies under investigation

may result in biased results.

Following up on the first issue, I intend to add to an existing literature

that studies the aggregate impact of training policies an alternative method-

ology (as suggested by Freeman, 2005, among others for policy evaluation)

that complements the use of flow models and the estimation of aggregate

matching functions (see, e.g., Mortensen and Pissarides, 1999; Bellmann and

Jackman, 1996, respectively). The second topic is, in my estimation, a poten-

tially interesting contribution that agent-based models can make in linking

micro- and macro-level evaluations. Micro-evidence is not informative when

it comes to judging the macroeconomic consequences of labor market policies.

In addition, a mere look at aggregate variables does not allow one to make

inferences about to what extent the success of a program of a treated group

of individuals comes at a cost for the non-treated. By its very construction,

an agent-based labor market model allows the extraction of information on

the individual level and the aggregate level. Thus, job displacement effects

of labor market policies can be studied. The third result questions the use

of matching functions as a key building block in flow models of the labor

market. Matching functions relate two stock variables, jobseekers and va-

cancies, to outflows from unemployment (a flow variable). The properties

usually attributed to the matching function are outflows as an increasing

and concave function of the inputs to the matching function, and constant

returns to scale. Moreover, those properties are usually seen as exogenous to

policies. Here I raise the concern that if one takes a micro-foundation of the

matching function seriously, namely, that policies target the agents’ choices
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and that the properties are driven by firms’ and workers’ search decisions,

then one should also expect that properties of the matching function change

under the auspices of different policies. A failure to take into account that

the matching function is endogenous to policies might lead to biased results

in aggregate impact studies of labor market policies.1

Butters (1977) and Hall (1979) were among the first to provide a micro-

foundation of the matching function on the basis of a coordination failure

argument exemplified by the so-called urn-ball model. From that point of

departure many roads have been taken to add more structure to either the de-

mand side or the supply side of the market, or to introduce models of wage

determination in order to study the properties of the endogenous match-

ing function.2 Agent-based approaches to matching functions were made

by Tesfatsion (1998), Richiardi (2004), and Fagiolo et al. (2004). In Neu-

gart (2004) I showed within an agent-based computational economics (ACE)

framework what properties for an endogenous matching function arise if there

is endogenous vacancy creation, endogenous search intensity, and a wage for-

mation such that heterogenous workers are paid their reservation wages. I

also hinted towards the possibility of policies affecting the properties of the

matching function, an issue that has been pointed out by Lagos (2000) before.

The model with which I address the three issues is an agent-based com-

putational model of a labor market with different sectors.3 Firms in those

sectors have sector-specific skill requirements. Sectors are hit by exogenous

1Examples of evaluations of labor market policies with an exogenous matching func-
tion can be found in Mortensen (1994), Pissarides (1998), and Fredriksson and Holmlund
(2001), who look at the effects of unemployment benefit systems. Job protection legis-
lation, active labor market policies, and a negative income tax system were analyzed by
Pissarides (2001), Mortensen (1996), and Coe and Snower (1997), respectively.

2Work in this direction has been done by Cao and Shi (2000), Julien et al. (2000), Bur-
dett et al. (2001), Albrecht et al. (2003), and Smith and Zenou (2003). A comprehensive
survey of the matching function is provided by Petrongolo and Pissarides (2001).

3For an introduction to agent-based modeling, see, for example, Tesfatsion (2006).
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shocks. In such an event firms close down, dismissing their employees. As

sectors are differentiated by skill requirements, unemployed workers have to

make an upfront investment in their human capital in order to qualify for

vacancies opening up in other sectors. The government subsidizes the unem-

ployed workers’ human capital investment, which is financed by a tax on the

employed.

The findings are that subsidizing training increases the outflow rate from

unemployment to employment and reduces the unemployment rate. Further-

more, dividing the group of jobseekers into a treatment and a non-treatment

group shows that a higher outflow rate of the treated jobseekers comes at the

cost of a lower outflow rate of the non-treated. Finally, had I supposed an

exogenous matching function, the aggregate impact of the government policy

on the outflow rate from unemployment would have been underestimated.

In the following section I describe the model. Section 3 presents the

results, and the last section summarizes my findings.

2 The model

There shall be numSectors sectors in the economy, allocated on a circle (see

figure 1). The number of firms in the labor market is numFirms, with

numFirms > numSectors. Firms in sector i have different skill require-

ments from firms in sector j, with i 6= j. Skill differentiation varies with the

distance between sectors. Assume numSectors = 10; then from the perspec-

tive of the sector i = 0, sectors numbered 1 and 9 would be closest in terms

of the skill requirements of the firms, whereas sectors 2 and 8 would require

skills more distinct from what is needed in sectors 1 and 9, and so on. Each

firm posts one vacancy. If the firm can fill its vacancy, it produces output.
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The returns from production are fully paid out to the workers in terms of a

fixed wage wage.

Initially firms and workers are randomly allocated to sectors. With prob-

ability r sectors are hit by shocks. All firms in the sector hit by a shock close

down. Workers in those firms become unemployed. A number of firms equal

to the number of closing firms is opening up in local labor markets that were

not hit by the current shock.4 Again, those firms are allocated randomly to

the new sectors. Because the number of firms is held constant, aggregate

labor demand is constant, too. In other words, the shocks considered are

asymmetric.

Firms that have a vacancy on the market and received applications ran-

domly choose one applicant, to whom they make an offer. The worker always

accepts the first offer that he gets. The order in which firms are allowed to

make offers is random, approximating the simultaneous actions of the firms.

Thus, it may happen that a firm that received multiple applications cannot

fill the vacancy because all applicants were hired by other firms, or that a

vacancy is not filled because no worker applied.

0

1

2

3

4

...

numSectors -1

Figure 1: Allocation of sectors in the labor market

The number of workers in the market equals the number of firms. Thus,

4Sectors hit by a shock, however, may be populated by firms again in the future.
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in principle there could be full employment. Workers are heterogenous in

terms of their skill endowments, their initial skills determined by the random

allocation to a sector. Unemployed workers can make an upfront human cap-

ital investment. If they decide not to invest in their human capital, they can

only apply for vacancies that are posted in the sector in which they worked.

However, if they make an upfront investment in their human capital of the

size of one unit, they would also qualify for vacancies posted in sectors 1 and

9, assuming that they are currently located in i = 0 and numSectors = 10.

A human capital investment of the size of two units would, in addition, qual-

ify the worker for jobs in sectors 2 and 8. The human capital investment is

costly. Acquiring skills that qualify the worker for the adjacent two sectors

implies costs humCapInvCost. An investment in the worker’s human capi-

tal that would qualify him for the closest additional four sectors incurs costs

2 · humCapInvCost, and so on. Workers may want to make upfront hu-

man capital investments up to the point at which they qualify for all sectors

(0 ≤ numHumCapInv ≤ numSectors/2).5 A worker shall send applica-

tions to all firms that have vacancies with skill requirements that match the

worker’s skills. An unemployed worker who makes an upfront human capital

investment, but does not find a job in the current period, will have to invest

in his human capital again in order to qualify for job openings outside his

past field of work.

Workers learn how much they should invest in their human capital when-

ever they become unemployed or do not find a job. I model this as a process

of individual reinforcement learning.6 In the initial stage, a worker chooses

the amount of human capital investment from the strategy set with equal

5I assume that numSectors is an even number.
6Another option to model learning on the individual level is genetic algorithms; see

McFadzean and Tesfatsion (1999) or Dawid (1999). Brenner (2006) extensively discusses
the pros and cons of various learning models.
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probabilities. Then, workers keep track of the payoffs that accrued to them

after the choice of a distinct human capital investment strategy. As time

evolves each worker experiences from market outcomes that some strategies

work better than others. The performance measure is the average of payoffs

of each strategy accruing in periods in which a worker had to look for a new

job (whether successful or not). Let numHumCapInv denote a human capi-

tal investment strategy; then an unemployed worker k will choose a strategy

h = numHumCapInv with probability

p(k, h) =
eλ·payOffAve(k,h)

∑numSectors/2
s=0 eλ·payOffAve(k,s)

, (1)

where λ > 0 is a learning parameter, reflecting the speed of learning, and

payOffAve(k, h) is a worker k’s average payoff for a strategy h. A learning

mechanism like the one proposed in equation (1) has the characteristic that

application strategies that led to relatively high payoffs are more likely to be

chosen.7

The role of the government is to subsidize training. The government re-

funds a share of the human capital investment costs to the unemployed work-

ers. Unemployed workers receive a rebate of rebate = numHumCapInv ·
humCapInvCost ·workerPolicy, having invested in numHumCapInv units

of skills at a cost of humCapInvCost, with workerPolicy being the fraction

of costs refunded. The government shall finance the policy through a tax on

workers’ wages. It tries to run a balanced budget. After every period, the

government adjusts the tax rate that will be in effect in the following period

such that the tax would have balanced the budget in the current period. Fig-

ure 2 presents the pseudocode of the model summarizing the main elements

7Equation 1 is known as the Gibbs-Boltzmann probability measure.
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and the sequence of actions taken by the agents.

3 The results

3.1 Aggregate impact of training policies

I simulate a labor market that consists of 20 sectors, each having different

skill requirements; 100 firms, each posting one vacancy; and 100 workers. A

local labor market is hit by a shock with probability r = 0.05. Productivity

and hence wages are normalized to one. Costs for investing in one’s human

capital shall be 15% of the quarterly wage for one unit of human capital.

This implies that in order to acquire the skills most distinct from the current

endowment, the worker would have to invest 10 units, given that there are

20 sectors. In this case, human capital investment costs would amount to

150% of the quarterly wage. The learning parameter is λ = 10.

A single iteration involves the steps summarized in the pseudocode (see

figure 2). An iteration is repeated 1000 times, which makes up a run. After

each run new initial conditions are set and a new run begins. What is re-

ported are the values of the last iteration of each of the 5000 runs that were

conducted.

In figures 3, 4, 5, and 6 the histograms for the number of vacancies posted,

the number of jobseekers, outflows from unemployment to employment, and

the unemployment rate are plotted. The histograms refer to the case without

government training policies. Summing up the observations that are plotted

into the histograms yields the number of runs conducted, namely 5000.

On average the unemployment rate is 10.7% (see first row in table 3). The

average inflow rate and the quarterly calibration imply an average duration

of jobs of five years. The average outflow rate implies an unemployment

9
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duration of slightly less than a year.8 Each vacancy receives on average 2.6

applications, which could be considered too small given casual evidence on

employers being inundated with applications, but note that by assumption

workers send applications only to vacancies for which they qualify. The sum

of human capital investment translates into 5% if measured as a share of

total output, or put differently, an unemployed worker on average invests

into almost three units of human capital. Tightness shows that on average

there are 0.66 vacancies for an unemployed worker. Compared with cross-

country evidence this ratio seems to be too high (see OECD, 2001). Overall,

however, the properties of the labor market model appear to be reasonable.

Table 3 summarizes the findings of the labor market policy evaluation.

Increasing the subsidy for the training costs for the unemployed workers from

zero to 50% in steps of 10 percentage points lowers the unemployment rate

from 10.7% to 8.2%. The decline in the unemployment rate is driven by

an increase in the outflow rate from unemployment to employment given a

constant inflow rate from employment to unemployment. As it becomes less

costly for the unemployed to invest in training, more training is undertaken.

The sum of human capital investments increases from 29.5 units to 49.8

units. Additional training qualifies the unemployed for jobs with skills that

are more distinct from those of the jobs they currently hold. Consequently,

they will apply for job openings in sectors that are more distant in terms of

skills from those sectors in which they currently work. This is reflected in

the increase in the average number of applications per unemployed person,

8While it might be tempting to compare the outcomes of the model also with flow data
on labor markets (see, e.g., Key Indicators of the Labor Market (KILM), International
Labour Office Geneva, 2007), one should be aware of the sensitiveness of the simulation
results with respect to the calibration time of the underlying model. In the future, less
stylized models may investigate perhaps more realistic approaches where firms and workers
are more flexible with respect to the timing of their decisions as the labor market unfolds.
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as shown in the last column of table 3. Thus, a government subsidizing

training reduces unemployment. Unemployment is reduced because lower

training costs encourage unemployed workers to invest more in their human

capital. As a consequence they qualify for job openings in sectors for which

they otherwise would not have been qualified.9 In short, the training policy

reduces frictional unemployment due to skill mismatch.

Quite importantly, this result is not sensitive to the magnitude of the

costs for the human capital investment. Increasing humCapInvCost reflects

again the driving mechanism of the model, frictional unemployment due to

a skill mismatch. The results are not shown in the table. However, as the

costs for human capital investments increase, unemployment goes up driven

by a lower outflow rate from unemployment. The decrease of the outflow

rate is caused by a smaller amount of human capital investment that lowers

the average applications sent out by a worker.

Whereas we have empirical knowledge on the size of most of our param-

eters listed in table 2, the choice of the learning parameter is debatable. Re-

ducing the learning parameter to half of the size of the baseline model yields

a decrease of the unemployment rate for all government policy parameters.

The lower unemployment rates are driven by higher average outflow rates.

Behind the higher outflow rates are increased human capital investments and,

consequently, a higher average number of applications per person. However,

although a less strong feedback mechanism distorts the levels of the endoge-

nous variables, the effects are still small enough to argue that the magnitudes

of the endogenous variables are reasonable. Doubling the size of the learning

9While the subsidies reduce the costs for training that raises transitions to employment,
employment may become less attractive from the perspective of an unemployed worker as
the employed finance the training policy. However, this effect is comparably small as the
tax on the income of employed persons amounts to 4% on average when the subsidy is
50%.
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parameter with respect to the baseline model results in an increase of the

unemployment rate for all government policy parameters. The outflow rates

are somewhat lower, as are human capital investments and applications per

vacancy, but again, and more important, quite considerably increasing the

size of the learning parameter with respect to the baseline model, leaves the

qualitative results of the baseline simulation unaffected. It is still the case

that as the government takes over a higher share of the training costs, the

unemployment rate decreases. Thus, with respect to the learning parameter,

evaluation results of the training policy appear to be robust. Moreover, for

given learning parameters, increasing the number of time steps from 1000

to 2000 does not distort the results shown in table 3 that suggest that the

system has converged.

3.2 Endogenous matching function

A matching function relates the two stock variables, vacancies and jobseekers,

to the flow variable outflows from unemployment. In policy evaluations this

relationship is assumed to be exogenous to the policies under investigation.

A policy that is targeted to change the behavior of agents is assumed not

to affect the properties of the matching function. For the same inputs the

matching function is supposed to deliver the same number of outflows from

unemployment. However, what happens if the policy changes the properties

of the matching function? Will not taking into account that policies might

change the relationship between jobseekers and vacancies on the one hand

and outflows from unemployment on the other hand lead to biased results

in policy evaluations? If so, one would have a situation in which the policy

alters the properties of the matching function, leading to a situation in which

for equal inputs, outflows differ.

12
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The agent-based model developed here does not make use of an exoge-

nous matching function, so it becomes possible to shed some light on whether

there is an issue of biased evaluation results. Whether policies change the

properties of the matching process in the labor market can easily be checked

by comparing the outflow rates in the model with a training policy with

the outflow rates in the model without a training policy for (almost) equal

inputs. The simulation generated 5000 observations for the treatment and

each non-treatment case. From those observations I extract triples of job-

seekers, vacancies, and outflow rates, where the two inputs to the matching

function, jobseekers and vacancies, match between the treatment and the

non-treatment case. I say that the inputs match if the absolute deviation

of the inputs between the treatment and the non-treatment case is smaller

than two. Table 4 illustrates this procedure. After the comparable cases had

been extracted, a Wilcoxon-test was applied in order to check for the null

hypothesis of equal distributions of outflow rates.

In all five treatments, the average outflow rate is higher than in the non-

treatment case where there is no government policy (see table 5). Thus,

the policy improves the matching process in the labor market. The shift in

the distribution of outflow rates is, moreover, statistically significant. Again,

I checked for the robustness of the results when the learning parameter is

doubled and reduced to half of the size of the baseline case.10 A matching

function endogenous to labor market policies still seems to be an issue.

3.3 Job displacement effects

The model also can be used to shed light on the relationship between treat-

ment effects on the individual level and the macroeconomic outcome. Al-

10Those results are not given in this article.
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though a training policy might increase the chances of those jobseekers who

receive subsidies, it might do so by reducing the job-finding rates of those

who are not covered by the program. Job displacement effects in the sense

that the treated jobseekers crowd out other jobseekers who are not benefit-

ing from a labor market policy program might reduce the overall success of

a policy. I attempt to quantify the effect within the agent-based model by

dividing the workers into equally sized groups, one of treated and one of non-

treated workers. If a worker from the treated group becomes unemployed,

he will receive government subsidies for his human capital investment. The

workers from the non-treated group do not receive transfers. The following

experiment was then conducted (see also figure 7): the number of itera-

tions is increased to 2000, whereas all other parameters are identical to the

baseline simulation. In the first 1000 iterations, no subsidies are given for

jobseekers’ human capital investments, neither for the treatment nor for the

non-treatment group. The outflow rates at iteration 1000 are noted for both

groups. From iteration 1001 to 2000, jobseekers who belong to the treatment

group receive a transfer from the government of 50% of their human capital

investment costs. Finally, the outflow rates at iteration 2000 for both groups

are stored again. The experiment was repeated 5000 times.

Table 6 summarizes the mean values for the outflow rates for the treated

and the non-treated group before and after the government policy was im-

plemented. First of all, it can be seen that jobseekers of the treatment and

the non-treatment group have equal outflow rates before the policy was in-

troduced. We cannot reject the null hypothesis of equal outflow rates, as

shown in the last row of the first column. A comparison of the mean outflow

rates for the treatment group before and after the government policy was

introduced reveals that on average the policy increases the job-finding rate

14
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from 0.257 to 0.374. Testing against the null hypothesis of equal outflow

rates, the difference turns out to be strongly statistically significant. Also in

economic terms the effect is strong: the outflow rate of the treated group of

jobseekers increases by 45%. If there were no substitution effect, the mean

values of the outflow rates of the non-treatment group should be equal before

and after the policy was introduced. This is, however, not the case. Again,

one can clearly reject the null hypothesis of equal outflow rates. The substi-

tution effect is also economically relevant. The outflow rate of the jobseekers

who do not receive government subsidies is reduced by 12%.11 A sensitivity

analysis with respect to the choice of the learning parameter does not change

the qualitative nature of the results.12

What is the interpretation of the job displacement effect? In this model,

it is driven by a reduction of the treated jobseekers’ human capital investment

costs. As the costs are reduced, workers in the treatment group invest more,

allowing them to apply for jobs that are more distant in terms of skills from

their current human capital resources. In those sectors where the treated

workers would not have applied without government transfers, they compete

for jobs with workers who did not receive transfers. Those workers might

not get a job offer because a treated worker was given that offer. Thus, the

job-finding rate of the non-treated group declines.

One may wonder how other policy measures fare with respect to the

displacement effect. In an extension to the described model the effect of

unemployment benefit policies on the transition probability of an unemployed

worker into a job was analyzed. In order not to compare apples with pears

the following approach was taken. With the parameters as in the previous

11In more technical terms, one would claim that the stable unit treatment value as-
sumption (SUTVA) is violated; see Rubin (1974) for an early discussion of causal effects
in experiments.

12Again, those tables are not included in this article.
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experiment, one can calculate the average budget of the government needed

to finance the training policy, and this average budget was taken as exogenous

to the unemployment benefit program. Then, the taxes for the employed

and the transfers to the unemployed were determined endogenously given

the number of unemployed in the economy. One finds that an unemployment

benefits policy that has the same budget as the training policy does not affect

the transition rates. The reason for this finding is straightforward. Contrary

to the training policy, unemployment benefits do not give an incentive to

invest in one’s human capital. Thus, labor market frictions due to skill

mismatch are not reduced.13

4 Conclusions

For the purpose of an aggregate impact study of government-sponsored train-

ing policies that rank prominently among active labor market policies in

OECD countries, I developed an agent-based labor market model with sector-

specific skill requirements. In the model, firms are hit by asymmetric shocks,

and workers becoming unemployed have to invest in their human capital in

order to qualify for job openings. The government steps in and subsidizes the

workers’ training costs. First, I show that the subsidizing of training increases

the outflow rate from unemployment and reduces the unemployment rate on

the aggregate level. Second, there is evidence that the matching technology

is not exogenous to policies. This has consequences for aggregate impact

studies of labor market policies. In my case, not taking into account that

policies change the matching properties of the labor market would have led

to an underestimation of the impact of the training policy on the outflow rate

13More detailed results are available from the author.
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from unemployment. Third, I show how an agent-based labor market model

can be used to elaborate potential job displacement effects of labor market

policy programs, an evaluation exercise that closed-form analytical models

are less apt to achieve. An agent-based approach is especially promising

here, because information about the program effects on the individual level

and the aggregate level is available. Exploiting this property of an agent-

based approach, I find that the training policy reduces the job-finding rate

of those who do not benefit from the program to an economically significant

extent. In other words, although those individuals receiving transfers have

a higher probability of leaving unemployment and although the overall im-

pact of the program on outflow rates is positive, there is a crowding-out of

non-participants of the program.

In many respects this study employed strong modeling assumptions. How-

ever, the approach of evaluating labor market policies with agent-based mod-

els allows for a range of extensions that could alleviate some of the assump-

tions made in this work. For example, one could analyze the role of market

power on the side of the firms or workers (c.f. Tesfatsion, 2001) and its im-

pact on labor market performance. Different wage-setting institutions should

be analyzed, and although the current study focuses on training policies, it

might also be of interest to compare those policies to alternative measures.

Various other unemployment benefit schemes or the effectiveness of job pro-

tection legislation are only two examples of social policies that deserve further

attention. Another unexplored link is the effect of labor market policies on

the distribution of firms and employment across sectors, with its repercus-

sions for employment dynamics.
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5 Appendix

The model is programmed in RePast. The code is available from the author
(neugart@wz-berlin.de).
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Table 1: Labor market policy expenditures in OECD countries in 2002

Country Total Active LMP Traininga Training
in % of GDP in % of GDP in % of GDP in % of active LMP

Austria 1.78 0.53 0.19 35.8
Belgium 3.65 1.25 0.19 15.2

Czech Republic 0.45 0.17 0.02 11.8
Finland 3.07 1.01 0.27 26.7
France 3.06 1.25 0.21 16.8

Germany 3.31 1.18 0.32 27.1
Hungary 0.90 0.52 0.06 11.5

Italy 1.20 0.57 - -
Japan 0.76 0.29 - -
Korea 0.41 0.27 0.04 14.8

Netherlands 3.56 1.85 0.52 28.1
New Zealand 1.52 0.52 0.14 26.9

Norway 1.41 0.87 0.05 5.7
Slovak Republic 0.94 0.46 0.04 8.7

Spain 2.42 0.87 0.12 13.8
Sweden 2.45 1.4 0.28 20.0

Switzerland 1.30 0.53 0.12 22.6
United Kingdom 0.75 0.37 0.01 2.7
United States 0.71 0.14 0.03 21.4

a: Training includes course costs and subsistence allowances for unemployed adults
and those at risk. Special training programs for youths and disabled persons are
excluded.
Source: OECD labor market statistics, http : //stats.oecd.org.

Table 2: Parameters

Parameter Value
Number of Sectors numSectors = 20
Number of Workers numWorkers = 100
Number of Firms numFirms = 100

Probability for Random Shock to Sector r = 0.05
Wage wage = 1

Cost for One Unit of Human Capital humCapInvCost = 0.15
Learning λ = 10
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tCreate sectors 

Create firms and allocate them randomly to sectors 

Create workers and allocate them randomly to sectors 

for n periods 

 Job destruction 

 for each sector 

  with probability r sector is hit by shock 

  workers lose jobs 

firms hit by shock are relocated 

 end each sector 

Applying 

for each unemployed worker 

makes upfront human capital investment 

  sends applications to all vacancies for which he qualifies 

 end each unemployed worker 

 Hiring 

 for each vacancy 

  randomly draw vacancy to be filled 

  if workers applied 

firm randomly selects worker who did not yet receive offer 

from application list 

  else  

vacancy is not filled 

 end each vacancy 

 Workers learn 

 if worker unemployed or has found job 

  for each such worker 

for each human capital investment strategy 

    calculate average payoffs 

choose new human capital investment strategy 

   end each human capital investment strategy 

  end each such worker 

 else 

 no individual learning 

Tax adjustment 

Government adjusts tax following balanced budget rule 

end n periods 

Figure 2: Pseudocode
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Figure 3: Histogram of the number
of vacancies
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Figure 4: Histogram of the number
of jobseekers
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Figure 5: Histogram of outflows
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Figure 6: Histogram of unemploy-
ment rates
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Figure 7: Experiment with respect to job displacement effects
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Table 3: Average labor market effects of government-sponsored training

Baseline model: λ = 10
workerPolicy unRate inflowRate outflowRate humCapInvSum appliPerVac tightness appliAve

0 0.107 0.054 0.260 29.5 2.61 0.66 1.63
10 0.101 0.054 0.275 32.5 2.95 0.64 1.78
20 0.094 0.055 0.288 35.9 3.38 0.61 1.93
30 0.091 0.053 0.287 39.8 3.83 0.57 2.01
40 0.087 0.053 0.305 44.4 4.45 0.54 2.22
50 0.082 0.053 0.316 49.8 5.20 0.51 2.45

Sensitivity analysis: λ = 5
workerPolicy unRate inflowRate outflowRate humCapInvSum appliPerVac tightness appliAve

0 0.095 0.054 0.289 35.6 3.33 0.61 1.88
10 0.092 0.054 0.300 38.6 3.70 0.59 2.01
20 0.089 0.055 0.304 41.8 4.10 0.57 2.14
30 0.085 0.053 0.312 44.6 4.47 0.55 2.21
40 0.085 0.055 0.323 49.9 5.17 0.52 2.45
50 0.081 0.055 0.326 53.2 5.68 0.50 2.57

Sensitivity analysis: λ = 20
workerPolicy unRate inflowRate outflowRate humCapInvSum appliPerVac tightness appliAve

0 0.116 0.053 0.229 25.8 2.30 0.66 1.47
10 0.109 0.051 0.240 28.9 2.59 0.64 1.58
20 0.101 0.055 0.260 33.2 3.14 0.61 1.85
30 0.097 0.054 0.273 37.8 3.70 0.57 2.01
40 0.089 0.054 0.289 42.7 4.29 0.53 2.23
50 0.086 0.056 0.303 50.9 5.44 0.50 2.60

Table 4: Outflow rates comparing treatment and non-treatment cases with
workerPolicy = 50

No. workerPolicy = 0 workerPolicy = 50
of observation jobSearchers vacSum outflow rate jobSearchers vacSum outflow rate

1 ... ... ... ... ... ...
... ... ... ... ... ... ...
13 5 3 0 6 4 0.17
14 15 7 0.27 14 7 0.50
15 5 5 0.20 4 4 0
16 5 2 0.20 5 1 0.20
17 14 11 0.36 13 11 0.54
18 16 16 0.50 16 16 0.94
... ... ... ... ... ... ...
N ... ... ... ... ... ...

Note: Parameters were set as in baseline model.
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tions

workerPolicy
10 20 30 40 50

∆ average outflow rates 0.06 0.07 0.08 0.16 0.17
(p-value) 0.015 0.025 0.003 0.000 0.000

N 177 163 149 161 145

Note: N is the number of observations; p-value refers to two-sided test; parameters were
set as in baseline model.

Table 6: Job displacement effect

Means of outflow rates
Before After t-testa on equal means

Treatment group 0.257 0.374 0.000
Non-treatment group 0.260 0.229 0.000
t-testa on equal means 0.308 0.000

a: Reported are p-values; number of observations N = 4493.
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