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Abstract

This paper presents a new approach to the modeling of conditional corre-
lation matrices within the multivariate GARCH framework. The procedure,
which consists in breaking the matrix into the product of a sequence of matri-
ces with desirable characteristics, in effect converts a highly dimensional and
intractable optimization problem into a series of simple and feasible estima-
tions. This in turn allows for richer parameterizations and complex functional
forms for the single components. An empirical application involving the condi-
tional second moments of 69 selected stocks from the NASDAQ100 shows how
the new procedure results in strikingly accurate measures of the conditional
correlations.
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1 Introduction

Modeling the temporal dependence in the second order moments and forecasting

future volatility have key relevance in many financial-econometric issues such as port-

folio management and selection, risk analysis and hedging and the pricing of assets

and derivatives. As a consequence, many multivariate GARCH (MGARCH) models

have been developed in the recent years to model the conditional second moments.

However, all of them must make the trade-off between parameters’ parsimony and

richness in the description of the second order dynamics. In fact, the number of pa-

rameters of a fairly rich multivariate volatility model soon becomes large enough to

render estimation infeasible.

In this paper I introduce a methodology that allows to handle large cross-sectional

dimensions without imposing unnecessary restrictions: the Sequential Conditional

Correlations (SCC), a new and feasible approach to the modeling of correlations in

the MGARCH framework. The key feature of the SCC is the decomposition of the

conditional correlation matrix into the product of a sequence of matrices with desir-

able characteristics. In particular, it is possible to separately model the conditional

correlations and partial correlations following an internally consistent procedure that

automatically delivers a positive definite correlation matrix. This allows for a multi

step estimation procedure, thus converting a highly dimensional and intractable opti-

mization problem into a series of simple and feasible estimations. Furthermore, SCC

allows for a wide range of parameterizations for the conditional variances1 and the

pairwise conditional correlations and partial correlations2.

The fundamental issue for any MGARCH model 3 is how to guarantee positive

definiteness of the conditional variance-covariance matrix. Current solutions, how-

ever, have led to models that, for non trivial cross-sectional dimensions M , cannot

be feasibly estimated. In particular, for MGARCH specifications such as the VEC

of Bollerslev, Engle and Wooldridge (1988) and the VEC-like models of Gallant and

Tauchen (2002) and Kawakatsu (2006), feasible estimation can be an issue, even when

the number of series M is relatively small, as the number of parameters grows at the

rate M4. In order to mitigate this problem, models like the BEKK of Engle and

Kroner (1995) and the Factor-GARCH of Diebold and Nerlove (1989) and Engle,

1These include but are not restricted to GARCH models, Stochastic Volatility, Nonparametric
models and Realized Volatility.

2The econometrician can employ any specification satisfying the constraint that the model-
generated correlations be within the (−1, 1) bounds.

3For a detailed literature review of MGARCH models: Bauwens, Laurent and Rombouts (2006).
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Ng and Rothschild (1990) specify particular structures for the dynamics that reduce

the parameters’ dimensionality to the order M2. For these models, the parameters’

dimensionality can be further reduced to the order M when they are associated with

the variance targeting4 procedure of Engle and Mezrich (1996).

In order to handle “serious” cross-sectional dimensions M , recent works have

moved toward models that can be estimated in two steps. Patton (2006) and Jon-

deau and Rockinger (2006) propose the copula-GARCH models, for which univariate

GARCH processes describe the conditional variances and a copula function joins the

marginal distributions to form a multivariate distribution function. Ledoit, Santa-

Clara and Wolf (2003) propose the Flexible-GARCH in which the variances are mod-

eled by univariate GARCH processes and the covariances by bivariate MGARCH

models. The estimated coefficients are then transformed to achieve positive definite-

ness of the whole variance-covariance matrices. Both approaches, however, do not

solve the dimensionality problem5. The copula-GARCH shifts it to the parameter-

ization of the copula and the associated optimization problem, while the Flexible-

GARCH shifts it to the minimization of the Frobenius norm that will enforce posi-

tivity.

The proposed method builds on the Constant Conditional Correlations (CCC) of

Bollerslev (1990) and the Dynamic Conditional Correlations (DCC) of Engle (2002),

which decompose the conditional variance-covariance matrix by separating the con-

ditional variances from the conditional correlations. SCC extends this approach by

further decomposing the conditional correlation matrix into its constituting compo-

nents while preserving positive definiteness. Thus, SCC eliminates the dimensionality

problem by making it possible to separately model and estimate such constituting el-

ements without violating positivity and without imposing parameters’ constraints.

The paper is organized as follows. Section 2 presents the Sequential Conditional

Correlations methodology. The estimation strategy is described in Section 3 while

its conformity to the standard GMM framework is derived in Section 4. Section 5

introduces the Autoregressive Conditional Correlations ACC(1,1) model used within

the SCC steps, presents Monte Carlo results and shows, through an empirical ap-

plication involving the conditional second moments of 69 selected stocks from the

4It consists in setting a model’s unconditional variance-covariance matrix equal to its sample
counterpart, thus eliminating M(M + 1)/2 parameters from the optimization procedure.

5Specifications that eliminate the dimensionality problem altogether do exist in the literature,
such as the scalar versions of the BEKK and DCC and the Orthogonal-GARCH of Alexander and
Chibumba (1997), but they achieve such result under very strong assumptions about the dynamics
of the elements of the conditional variance-covariance matrix.
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NASDAQ100, how the new procedure results in strikingly accurate measures of the

conditional correlations. Section 6 concludes. Appendix A contains the proofs related

to SCC’s correlation matrix decomposition and Appendix B lays out the stationarity

conditions for the ACC(1,1) model.

2 Sequential Conditional Correlations

In general, an M -dimensional vector stochastic process yt, can be described in

terms of its location and scale:

yt = µt(λ) +H
1/2
t (λ) · εt

where µt(λ) is a function describing the evolution of the mean vector conditional on

the information set It−1, H
1/2
t (λ) is a function such that Ht(λ) is the conditional

variance-covariance matrix of the process yt, λ is a vector of parameters, and εt is

a vector of innovations satisfying the following moment conditions: E[εt] = 0 and

V[εt] = IM . For simplicity, throughout the paper, µt is assumed to be zero 6.

The Sequential Conditional Correlations fully exploit the approach of the Condi-

tional Correlations model, introduced by Bollerslev (1990), of separating the various

components of the conditional variance-covariance matrix. While the CCC model of

Bollerslev (1990) and the DCC proposed by Engle (2002) separate the variances from

the correlations, allowing for a two-step estimation procedure, SCC further separates

the correlations and partial correlations, thus allowing for a true multi-step estima-

tion procedure. In this setup, the conditional variance-covariance matrix is rewritten

in the following form:

Ht = DtK1,2,tK1,3,t . . . KM −1,M,tK
′
M −1,M,t . . . K

′
1,3,tK

′
1,2,tDt (1)

or in a more compact manner as:

Ht = Dt

(M −1∏

i=1

M∏

j=i+1

Ki,j,t

)(M −1∏

i=1

M∏

j=i+1

Ki,j,t

)′
Dt (2)

where Dt is the (M ×M) diagonal matrix of time-varying standard deviations. Notice

the similarities, of the specification in (2) with the DCC, for which Ht = DtRtDt,

and the CCC, where Rt is constant. In order to guarantee positive definiteness of

6Alternatively, yt is defined to be the residual from some filtration of the data. In general, the
moment conditions corresponding to such filtration need to be included among those of SCC for the
correct determination of its parameters’ standard errors.
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the conditional correlations matrix Rt, the DCC needs to parameterize and estimate

its elements jointly. On the other hand, SCC further decomposes the conditional

correlations matrix down to its constituting elements, the K-matrices, thus achieving

positivity and symmetry by construction. The matrices Ki,j,t are lower triangular

and their generic element [row, col] is given by:

Ki,j,t[row, col] =





ρi,j,t if row = j and col = i

(1 − ρ2
i,j,t)

1/2 if row = j and col = j

I[row, col] otherwise

where I is the identity matrix. The element ρi,j,t is the time t correlation (i = 1)

or partial correlation (i > 1) between yi,t and yj,t. Appendix A, contains the proof

of how any correlation matrix can be expressed as the product of a sequence of K-

matrices. Further, it is shown that the product of any sequence of K-matrices with

|ρ| < 1 is a correlation matrix.

3 Estimation

The complex estimation of an MGARCH is here translated into a sequence of

simple estimations. This is done by working from the outside toward the inside of the

specification in equation (1): estimate the elements of Dt and use it to standardize

the data, estimate the elements of K1,2,t and use it to standardize the data, estimate

K1,3,t and standardize, etc.

To properly unravel the K−matrix decomposition, let yt be an M dimensional

vector of observations at time t, and Ht be its variance-covariance matrix. The

first step is to model the conditional variances of the M series ∀t and use them to

standardize the data:

ε̂i,t =
yi,t

ĥ
1/2
i,t

∀i = 1, ...,M and ∀t = 1, ..., T

This is equivalent to filling the Dt matrix with {ĥ1/2
i,t }M

i=1 and pre-multiply yt by D̂−1
t .

The partially-standardized vector ε̂t is homoscedastic with unit variance but will still

exhibit time varying correlations.

The second step involves the sequential estimation of the conditional correlations

and partial correlations. Modeling the correlation of the first series with the remaining

M−1 produces the following correlations estimates {ρ̂1,2,t}T
t=1, {ρ̂1,3,t}T

t=1, ..., {ρ̂1,M,t}T
t=1

5
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which will be used to partial-out the effect of ε̂1,t from all the other series or, in other

words, to further standardize the data:

ε̃i,t =
ε̂i,t − ρ̂1,i,tε̂1,t

(1 − ρ̂2
1,i,t,)

1/2
∀i > 1 (3)

This is equivalent to filling the K1,i,t matrices with ρ̂1,i,t and carry out the following

matrix multiplications: K̂−1
1,M,t · K̂−1

1,M −1,t · ... · K̂−1
1,2,t · ε̂t. Since the transformed series

2, 3, ...,M are orthogonal to the first series, the claim of further standardization is

justified.

The following steps consist in the estimation of the correlations of the second

series with the remaining M − 2 and the standardization of the latter, then the third

with the remaining M − 3 and standardization, and so on until the correlation of

series M − 1 and M is estimated.

The now fully-standardized series will exhibit a variance-covariance equal to the

identity matrix ∀t. Furthermore, the estimated pairwise correlations and partial

correlations, substituted in the corresponding K−matrices, will yield the conditional

correlation matrix Rt and together withDt the conditional variance-covariance matrix

Ht.

Of the possible decompositions of the positive definite matrix Ht, the K−matrix

of SCC is extremely convenient as it allows for the separate modeling of the variances

and all the correlations components. The construction of Rt one correlation at the

time reduces the highly dimensional optimization problem of MGARCH models of

serious dimensions into a sequence of simple optimizations. In fact, every step of

SCC requires the estimation of the time varying correlation of only two series. Such

simplicity allows for more richly parameterized dynamics and functional forms for the

volatilities and correlations.

Since SCC allows for the separate modeling of the variances and correlations of

the conditional variance-covariance matrix Ht, standard estimation techniques can

be employed for the first and will not be discussed here. As for the latter, they

can be estimated by GMM based on the score of a Gaussian likelihood function

or, equivalently, by Gaussian Quasi-Maximum-Likelihood (QML). Since at any step

of the SCC’s K-matrix decomposition the series εi,t and εj,t, whose correlation is

being modeled, are homoscedastic with unit variance, the concentrated Gaussian log-

6
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likelihood Lc is:

Lc = −
T∑

t=1

[
ln(1 − ρ2

t ) +
ε2i,t − 2ρtεi,tεj,t + ε2j,t

1 − ρ2
t

]

= −
T∑

t=1

[
ln(1 − ρ2

t ) +
(εj,t − ρtεi,t)

2

1 − ρ2
t

+ ε2i,t

]

= −
T∑

t=1

[
ln(1 − ρ2

t ) +
(εj,t − ρtεi,t)

2

1 − ρ2
t

]
(4)

The elimination of the sum of the ε2i,t terms from the concentrated log-likelihood is

justified by the fact that these terms do not depend on ρt. Notice how equation (4)

reflects the standardization that takes place in theK-matrix decomposition (3), where

the difference between εj,t and its conditional mean ρtεi,t is divided by the standard

deviation (1 − ρ2
t )

1/2.

Since within SCC, the estimation of any bivariate model for the pairwise correla-

tions occurs M(M − 1)/2 times, it is convenient to employ an optimization scheme

that does not fail to converge. In this sense, MCMC and Simulated Annealing are

very robust as they do not rely on a particular shape of the objective function (concave

and with non-zero second derivatives) for convergence.

4 Asymptotic Properties

Modeling the M conditional variances as univariate processes and estimating their

parameters by GMM based on the score of a Gaussian likelihood leads to the following

moment conditions:

m(yi,T ; λi) =
1

T

∑

t

m(yi,t; λi)

= − 1

T

∑

t

∂

∂λi

(
lnhi,t +

y2
i,t

hi,t

)

where λi for i = 1, ...,M is the vector of coefficients of the volatility model for the

time series i. Similarly, the moment conditions associated with the models for the

conditional correlations are:

m(εi,T , εj,T ; λi,j) =
1

T

∑

t

m(εi,t, εj,t; λi,j)

= − 1

T

∑

t

∂

∂λi,j

[
ln(1 − ρ2

i,j,t) +
(εj,t − ρi,j,tεi,t)

2

1 − ρ2
i,j,t

]
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where λi,j, for i = 1, ...,M − 1 and j = i + 1, ...,M , is the vector of parameters

modeling the correlation or partial correlation between the series εi,t and εj,t. The

latter are functions of the vector of observables yT , the conditional variances hT

and the conditional correlations and partial correlations ρk,l,T with k < i and l =

k + 1, ..., j. Therefore, in terms of the model’s parameters:

εi,T = εi,T

(
yT ;λ1, ..., λM ;λ1,2, ..., λi−1,i

)

εj,T = εj,T

(
yT ;λ1, ..., λM ;λ1,2, ..., λi−1,j

)

which substituted into the moment conditions for ρi,j,T give:

m(εi,T , εj,T ; λi,j) = m(yT ;λ1, ..., λM ;λ1,2, ..., λi−1,j; λi,j)

Collecting all the moment conditions, necessary for the estimation of the parameters

of the variance and correlation processes in SCC, yields a block-triangular matrix:

m(yT ; λ) =





m(yT ; λ1)
...

m(yT ; λM )

m(yT ;λ1, ..., λM ; λ1,2)
...

m(yT ;λ1, ..., λM ; λ1,M )

m(yT ;λ1, ..., λM ;λ1,2, ..., λ1,M ; λ2,3)
...

m(yT ;λ1, ..., λM ;λ1,2, ..., λ1,M ; λ2,M )
...
...

m(yT ;λ1, ..., λM ;λ1,2, ..., λM −2,M ; λM−1,M )

The estimates are obtained by setting all the equations to zero and simultaneously

solving for λ: m(yT ; λ̂) = 0. However, given the particular structure of moment con-

ditions this is the same as solving for one set of moments at the time and substituting

the so obtained estimates in the following sets as they appear from the above order-

ing. The equality of the step-by-step solution to the simultaneous solution allows the

SCC estimation to fall within the GMM framework. Hence:

√
T (λ̂ − λ0)

d−→︸︷︷︸N
(
0, G−1J(G−1)′

)
(5)
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where:

G = E
[ ∂
∂λ
m(yt; λ0)

]
and J = V

[
m(yt; λ0)

]

which can be estimated by their sample counterparts:

Ĝ =
1

T

∑

t

∂

∂λ
m(yt; λ̂) and Ĵ =

1

T

∑

t

m(yt; λ̂) · m(yt; λ̂)′ (6)

The assumptions required for consistency and asymptotic normality of the estima-

tor are very difficult to check for most MGARCH models7, as well as some univariate

GARCH specifications, and SCC is no exception. In Section 5.2 a Monte Carlo ex-

periment has been conducted to asses the goodness of the estimates’ correspondence

to standard asymptotic theory.

If targeting is employed the fact that the population mean of the process has been

set equal to its sample counterpart needs to be included among the moment condi-

tions. Specifically, let λ•
i,j be the element of the vector λi,j that the econometrician

might choose to target and λ◦
i,j be the vector containing the remaining parameters.

Then, the moment conditions associated with a bivariate model for the conditional

correlations will depend on whether λ•
i,j is treated as a parameter:

m(εi,T , εj,T , λi,j) = − 1

T

∑

t

∂

∂λi,j

[
ln(1 − ρ2

i,j,t) +
(εj,t − ρi,j,tεi,j)

2

1 − ρ2
i,j,t

]

where:

λ′
i,j =

[
λ•

i,j,
(
λ◦

i,j

)′
]

or is being targeted to the sample correlation ρij:

m(εi,T , εj,T , λ
•
i,j, λ

◦
i,j) =





−1
T

∑
t

∂
∂λ◦

i,j

[
ln(1 − ρ2

i,j,t) +
(εj,t−ρi,j,tεi,j)

2

1−ρ2
i,j,t

]

1
T

∑
t ρi,j,t

(
λ•

i,j, λ
◦
i,j

)
− ρi,j

Despite the theoretical convenience of being able to refer to standard GMM asymp-

totic results, in practice the computation of the parameters’ variance-covariance ma-

trix within the SCC methodology parallels that of other MGARCH models proposed

in the literature where no computational short-cuts are available. Furthermore, since

the dimensions of the parameters’ variance-covariance matrix are at least8 of order

7For example, Comte and Lieberman (2003) and Hafner and Preminger (2009) verify the con-
ditions for consistency and asymptotic normality of the QMLE, but Chen and Fan (2006) and
Kawakatsu (2006) do not.

8A lower bound arises from the minimal presence of at least one parameter per correlation.
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M2, the matrix Ĵ , computed as the average of T outer-products of the moment condi-

tions, will not be full-rank for large M . It is important to realize that this is a feature

inherent to all MGARCH models, whether it is evident or hidden in a multi-step

procedure, targeting, orthogonalization, etc.9

5 Application

5.1 Autoregressive Conditional Correlations

The proposed bivariate model, to be used in the SCC steps, is a model for the

correlations rather than for the corresponding variance-covariance matrix. Modeling

the correlations ρt directly will require the imposition of certain constraints on the

parameters that govern their dynamics in order to have correlations that are bounded

between plus and minus one. A more convenient approach is to model their Fisher

transformation χt:

χt =
1

2
ln

(
1 + ρt

1 − ρt

)

which maps the interval (−1, 1) into (−∞,+∞), thus allowing the model’s parameters

to exclusively reflect the dynamic behavior of the process. Letting φt be some measure

of the realized correlation at time t, its Fisher transformation ψt is given by:

ψt =
1

2
ln

(
1 + φt

1 − φt

)

The general ACC(p,q) model will then take the following form:

χt = ω +

p∑

j=1

δjχt−j +

q∑

i=1

(θi + βidt−i)ψt−i

where dt−i are dummy variables that allow for an asymmetric response to the realiza-

tions through the coefficients βi. The conditional correlation ρt is then given by the

inverse-Fisher transformation of χt:

ρt =
exp(2χt) − 1

exp(2χt) + 1

The realized correlations φt are not observed and therefore require to be extracted

from the data through some method. In this paper they are computed using an

9For example, for M = 69 the dimensions of the parameters’ variance covariance matrix are:
2, 691 for the CCC, 2, 694 for the scalar DCC with asymmetry parameter, 12, 065 for the full SCC and
would be 11, 666, 865 for the full VEC(1,1). Thus, for a sample T = 2517 even a constant correlation
model does not yield a full-rank and invertible variance-covariance matrix of the parameters.

10
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exponential smoothing, with parameter α, of past realizations. Letting Qt−2 be the

realized bi-dimensional variance-covariance matrix at time t − 2, the corresponding

realized measure at time t − 1 will be given by:

Qt−1 = αQt−2 + (1 − α)ut−1u
′
t−1

where ut−1 is the vector containing the standardized realizations of the two series

whose time-varying correlation is being modeled. From Qt−1 it is straightforward to

compute the realized correlation φt−1

φt−1 =
Qt−1[1, 2]√

Qt−1[1, 1] · Qt−1[2, 2]

The optimal value of the smoothing parameter will be determined by the data by

simultaneously estimating α with the parameters δj, θi, βi of the ACC(p,q). Alter-

natively, α could be chosen a priori by the econometrician or be the result of a

preliminary and separate estimation. Other measures of the realized correlations,

besides the exponential smoothing, may be employed.

In this empirical application, the conditional correlations are modeled by an

ACC(1,1) with asymmetry parameter:

χt = ω + δχt−1 + (θ + βdt−1)ψt−1

where:

dt−1 =





1 if u1,t−1 < 0 and u2,t−1 < 0

0 otherwise

Furthermore, targeting of the parameter ω will be employed so that the long-run

predictions of the process match the sample unconditional value:

χt = (χ − δχ − θψ − βdψ) + δχt−1 + (θ + βdt−1)ψt−1

with ψ = (1/T )
∑T

t=1 ψt, dψ = (1/T )
∑T

t=1 dtψt, χ = (1/2) ln[(1 + ρ)/(1 − ρ)], ρ =

(1/T )
∑T

t=1 u1,tu2,t. In Appendix B, conditions on the model’s parameters are derived

for an ACC(1,1) to be mean and covariance stationary under the set of assumptions

A1-A4. Mean stationarity requires that:

|δ + θ + βE[d]| < 1

and variance stationarity:

(δ + θ + βE[d])2 + β2E[d](1 − E[d]) < 1

11
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Since E[d] is not known, stationarity will be imposed by replacing the population

value with its sample counterpart d = (1/T )
∑T

t=1 dt. Appendix B further shows how

forecasts, conditional on a given information set, can be computed iteratively using

the following recursive formula:

E[χt+1+j |It−1] = (1 − δ − θ − βd)χ+ (δ + θ + βd)E[χt+j |It−1] ∀j ≥ 0

5.2 Monte Carlo Evidence

Theoretical results for the population properties of most MGARCH models pro-

posed in the literature are quite hard to derive and SCC is no exception. A Monte

Carlo experiment has been conducted to evaluate the goodness of standard asymp-

totic approximations. Artificial data is generated with time dimension T = 3000,

cross-sectional dimension M = 3 and Monte Carlo replications S = 10000. Since

the purpose of this simulation is to asses the behavior of the SCC methodology and

in particular the multi-step procedure arising from the proposed correlation matrix

decomposition, simpler models for the variances and correlations have been selected

as data generating processes. In particular, the conditional variances ht have been

generated by a GARCH(1,1):

ht = ω + βht−1 + αy2
t−1

and the conditional correlations ρt by a basic ACC(1,1) with β = 0 and α = δ.

The simulation results are reported in Table 2 where it can be seen that the

Monte Carlo averages of the parameters’ estimates λS are very close to the true

values λ0. Furthermore, the theoretical standard errors σ, computed according to

equations (5) and (6), are also in agreement with the standard errors of the Monte

Carlo experiment σS. Coverage of the Gaussian distribution is overall reasonable

when testing at 95% while it shows an average downward bias of 2% when testing

at 90% and an average upward bias of 1% when testing at 99%. These discrepancies

between the finite sample distribution and the asymptotic approximation are in line

with those of similar models such as the univariate GARCH and are the result, among

others, of stationarity constraints affecting the estimates only from one side.

5.3 Evaluation

A natural way to evaluate MGARCH specifications would be to compare the

model’s predictions with the realizations. Unfortunately the realizations of the con-

ditional variance-covariance matrices are not observable and the outer products yty
′
t =

12
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H
1/2
t εtε

′
t(H

1/2
t )′, while unbiased estimators of the quantities of interest, are very noisy

measurements because of the idiosyncratic term εtε
′
t. Andersen and Bollerslev (1998)

propose the use of Integrated Volatility as a better measure of the realized conditional

variance-covariance matrix. In a setting where high frequency data is not available,

a less precise but still useful proxy of the Integrated Volatility can be employed as

in Ledoit, Santa-Clara, and Wolf (2003). With respect to correlations, the idea is to

construct a measure Υ̂ of the realized correlation from the realized variance-covariance

matrix Q̂ by taking a rolling-window average over K periods of the outer products of

the standardized returns ε̂i,t = yi,t/
√
hi,t:

Q̂
(K)
t =

1

K

K∑

k=1

ε̂t−1+k · ε̂′
t−1+k ∀t = 1, ..., T − K + 1

Υ̂
(K)
t = Q̃

(K)
t · Q̂(K)

t · Q̃(K)
t

where Q̃
(K)
t is a diagonal matrix containing the inverse of the square root of the

elements on the main diagonal of Q̂
(K)
t . The model’s prediction R̂ for the average

correlations over the same period and window will be given by:

R̂
(K)
t =

1

K

K∑

k=1

(
R̂t−1+k |It−1

)
∀t = 1, ..., T − K + 1

where the term in parenthesis is the model’s predicted correlation matrix conditional

on the information set It−1. The distance between predictions and realizations can

be measured by mean square error MSE and mean absolute deviation MAD:

MSE =
1

T − K + 1

T −K+1∑

t=1

[
M∑

r=1

M∑

c=r+1

(
Υ̂

(K)
r,c,t − R̂

(K)
r,c,t

)2
]

MAD =
1

T − K + 1

T −K+1∑

t=1

[
M∑

r=1

M∑

c=r+1

∣∣∣∣Υ̂
(K)
r,c,t − R̂

(K)
r,c,t

∣∣∣∣

]

While in the MGARCH literature the MAD tends to be preferred to the MSE on

the grounds of robustness, Patton (2008) showed that using the MAD can lead to the

conclusion that the perfect forecast is inferior to a biased one. In this paper, in order

to evaluate conditional correlations’ predictions, both the MSE and the MAD will be

computed even though only the first is to be considered a reliable indicator.

For K → T the models’ predictions converge to the long-run mean (R̂
(K)
t → R)

and the realized measures converge to the unconditional mean (Υ̂
(K)
t → R). This

implies that the MSE and MAD are decreasing in K, giving the misleading impression

13
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that the models’ performances increase with K. Hence, the measure of the goodness

of a model, relative to a constant, is downward biased and the size of the bias increases

with K. Since the variances of the realized measures Υ̂
(K)
t , and therefore those of the

MSE and MAD, decrease in K, it follows that the choice of K implies a trade-off

between the variance and bias of the MSE and MAD.

Predicted variances-covariances and correlations can either be out of sample or in

sample. In the second case, the whole sample is used for estimation and to generate

the K-steps ahead predictions. In other words, Ĥ
(K)
t and R̂

(K)
t will be computed

starting from the fitted values Ĥt−1 and R̂t−1 followed by the model’s predictions for

the nextK periods. For every t both Ĥ
(K)
t and R̂

(K)
t do not depend on the information

available after t− 1 except for that already contained in the parameters’ estimates. It

must be emphasized how the in sample predictions, like the out of sample predictions

or forecasts, cannot be improved simply by increasing the number of parameters as

it happens for the fit. In order to understand the reason behind this, it is enough

to realize that the predictions Ĥ
(K)
t and R̂

(K)
t depend on i) the initial fitted values

Ĥt−1 and R̂t−1 and ii) the rate of convergence to the unconditional values H and R.

Therefore, an over-parameterized model will produce larger MSE and MAD due to

the fact that its predictions are generated by more noisy rates of convergence and

more noisy initial conditions.

The K-matrix decomposition is unique for a given correlation matrix R. However,

a permutation of the order of the series which is reflected in a permutation of the

elements of R does lead to a different sequence of K1,2, K1,3, ..., KM −1,M matrices.

If the true correlations and conditional correlations were known, such permutation

would not affect the results. On the other hand, when correlations are estimated the

ordering of the series might have some impact on the results. A closer look at the K-

matrix decomposition, however, does suggest an appropriate ordering method. The

first M − 1 correlations are estimated on the data standardized by the conditional

variances, while the following M − 2 correlations are estimated on the same data

appropriately transformed to remove the effect of ε1. The latter transformation will

inevitably introduce some noise as it is a function of the results of the first M − 1

estimations. From the K-matrix decomposition, correlations on the second row of R̂t

have the following expression: (1 − ρ̂2
1,i,t)

1/2 · ρ̂2,i,t. If ρ̂1,i is big in modulus, (1 − ρ̂2
1,i)

1/2

is small and so is the effect of ρ̂2,i on the product. Since similar structures do occur for

all the rows of Rt and since the noise in the estimates is expected to increase as SCC

moves from the top to the bottom rows of Rt, it appears sensible to counterbalance

14
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such noise by ordering the series in the data set in decreasing order of total correlation:

M∑

j=1

ρ2
1,j >

M∑

j=1

ρ2
2,j > ... >

M∑

j=1

ρ2
M,j

SCC based on this ordering will be denoted by SCC(↓).

5.4 Data

The data employed in this paper consists of M = 69 series from the NASDAQ100.

The sample is 10 years of daily observations (from 9/1/1994 to 8/31/2004) for a total

of 2517 returns. 31 series have not been included in this study because there were

not enough observations available: from Apollo Group (2454 obs.) to Kmart Holding

(340 obs.). A list of symbols of the included stocks can be found in Table 1.

Returns have been calculated as log-differences of closing prices. Unconditional

means were subtracted from each series of returns before proceeding to the estimation

of the conditional second moments. SCC’s conditional variances have been modeled

using Zakoian’s (1994) specification of univariate threshold GARCH(1,1) which not

only provides a good fit to the data but also goes along well with automated pro-

cedures as it is relatively easy to implement and converge. Conditional Correlations

have been modeled by Autoregressive Conditional Correlations ACC(1,1) processes

with asymmetry.

5.5 Results

To better evaluate its performance, SCC will be compared to the CCC and the

scalar asymmetric DCC. The reason why more sophisticated MGARCH models are

not introduced in the comparison is because they cannot be feasibly estimated for

such a large set of data. For example, the DCC where correlations are modeled by

a diagonal BEKK requires the simultaneous optimization of the objective function

(Quasi-Gaussian-Likelihood) with respect to 3M = 207 parameters.

Table 3 reports the differences between the models’ predicted conditional correla-

tions and their realizations. Such differences are measured by the MSE and the MAD.

While DCC reduces the MSE with respect to CCC of no more than 9.00%, SCC(↓)

improves it by more than 30%. It has been discussed at length in Section 5.3 how

the measures of the models’ performances are contaminated by noisy measurements

of the realized correlations, over short horizons, and how the models’ predictions con-

verge to the long-run means, over long horizons. This is confirmed by the apparent
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performances of both DCC and SCC with respect to CCC: increasing with the length

of the horizon up to a certain point and decreasing after that.

The striking performance of SCC, which on average can explain 30% of the vari-

ation of the 2346 time-varying correlations cannot be simply attributed to the fact

that with its 12, 075 parameters it is over-parameterized and thus over-fitting. If

this was the case the estimated rates of convergence to the unconditional values and

the initial values of the predictions would be contaminated by additional noise, thus

compromising the measure of the average correlations implied by the model over the

given horizon, as discussed in Section 5.3. In order to better asses the ability of SCC

to track the correlations, it is worth noticing that the 30% reduction in MSE is com-

parable to the performances of univariate GARCH models in tracking variances. In

particular, if the same in sample criteria was used to evaluate a univariate GARCH,

results in terms of MSE reduction would be around 40%. This not only implies

that correlations are time varying but also that their movements can be accuratelly

described by the SCC and ACC(1,1) combination.

Table 4 shows the results for some permutations of the series’ order in SCC.

While for SCC(A) they are ordered alphabetically, in SCC(Z) such order is reversed.

In SCC(1) through SCC(8) the series have been randomly ordered. Both the MSE

and the MAD are affected by the ordering even though in every case their reduction

with respect to CCC and DCC is substantial. The Mean Squared Error improvement

ranges from 29% to 33% while for the Mean Absolute Deviation it goes from 14% to

18%.

Since it is common practice to evaluate multivariate volatility models in terms of

likelihood-based statistics10 these have been reported in Table 5. The p-values of the

Likelihood-Ratio-Test (LRT) show clear rejection of CCC when compared to both

DCC and SCC. In terms of the Schwartz Information Criteria (SIC), the preferred

model is DCC while SCC is outperformed by CCC. This is the results of the high

likelihood value of SCC being offset by a heavy penalty for the large number of model’s

parameters. However, if SIC is used for model selection it makes sense that it should

also be used to determine the best SCC specification. In particular, which conditional

correlations and partial correlations should be modeled as time varying and which

should be set constant. Therefore, the SCC(↓) has been re-estimated and at each step

10Corresponding results should be taken cum grano salis since i) QML is, at best, based on
approximations of the distribution of financial data and ii) estimates of models that are carried out
in two or more steps, such as CCC, DCC and SCC, do not actually maximize the Quasi-Likelihood
function.
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the ACC(1,1) has been compared to a constant correlation model11 in terms of the

SIC, yielding the SCC SIC specification. This is a very parsimonious model that can

still explain very well the variations in the time-varying correlations, as can be seen

in Table 4. Furthermore, Table 5 shows that in terms of the information criterion it

is the preferred model. The LRT, on the other hand, rejects the SCC SIC in favor of

the full SCC. This is due to the heavy penalty placed by the SIC on the parameters’

dimensionality, corresponding to a LRT conducted at a significance level of less than

10−14.

6 Conclusions

This paper develops a new approach for the modeling of conditional correlation

matrices. The structure of the SCC allows for a sequential estimation of the various

components of such matrices. This makes it possible to eliminate the traditional in-

tractability of MGARCH models of non-trivial dimensions. The multi step procedure

translates the highly dimensional optimization problem associated with MGARCH

models into a series of simple univariate and bivariate estimations. Because of the

particular decomposition of the variance-covariance matrix in the SCC, the latter is

guaranteed to be symmetric and positive definite by construction, without imposing

any parametric restriction.

Another appealing feature of the SCC is its flexibility in the modeling of the var-

ious correlations: not only there are no constraints on the choice of the model, but

different bivariate models can be used at different steps. This paper has introduced

the bivariate ACC which allows for a data-dependent choice of the best proxy for the

lagged realizations, for an immediate interpretation of the model’s parameters and

guarantees that the correlations are bounded between plus and minus one without

imposing any parametric restriction. The empirical results on the selected 69 stocks

from the NASDAQ100 show how SCC and ACC(1,1) can significantly improve the

tracking of the conditional correlations compared to CCC and DCC. While the im-

provement with respect to CCC is only 9% for DCC, it increases dramatically to more

than 30% for SCC in terms of MSE.

The Sequential Conditional Correlations methodology, developed in this paper,

could be extended to incorporate with ease exogenous explanatory variables. The

11A finer approach would require that at each step the constant correlation, the full ACC(1,1)
and the ACC(1,1) with various combinations of parameters’ restrictions be evaluated.
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inclusion of exogenous regressors is a relevant feature as it allows the researcher

to uncover potentially important economic relationships that until now could not be

effectively investigated. Another obvious extension of the proposed methodology is to

the multivariate estimation of realized quantities in the high frequency environment.

Estimators of the constituting elements of the correlation matrix, that are consistent

in the presence of microstructure noise and asynchronous trading, could be coupled

with the SCC methodology which, starting from these building blocks, would deliver

a positive definite matrix. These extensions and their applications are left as an area

for future research.

A K-Matrix Decomposition

Definition A.1 A correlation matrix R is a symmetric positive definite matrix giving

the correlations between all pairs of data sets.

Necessary but not sufficient conditions for a matrix to be a correlation matrix are

that all the elements on the main diagonal must be equal to 1 (a random variable

co-varies perfectly with itself) and that all the off-diagonal elements must be less than

1 in modulus12.

Definition A.2 K−1
p,q , with p < q, is a lower triangular matrix of the form:

K−1
p,q[i, j] =





−ρ(1 − ρ2)−1/2 if i = q and j = p

(1 − ρ2)−1/2 if i = q and j = q

I[i, j] otherwise

where ρ is the (p, q) element of the correlation matrix that is pre-multiplied by K−1
p,q .

It follows from the necessary conditions of a correlation matrix that |ρ| < 1. In other

words, K−1
p,q is an operator that “generates” a matrix whose elements are function of

the (p, q) element of the correlation matrix it is being applied to.

Theorem A.1 For any (M×M) correlation matrix R, there exists a unique sequence

of matrices K−1
1,2 , K

−1
1,3 , ..., K

−1
M −1,M such that:

I = K−1
M −1,M · ... · K−1

1,3 · K−1
1,2 · R · (K−1

1,2)′ · (K−1
1,3)′ · ... · (K−1

M −1,M)′

Proof of Theorem A.1:

12This excludes the case of perfectly correlated variables.
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Definition A.3 Let Rp,q, with p < q, be an (M × M) correlation matrix of the

following form:

Rp,q =




0

I(p−1) 0 0
...

0 0 . . . 1 0 . . . ρ # #

0
...

0 ρ F(M −p)

#

#




where ρ is the [p, q] element, I is the identity matrix, F is a non-trivial correlation

matrix, and # indicates (generally) non-zero elements.

Lemma A.1 Sp,q = K−1
p,qRp,q(K

−1
p,q )′ is a correlation matrix such that:

Sp,q[i, j] = 0 if i ≤ p, j ≤ q and i 6= j

Proof:

Sp,q =




0 . . . s1 . . . 0

I(p−1) 0 . . . s2 . . . 0
...

...
...

0 0 . . . 1 0 . . . sp # #
...

... 0 F1,1 . . . sp+1 . . . F1,M −p

...
...

...
...

s1 s2 . . . sp sp+1 . . . sq . . . sM

...
... #

...
...

...

0 0 . . . # F1,M −p . . . sM . . . FM −p,M −p




where:

si =





− ρ
(1−ρ2)1/2Rpi + 1

(1−ρ2)1/2Rqi if i 6= q

ρ2

(1−ρ2)
Rpp − 2ρ

(1−ρ2)
Rpq + 1

(1−ρ2)
Rqq if i = q
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allowing to easily compute the following values of interest:

i < p ⇒ Rpi = 0, Rqi = 0 ⇒ si = 0

i = p ⇒ Rpp = 1, Rqp = ρ ⇒ sp = 0

i = q ⇒ Rpp = 1, Rqq = 1, Rpq = ρ ⇒ sq = 1

which substituted back in Sp,q yield:

Sp,q =




0 . . . 0 . . . 0

I(p−1) 0 . . . 0 . . . 0
...

...
...

0 0 . . . 1 0 . . . 0 # #
...

... 0 F1,1 . . . sp+1 . . . F1,M −p

...
...

...
...

0 0 . . . 0 sp+1 . . . 1 . . . sM

...
... #

...
...

...

0 0 . . . # F1,M −p . . . sM . . . FM −p,M −p




The F −block of Sp,q has every element on the main diagonal equal to 1. Furthermore,

since Sp,q is a quadratic form of a positive definite matrix, it is itself positive definite

and therefore also the F − block must be positive definite. Hence, it is a correlation

matrix:

Sp,q =




0 . . . 0 . . . 0

I(p−1) 0 . . . 0 . . . 0
...

...
...

0 0 . . . 1 0 . . . 0 # #
...

... 0
...

0 0 . . . 0 F̂(M −p)

...
... #

0 0 . . . #




Definition A.4 Rp,q+1 = Sp,q if q + 1 ≤ M or Rp+1,M = Sp,q if q + 1 > M .

Lemma A.2 Given a correlation matrix Rp,q, successive pre- and post-multiplication

by the matrices K−1
p,q , K

−1
p,q+1, ..., K

−1
M −1,M will yield the identity matrix.
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Proof:

The application of the matrix K−1
r,s and its transpose has the property of changing

the correlation in the r-row and s-column (and therefore the s-row and r-column) into

a zero without affecting the correlations that have been set to zero by the matrices

K−1
i,j with i ≤ r or j ≥ s:

I = K−1
M −1,M · K−1

M −2,M · . . . · K−1
p,q · Rp,q · (K−1

p,q )′ · . . . (K−1
M −2,M)′ · (K−1

M −1,M)′

To complete the proof of Theorem A.1 the results so obtained for the Rp,q

type correlation matrix need to be extended to any correlation matrix R. This is

immediate, once it is recognized that R1,2 is indeed any correlation matrix R.

Definition A.5 Kp,q = (K−1
p,q )−1 is a lower triangular matrix of the form:

Kp,q[i, j] =





ρ if i = q and j = p

(1 − ρ2)1/2 if i = q and j = q

I[i, j] otherwise

where ρ is the (p, q) element of the K−1
p,q matrix and therefore |ρ| < 1.

In other words, Kp,q is the inverse of the matrix given by the application of the operator

K−1
p,q to a correlation matrix.

Corollary A.1 to Theorem A.1: any (M × M) correlation matrix R can be ex-

pressed as the product of a sequence of matrices K1,2, K1,3, ..., KM −1,M :

R = K1,2 · K1,3 · ... · KM −1,M · K ′
M −1,M · ... · K ′

1,3 · K ′
1,2

Corollary A.1 states that every correlation matrix can be expressed as the product

of a sequence of K matrices. What it does not say is whether the product of any

sequence of K matrices is a correlation matrix.

Theorem A.2 The product of any sequence of K matrices, taken in the appropriate

order, is a correlation matrix.

Proof of Theorem A.2:

Let Rp,q be the correlation matrix of Definition A.3 and without loss of generality

let q − 1 > p.
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Lemma A.3 Rp,q−1 = Kp,q−1Rp,qK
′
p,q−1 is a correlation matrix.

Proof:

Rp,q−1 =




0 . . . x1 . . . 0

I(p−1) 0 . . . x2 . . . 0
...

...
...

0 0 . . . 1 0 . . . xp # #
...

... 0 F1,1 . . . xp+1 . . . F1,M −p

...
...

...
...

x1 x2 . . . xp xp+1 . . . xq−1 . . . xM

...
... #

...
...

...

0 0 . . . # F1,M −p . . . xM . . . FM −p,M −p




where:

xi =





ρRpi + (1 − ρ2)1/2R(q−1)i if i 6= q − 1

ρ2Rpp + 2ρ(1 − ρ2)1/2R(q−1)p + (1 − ρ2)R(q−1)(q−1) if i = q − 1

allowing to easily compute the following values of interest:

i < p ⇒ Rpi = 0, R(q−1)i = 0 ⇒ xi = 0

i = p ⇒ Rpp = 1, R(q−1)p = 0 ⇒ xp = ρ

i = q − 1 ⇒ Rpp = 1, R(q−1)p = 0, R(q−1)(q−1) = 1 ⇒ xq−1 = 1

Therefore:

Rp,q−1 =




0 . . . 0 . . . 0

I(p−1) 0 . . . 0 . . . 0
...

...
...

0 0 . . . 1 0 . . . ρ # #
...

... 0 F1,1 . . . xp+1 . . . F1,M −p

...
...

...
...

0 0 . . . ρ xp+1 . . . 1 . . . xM

...
... #

...
...

...

0 0 . . . # F1,M −p . . . xM . . . FM −p,M −p



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Rp,q−1 is positive definite because it is a quadratic form of the positive definite matrix

Rp,q. Furthermore, since every element on its main diagonal is equal to 1, Rp,q−1 is

a correlation matrix.

Among others, pre- and post-multiplication of the matrix Rp,q by the matrixKp,q−1

and its transpose have the effect of filling the zero element in position (p, q − 1) with

|ρ| < 1.

Lemma A.4 Given any sequence of K matrices, their product K1,2 ·K1,3 ·...·KM −1,M ·
K ′

M −1,M · ... · K ′
1,3 · K ′

1,2 is a correlation matrix.

Proof:

Consider performing the matrix multiplication starting from the central term -

KM −1,M ·K ′
M −1,M and moving out by pre- and post-multiplying the successive matrices,

then at every step the result is a correlation matrix of the type Rp,q. Thus, the result

is an R1,2 correlation matrix or simply a correlation matrix.

B Properties of the ACC Model

B.1 Assumptions

A1: E[dt|It−1] = E[dt] = E[d1] ∀t
A2: COV[dt, ηt] = 0

A3: COV[dt, η
2
t ] = 0

A4: E[ηt|It−1] = E[ηt] = E[η1] ∀t

B.2 Covariance Stationarity

In order to determine the conditions under which the ACC(1,1) is covariance

stationary, it is convenient to rewrite it as an ARMA process for the Fisher transfor-

mation of the realized correlations ψt. These can be defined to be equal to the Fisher

transformation of the true underlying correlation χt plus the error term ηt:

ψt = ω + (δ + θ + βdt−1)ψt−1 − δηt−1 + ηt

Taking expectations on both sides and using assumptions A1 and A2:

E[ψt] = ω + (δ + θ + βE[d])E[ψt−1] + (1 − δ)E[η]
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Thus, the process is mean stationary if and only if:
∣∣∣∣δ + θ + βE[d]

∣∣∣∣ < 1

In order to analyze the variance of the process, it is convenient to introduce the more

compact notation at−1 ≡ δ + θ + βdt−1) and εt ≡ −δηt−1 + ηt:

ψt = ω + at−1ψt−1 + εt

Hence, the variance of ψt is equal to:

V[ψt] = V[at−1ψt−1] + 2COV[at−1ψt−1, εt] + V[εt]

Using A1-A4, the first term on the right hand side is equal to:

E[a2
t−1ψ

2
t−1] − E[at−1ψt−1]

2 = E[a2
t−1]E[ψ2

t−1] − E[at−1]
2E[ψt−1]

2

= E[a2
t−1]V[ψt−1] + E[ψt−1]

2V[at−1]

while the second term is equal to:

2E[at−1ψt−1εt] − 2E[at−1ψt−1]E[εt] = 2E[at−1]COV[ψt−1, εt]

= 2E[at−1]COV[ψt−1, −δηt−1 + ηt]

= 2E[at−1]COV[ψt−1, −δηt−1]

= 2E[at−1]COV[ηt−1, −δηt−1]

= −2δE[at−1]V[η]

Therefore, the expression for the variance of ψt takes the following form:

V[ψt] = E[a2
t−1]V[ψt−1] + E[ψt−1]

2V[at−1] +

(
1 + δ2 − 2δE[at−1]

)
V[η]

It follows, that the process is variance stationary if and only if E[a2
t−1] < 1:

E[a2
t−1] = E[(δ + θ)2 + 2(δ + θ)βdt−1 + β2d2

t−1]

= (δ + θ)2 + 2(δ + θ)βE[d] + β2E[d]

= (δ + θ + βE[d])2 + β2E[d](1 − E[d])

where E[d2] = E[d] is due to the fact that d is a binary random variable. The model

is then variance stationary when its parameters satisfy:

(δ + θ + βE[d])2 + β2E[d](1 − E[d]) < 1

Notice how variance stationarity implies mean stationarity. Furthermore, it can

be shown that the condition for mean stationarity implies stationarity of the auto-

covariances.
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B.3 Forecasts

The unconditional expectation of the stationary process χt is equal to:

E[χ] = ω + δE[χ] + θE[ψ] + βE[dψ]

which implies that:

ω = (1 − δ)E[χ] − θE[ψ] − βE[dψ]

Taking the expectation of χt+1, conditional on the information set It−1, and using A1

and A4:

E[χt+1|It−1] = ω + δχt + E
[
(θ + βdt)(χt + ηt)

]

= ω + (δ + θ + βE[d])χt + θE[ηt] + βE[dtηt]

= ω + (δ + θ + βE[d])χt + θE[ψt − χt] + βE[dtψt − dtχt]

= ω + (δ + θ + βE[d])χt + θE[ψ] − θE[χ] + βE[dψ] − E[d]E[χ]

and substituting the expression for ω yields:

E[χt+1|It−1] = (1 − δ − θ − βE[d])E[χ] + (δ + θ + βE[d])χt

In order for the forecasts13 to be mean reverting it must be that:

∣∣∣∣δ + θ + βE[d]

∣∣∣∣ < 1

which is true whenever the conditions for covariance stationarity are satisfied.
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Table 1: Symbols of Included Stocks

ADBE ALTR APCC AMGN AAPL AMAT BBBY

BIIB BMET CDWC CEPH CHIR CTAS CSCO

CMCSA CPWR CMVT COST DELL XRAY ERTS

EXPD ESRX FAST FHCC FISV FLEX GNTX

GENZ GILD IACI INTC INTU JDSU KLAC

LRCX LNCR LLTC MXIM MEDI MERQ MCHP

MSFT MOLX NXTL NVLS ORCL PCAR PDCO

PTEN PAYX PSFT PETM QLGC QCOM ROST

SANM SIAL SSCC SPLS SBUX SUNW SYMC

SNPS TLAB TEVA VRTS WFMI XLNX

Table 2: Monte Carlo Results: true parameter values λ0, M.C. average of estimated
parameter values λS, M.C. average of simulated theoretical parameter standard error
σ, M.C. parameter standard error σS and 10%, 5% and 1% rejection frequencies
assuming that the estimated parameters have a gaussian distribution.

λ0 λS σ σS 10% 5% 1%

ω1,2 0.035 0.038 1.12 · 10−2 1.14 · 10−2 8.5% 5.3% 2.5%

δ1,2 0.900 0.895 2.04 · 10−2 2.05 · 10−2 9.7% 5.5% 1.9%

θ1,2 0.050 0.051 9.60 · 10−3 9.40 · 10−3 9.5% 4.6% 1.0%

ω1,3 0.004 0.006 5.49 · 10−3 5.86 · 10−3 5.3% 3.9% 2.3%

δ1,3 0.980 0.973 1.74 · 10−2 1.88 · 10−2 6.6% 4.8% 2.9%

θ1,3 0.010 0.012 6.23 · 10−3 5.95 · 10−3 8.6% 5.3% 2.0%

ω2,3 0.002 0.002 1.51 · 10−3 1.35 · 10−3 5.5% 3.6% 1.7%

δ2,3 0.950 0.947 1.50 · 10−2 1.68 · 10−2 9.6% 5.7% 2.6%

θ2,3 0.030 0.029 7.80 · 10−3 7.82 · 10−3 10.6% 5.4% 1.3%
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Table 3: Results on the 69-Dimensional Model: In Sample Predictions. MSE and
percentage improvement w.r.t. CCC; MAD in brackets and percentage improvement
w.r.t. CCC.

Days CCC DCC SCC(↓)

20 149.800 143.126 -4.46% 127.851 -14.65%

[482.677] [471.557] -2.30% [443.174] -8.18%

40 93.505 87.573 -6.34% 73.737 -21.14%

[379.799] [367.437] -3.25% [334.809] -11.85%

60 72.796 67.356 -7.47% 54.315 -25.39%

[334.479] [321.713] -3.82% [286.843] -14.24%

80 62.013 56.955 -8.16% 44.444 -28.33%

[308.321] [295.566] -4.14% [259.299] -15.89%

100 55.142 50.400 -8.60% 38.300 -30.54%

[290.266] [277.661] -4.34% [240.553] -17.13%

120 50.246 45.779 -8.89% 33.999 -32.33%

[276.624] [264.186] -4.50% [226.471] -18.13%

140 46.719 42.508 -9.01% 31.080 -33.47%

[266.354] [254.236] -4.55% [216.387] -18.76%

160 44.020 40.046 -9.03% 28.958 -34.21%

[258.168] [246.417] -4.55% [208.718] -19.15%

180 41.836 38.080 -8.98% 27.263 -34.83%

[251.317] [239.922] -4.53% [202.279] -19.51%

200 40.036 36.493 -8.85% 26.013 -35.03%

[245.502] [234.524] -4.47% [197.408] -19.59%

220 38.561 35.229 -8.64% 25.103 -34.90%

[240.694] [230.173] -4.37% [193.736] -19.51%

240 37.342 34.221 -8.36% 24.464 -34.49%

[236.697] [226.704] -4.22% [191.124] -19.25%
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Table 4: Results on the 69-Dimensional Model: In Sample Predictions for Permuta-
tions. MSE and percentage improvement w.r.t. CCC; MAD in brackets and percent-
age improvement w.r.t. CCC.

Days 120 160 200

SCC SIC 35.272 -29.80% 29.863 -32.16% 26.576 -33.62%

[231.010] -16.49% [212.258] -17.78% [199.834] -18.60%

SCC(A) 34.899 -30.54% 30.147 -31.52% 27.385 -31.60%

[230.030] -16.84% [213.486] -17.31% [203.005] -17.31%

SCC(Z) 35.539 -29.27% 30.566 -30.56% 27.656 -30.92%

[231.702] -16.24% [214.662] -16.85% [203.839] -16.97%

SCC(1) 35.068 -30.21% 30.367 -31.01% 27.643 -30.95%

[230.564] -16.65% [214.125] -17.06% [203.674] -17.04%

SCC(2) 35.408 -29.53% 30.659 -30.35% 27.916 -30.27%

[231.866] -16.18% [215.090] -16.69% [204.385] -16.75%

SCC(3) 34.671 -31.00% 29.874 -32.14% 27.108 -32.29%

[228.913] -17.25% [211.935] -17.91% [201.308] -18.00%

SCC(4) 34.439 -31.46% 29.554 -32.86% 26.723 -33.25%

[228.612] -17.36% [211.602] -18.04% [200.963] -18.14%

SCC(5) 35.544 -29.26% 30.967 -29.65% 28.334 -29.23%

[231.760] -16.22% [215.763] -16.43% [205.734] -16.20%

SCC(6) 34.521 -31.30% 29.789 -32.33% 27.025 -32.50%

[228.370] -17.44% [211.740] -17.98% [200.995] -18.13%

SCC(7) 34.905 -30.53% 30.121 -31.57% 27.377 -31.62%

[229.650] -16.98% [213.063] -17.47% [202.662] -17.45%

SCC(8) 34.627 -31.09% 29.986 -31.88% 27.315 -31.77%

[229.051] -17.20% [212.596] -17.65% [202.267] -17.61%
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Table 5: Likelihood-Based Model Evaluations: Likelihood Ratio Test and Schwartz
Information Criterion.

LRT p-value

Parameters Likelihood CCC SCC SIC SIC

CCC 2346 −5.6910 · 104 - - 1.3219 · 105

DCC 2349 −5.6874 · 104 < 1.00 · 10−14 - 1.3214 · 105

SCC SIC 2614 −5.4533 · 104 < 1.00 · 10−14 - 1.2954 · 105

SCC(↓) 11720 −4.8107 · 104 < 1.00 · 10−14 < 1.00 · 10−14 1.8801 · 105
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