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Abstract
In this paper, we investigate the performance of a panel data stationarity test when

cross-sectional correlation is modelled by a time-specific factor. Size distortions, that
occurs especially when the number of cross sections is small, are documented. To eliminate
these distortions, a new set of critical values is supplied. When investigating the rejection
frequency under the alternative hypothesis, it is found that the panel data stationarity
test that uses the supplied critical values maintain good power characteristics even when
only a subset of the cross-sectional units have a unit root.

JEL Classification: C12; C15; C22.
Keywords: Panel Data; Stationarity; Cross-Sectional Dependency; Monte Carlo Simu-
lation.

1 Introduction

When testing for stationarity, unit roots and cointegration in the time-series setting,
the power of the tests is to a large extent influenced by the number of observations
available for the considered time series. When the time-series sample is short,
the tests can have very low power, often failing to reject the null hypothesis even
when it is false. However, by using time-series data for several cross sections, i.e.
by applying panel data when testing for unit roots, stationarity and cointegration,
more powerful inference is enabled. This was recognized e.g. by Quah (1994); Levin
and Lin (1992, 1993); Levin et al. (2002); Im et al. (1997, 2003), who suggest various
panel data unit root tests; by Hadri (2000), Hadri and Larsson (2005), Harris et al.
(2005) and Shin and Snell (2006), who suggest panel data stationarity tests; and
by Pedroni (1999), Pedroni (2004), McCoskey and Kao (1998), Westerlund (2005),
Larsson et al. (2001) and Groen and Kleibergen (2003), who suggest panel data
cointegration tests.12

∗National Institute of Economic Research, Box 3116, SE - 103 62 Stockholm, Sweden.
Email: kristian.jonsson@konj.se

1Recent surveys of this rapidly developing research field can be found in Breitung and Pesaran (2008) and
Choi (2006).

2Examples of empirical applications where panel unit root tests have been utilized are Lee and Wu (2004),
Carrion-I-Silvestre et al. (2004) and Holmes (2002).
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In the early panel data unit root, stationarity and cointegration literature, the
assumption of cross-sectional independence was common. However, a growing body
of research has documented the problems that can arise when dependency exits
between the different cross-sectional units in the sample (see e.g. O’Connell, 1998;
Jönsson, 2004). As a consequence, several different methods, that address the
issue of cross-sectional dependency in the panel data unit root and stationarity
framework, have been developed (see e.g. Bai and Ng, 2004a,b; Chang, 2002, 2004;
Jönsson, 2005, 2006b; Moon and Perron, 2004; Pesaran, 2007; Phillips and Sul,
2003). The methods that are used to deal with cross-sectional dependency (CSD)
involve orthogonalization of the series under consideration, extraction of common
factors, augmentation of test regressions and bootstrap procedures that take cross-
sectional dependency into account.

Within the panel data stationarity framework, Hadri (2000) suggest that the
stationarity test of Kwiatkowski et al. (1992) can be applied to the cross-sectional
units of a panel and that a panel data stationarity test can be constructed as the
standardized mean over the cross-section specific test statistics. The test of Hadri
(2000) differ from e.g. the panel unit root test of Im et al. (2003) in that the former
takes stationarity as the null hypothesis while the latter takes a unit root as the null.
Moments for the asymptotic Kwiatkowski et al. (1992) statistic are supplied by e.g.
Hadri (2000) and, by utilizing the sequential limit arguments T → ∞ followed by
N →∞, the author shows that the panel data test statistic has a standard normal
limiting distribution.3;4 In order to account for a finite time-series dimension, Hadri
and Larsson (2005) provide finite-T moments for the KPSS statistic under the
assumption that the time series under consideration are serially independent, while
approximate moments for the KPSS statistic with serially dependent time series
are supplied by Jönsson (2006a). The moments of Hadri and Larsson (2005) can
be used to obtain a panel data test statistic that is standard normally distributed
as N → ∞ for fixed T , while the moments of Jönsson (2006a) can be used to
obtain an approximate standard normal distribution for the test statistic when T
and N are fixed. By utilizing results from Monte Carlo simulations, Hadri and
Larsson (2005) and Jönsson (2006a) show that inference can be improved by using
the fixed-T moments, instead of the asymptotic moments, of the KPSS statistic.

When cross-sectional correlation, in the form of a time-specific disturbance,
is allowed for in the panel data unit root and stationarity framework, Im et al.
(1997) and Shin and Snell (2006) suggest that demeaning over cross sections should
be employed in order to eliminate the dependence between cross sections. Even
though some results indicate that demeaning over cross sections affects the small-N
distribution of the panel data test under consideration (see e.g. Jönsson, 2006a,b),
there is little knowledge about the small-N behavior of the Hadri and Larsson (2005)
test when time-specific disturbances are present and accounted for.

In this paper, we study the performance of the panel data stationarity test of
Hadri and Larsson (2005) when cross-section dependence is modelled by a time-

3From here on, the Kwiatkowski et al. (1992) test will be referred to as the KPSS test.
4T is used to indicate the number of time-series observations, while N is used to denote the number of

cross-sectional units.
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specific disturbance that is common to all cross sections. We find that the commonly
used cure for this type of dependency, namely demeaning across the cross-sectional
dimension, induces a size distortion when the cross-sectional dimension is small.
This applies even if no time-specific disturbance is present. That is, the mere fact
that a time-specific factor is allowed for affects the performance of the panel data
stationarity test. To mitigate this size distortion, critical values, that can be used
when cross-sectional correlation is modelled by a time-specific factor, are supplied.
The new set of critical values work well regardless of whether a time-specific factor
is present of not. Furthermore, the size distortions, that arises when a time-specific
factor is allowed but not accounted for, are eliminated without any major sacrifices
in the power of the panel data stationarity test.

The rest of this paper is organized as follows. In Section 2, the econometric
model and the panel data stationarity test are introduced. Furthermore, in this
section the effects of allowing for a time-specific disturbance is analyzed. Critical
values that can be used when a time-specific disturbance is present are supplied
in Section 3. The performance of the panel data stationarity test, using the sup-
plied critical values, is studied in the same section. Finally, Section 4 offers some
concluding remark.

2 Panel stationarity with a time-specific factor

2.1 The panel data model

The current paper is centered around the following panel-data unobserved compo-
nents model:

yi;t = αi + δit + ξi;t + εi;t (1)

ξi;t = ξi;t−1 + νi;t (2)

εi;t = θt + ηi;t (3)

The cross-section time-series, yi;t, consists of three main components.5 First,
there are cross-section specific deterministic components, αi and δit, which take
the form of an intercept and a time trend. Second, yi;t includes of a random
walk term, ξi;t. The development of this term is described in (2), where νit is
i.i.d. N(0, σ2

º;i ). For all cases where σ2
º;i > 0, the cross-section time series yi;t will

contain a unit root term, while it follows that yi;t is stationary, or trend stationary,
if σ2

º;i = 0. In the latter case ξi;t will reduce to ξ0;i for all t, which amount to a
constant term that will be captured in the intercept when yi;t is detrended. Finally,
yi;t includes a stochastic disturbance term, εi;t, which is described in (3). From
(3) it can be seen that the composite disturbance term, εi;t, can be broken down
into two components. The first of these is a time-specific disturbance, θt, which is
assumed to be distributed i.i.d. N(0, σ2

µ ). The second component, ηi;t, is assumed

5Here, and in the remainder of the paper, we let i denote the cross-sectional dimension and t denote the
time-series dimension. Throughout we will also assume that i ∈ {1; : : : ; N} and t ∈ {1; : : : ; T}.
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to be an idiosyncratic disturbance that is distributed i.i.d. N(0, σ2
´ ). Hence, from

(3) it can be seen that cross-sectional dependence between disturbances εi;t and εj;t,
i 6= j, is introduced by the time-specific factor θt. It is the presence of θt that makes
this model differ from the model in Hadri and Larsson (2005). If we let θt = 0 for
all t ∈ {1, . . . , T}, the model in (1)-(3) would reduce to the model of Hadri and
Larsson (2005), i.e. to the model with cross-sectionally independent disturbances,
and hence it would be possible to apply the panel data stationarity test suggested
by these authors. However, within the extended model where θt 6= 0, the issue
of cross-sectional correlation has to be addressed. In the following sections, we
elaborate on the test of Hadri and Larsson (2005), discuss how it can be extended
to allow for a time-specific factor and study how such an extension affects the
small-sample behavior of the test.

2.2 The panel data stationarity test

The panel data stationarity tests of Hadri (2000) and Hadri and Larsson (2005)
are developed within the unobserved components framework in (1)-(3) under the
assumption that θt = 0.6 The panel data stationarity test, here denoted LM, is
constructed by applying the stationarity test of Kwiatkowski et al. (1992) to each
of the N time-series in the sample. By utilizing a standardized mean over the
individual test statistics, a panel data stationarity test with a standard normal
limiting distribution can be obtained. For the test of Hadri (2000), the asymptotic
distribution is obtained by letting T → ∞ followed by N → ∞, while Hadri and
Larsson (2005) obtains the limiting distribution by letting N → ∞ for fixed T .
In the current paper, we investigate the finite-sample behavior of the panel data
stationarity test of Hadri and Larsson (2005) when time-specific disturbances are
present, and hence stick to the fixed-T setting. The general expression for the
panel data test statistic is given in (4), while the cross-section specific KPSS test
statistics are calculated as in (5)-(7).

LM =
1
N

∑N
i=1 LMi − E(LMi)√

V ar(LMi)
N

(4)

LMi =
T−2

∑T
t=1 S2

i;t

σ̂2
";i

(5)

Si;t =
t∑

j=1

ei;j (6)

σ̂2
";i = T−1

T∑
t=1

e2
i;t (7)

6It is important to note that Hadri (2000) allows for the covariance stationary disturbance to be serially
correlated, while Hadri and Larsson (2005) consider the case where the disturbance is serially independent.
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In (6) and (7), ei;t denotes the OLS residual obtained after detrending yi;t with
either an intercept or an intercept and a time trend. In (4), E(LMi) and V ar(LMi)
are the moments of the cross-section specific KPSS statistics. These moments
depend, in the Hadri and Larsson (2005) setting, on the time-series dimension of
the panel and on whether an intercept or an intercept and a time trend are used
when detrending the series.

As noted above, the limiting distribution of the test statistic in (4) will not be
standard normal as N →∞ if a time-specific factor, θt, is present. More specifically,
the presence of cross-sectional correlation has been shown to cause size distortions
in the panel data stationarity test (see e.g. Jönsson, 2004). Hence, it is desirable to
account for the cross-sectional dependence in some way. Several methods for doing
this are available. If a common factor structure is assumed, one could apply the
panel data stationarity test Bai and Ng (2004a), which amounts to finding common
factors by the method of principal components and then testing both the common
factors and the de-factored series for stationarity. This method rests on asymptotics
that require that both the cross-sectional and the time-series dimensions tend to
infinity. Hence, it falls outside the framework of Hadri and Larsson (2005). Another
test that allows for cross-sectional correlation is that of Harris et al. (2005). These
authors propose a test based on autocovariances that has an asymptotic standard
normal limit when T → ∞ for fixed N . The same asymptotics applies for the
test of Jönsson (2004), which is based on orthogonalization of εi;t and hence of yi;t.
Evidently, these tests also fall outside the Hadri and Larsson (2005) framework.
However, when the cross-sectional correlation in the panel data unit root and sta-
tionarity framework is caused by a time-specific factor, θt, Im et al. (1997), Shin and
Snell (2006) and Jönsson (2006b) suggest that demeaning over the cross-sections
provides a viable way of dealing with the size distortions that arise. Demeaning
over cross sections amounts to constructing ỹi;t = yi;t−N−1

∑N
j=1 yj;t, and perform-

ing the test in (4)-(7) using the residuals obtained after detrending these series. In
the next section, we go on by investigating how well the demeaning solution works
in the context of the Hadri and Larsson (2005) panel data stationarity test.

2.3 Effects of a time-specific factor

When the cross-sectional dependence is modelled by a time-specific chock, i.e. when
εi;t = θt + ηit, where θt ∼ i.i.d. N(0, σ2

µ ) and ηi;t ∼ i.i.d. N(0, σ2
´;i ), demeaning over

the cross-sectional dimension resolves the cross-sectional correlation problem.7 The
cross-sectionally corrected test is performed as above, with the only difference being
that ỹi;t = yi;t − 1

N

∑N
j=1 yj;t is used instead of yi;t when performing the test.

Recent results (see e.g. Jönsson, 2006b) have indicated that the demeaning pro-
cedure work unsatisfactory in small-N situations unless moments or critical values,
especially obtained for the cross-sectionally corrected test, are used. More specif-
ically, the demeaning procedure has been shown to introduce cross-sectional cor-
relation, and hence a size distortion, in the panel data unit root framework even

7It should be noted, however, that other forms of cross-sectional dependency might not be addressed by
demeaning the data (see e.g. Strauss and Yigit, 2003).
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when disturbances are cross-sectionally independent. If this is the case also with
the panel data stationarity test of Hadri and Larsson (2005), a new set of critical
values is required for situations where the demeaning procedure is employed and
the cross-sectional dimension is small.

In order to study the size of the Hadri and Larsson (2005) panel data stationarity
test applied to demeaned series, data is generated according to the data generating
process (DGP) in (8) below.

yi;t = αi + δit + εi;t (8)

In (8), εit denotes a random disturbance term, which is assumed to be i.i.d.
N(0, 1). Without loss of generality, we let αi = 0 and δi = 0 in the DGP. Using
the moments supplied by Hadri and Larsson (2005), the panel data test for the
null hypothesis of stationarity is calculated as described above. In addition to
calculating a test statistic for the case where the demeaning procedure is employed,
we also obtain a panel data test statistic for the case where no cross-sectional
correction is made. This is done in order to be able to single out the effects that
are attributable to demeaning the data from the effects that are caused by making
the normal approximation in a situation where N is fixed. These two tests are
performed on 50,000 test statistics for panel dimensions where T ∈ {10, 20, 50, 100},
N ∈ {2, 3, . . . , 10, 25, 50} and various deterministic components are used in the
detrending procedure. The resulting size of the tests, on the 10% significance level,
is presented in Table 1.

As seen in Table 1, the panel data stationarity test is always over-sized whenever
N is small, regardless of how large T is. For example, when T=10 and N=2 it can
be seen that the size of the corrected test, i.e. the test applied to demeaned series,
is 16.1% and 16.7% for the cases where an intercept and an intercept and a time
trend are included in the detrending procedure. The same pattern can be seen for
every parameter setup, and the conclusion that the test is upward size-distorted is
undisputable. However, when we study the size results for the test based on series
that have not been demeaned, it can be seen that a small upward size distortion
exists also in this case, at least when N is small. Hence, the size distortion that
was documented for the test employing a demeaning procedure obviously have two
sources. The first source of the size distortion is the fact that we introduce some
degree of cross-sectional correlation by demeaning the cross-section time series. The
second source of the size distortion is the fact that N is small, maybe too small
for the normal distribution to be accurately applied for inference. The relative
importance of these two sources can be seen by comparing the size of the test that
employs demeaning to the size of the test that does not.

As seen from Table 1, the size is somewhat higher than the significance level
also for the uncorrected test, i.e. for the test denoted ’No corr.’ in Table 1. Since
the data is generated without a time-specific factor, the relative importance of the
two sources for the size distortion can be easily identified. Comparing the size
for the corrected and the uncorrected tests, it can be seen that the major part of
the size distortion that occurs when N < 10, arises from the introduction of cross-
sectional dependency through demeaning. However, the size distortion arising from
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inaccurate normal approximation is non-negligible. This fact suggests that the use
of critical values for inference about the null hypothesis that all cross-section time
series are stationary is preferable to the use of standardizing moments that take the
demeaning procedure into account. While the use of especially obtained standard-
izing moments, as in Jönsson (2006b), will mitigate the effects of cross-sectional
demeaning, the size distortions caused by inaccurate normal approximation will
not be addressed. By using critical values, on the other hand, both sources for the
size distortion can be mitigated.

In the next section, we supply response surface parameters that can be used to
obtain critical values for the cross-sectionally corrected panel data stationarity test.

3 Small-sample distribution

As seen from the results in Table 1 and as concluded by Jönsson (2008), it can be
suspected that the inappropriateness of normal approximation give rise to some size
distortions in the Hadri and Larsson (2005) test, especially when N is small. This
fact implies that it is desirable to work with critical values instead of relying on the
normal approximation when conducting inference. Hence, we suggest holding on to
the moments supplied by Hadri and Larsson (2005) when calculating the panel data
stationarity test and, instead of critical values from the standard normal distribu-
tion, use finite-sample critical values obtained especially for the cross-sectionally
corrected test. This approach will eliminate the size distortions arising from the
poor normal approximation as well as the size distortions arising when introducing
the demeaning procedure. Below, we will provide finite-sample critical values that
can be used for inference about the stationarity hypothesis when a time-specific
factor is modelled.

3.1 Critical values for the corrected test

In order to obtain critical values for the panel data test statistic, the cross-sectionally
corrected panel data stationarity test statistic in (4) is calculated based on a set
of artificially generated data series that are obtained as described in Section 2.3.
In order to avoid vast tabulations with critical values, response surface regression
can be fit and the parameters of the response surface regressions supplied. Hence,
to be able to fit response surface regressions to the critical values, we obtain 50
critical values on the 10%, 5%, 2.5% and 1% significance levels based on 5,000 test
statistics in each replication. The panel data dimensions considered are such that
T ∈ {10, 20, . . . , 100, 250, 500, 1000}, while N ∈ {2, 3, . . . , 15, 20, 25, 50}. Critical
values are obtained both for the case where an intercept is the only deterministic
component and for the case where an intercept and a time trend are accounted
for. This setup implies that each response surface regression is fitted to a sample
consisting of 11,050 observations.

Based on the critical values obtained in the simulation we fit the response surface
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regression in (9) below.8;9

cv ®j;N;T = β0 +
2∑
i=1

βi;TST
−i +

2∑
i=1

βi;CSN
−i=2 + βCS;TSN

−0:5T−2 + ε®j;N;T (9)

When estimated, the response surface parameters that are presented in Table 2
are obtained. The critical values calculated by using the response surface param-
eters of Table 2 can now be applied to obtain a panel data stationarity test that
allows and accounts for cross-sectional correlation in the form of a time-specific
disturbance. In order for the critical values based on the parameters in Table 2
to be useful, they should apply regardless of the degree of cross-sectional correla-
tion that is present in the disturbances. Furthermore, in order for the the panel
data stationarity test to work under heterogeneous alternatives, the cross-section
demeaning procedure should be robust even if some of the cross sections are non-
stationary, which means that the demeaning procedure should not annihilate the
power of the test under such circumstances. To assure this, we set up and run
a Monte Carlo simulation of the finite-sample size and power performance of the
panel data stationarity test when a time-specific factor is allowed for and when the
critical values that are supplied in the current paper are used for inference.

3.2 Finite-sample performance

In order to assess the performance of the demeaned panel data stationarity test
when cross-sectional correlation is present, artificial data sets are once again gener-
ated and it is studied how well the panel data stationarity test performs when the
critical values of the previous section are used.

In order to investigate how well the response surface parameters can repro-
duce accurate critical values, we run a Monte Carlo simulation where the data
is demeaned prior to running the panel data stationarity test. In the simula-
tions, 50,000 data sets are generated as in (8) for N ∈ {2, 3, 4, 5, 10, 25, 50} and
T ∈ {25, 50, 100, 250, 500}. To be able to assess the influence of cross-sectional
dependence, as opposed to the mere influence of demeaning, we generate data both
with and without cross-sectional dependence. That is, we consider the case where
θt is added to the series and let θt = 0 and θt ∼ i.i.d. N(0, 1), respectively. Fur-
thermore, as it is desirable to consider the power of the panel data stationarity
test, we also investigate the case where a number, NH1 , of the cross sections con-
tain a random walk component generated according to ξi;t = ξi;t−1 + υi;t, where
i ∈ {1, . . . , NH1} and υi;t ∼ i.i.d. N(0, 1).10

8The final specification in (9) was obtained after trying out various specifications for the response surface
regressions. The final specification was chosen on the basis of in-sample fit.

9In (9), TS and CS refer to ’time series’ and ’cross section’, respectively.
10To reduce the influence of the initial condition, » i;0 = 0, where i ∈ {1; : : : ; NH1}, for the random walk

component, T +100 time series observations are generated, while only the last T are used to construct the time
series.
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The size and power properties of the test, when no cross-sectional dependence
is present, are given in Table 3 and Table 4, while the corresponding properties,
when cross-sectional dependence is present, are seen in Table 5 and Table 6.11

When comparing Table 3 and Table 5, it can be seen that the actual presence of
cross-sectional correlation plays no role for the size properties of the test. Once
a time-specific factor is accounted for, the test performs just as well when cross-
sectional dependence is present as when it is not. The same results emerge for
the power properties of the panel data stationarity test. As seen in Table 4 and
Table 6, the power of the test is unaffected by the actual presence of cross-sectional
correlation, as long as we allow for it by accounting for a time-specific disturbance
term. Moreover, it can be seen from Table 4 and Table 6 that, in both cases, the
test fares well when a subset of the cross sections display a unit root behavior.

4 Conclusions

In this paper, we show that the panel data stationarity test of Hadri and Lars-
son (2005) has a size distortion when the cross-sectional dimension is small and a
time-specific factor is accounted for by demeaning over cross sections. We supply
response surface parameters that can be used to calculate critical values that take
this correction for cross-sectional correlation into account. The supplied critical val-
ues make the size distortions disappear and it is also proved that the test maintains
good power properties even after allowing for cross-sectional correlation through a
time-specific factor.
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Table 1: Size of panel data stationarity tests.a;b

Intercept Trend Intercept Trend
T N No corr. Corr. No corr. Corr. T N No corr. Corr. No corr. Corr.
10 2 0.116 0.161 0.114 0.167 20 2 0.111 0.144 0.108 0.157

3 0.116 0.148 0.111 0.150 3 0.109 0.138 0.108 0.142
4 0.113 0.136 0.110 0.137 4 0.111 0.133 0.109 0.136
5 0.110 0.129 0.112 0.128 5 0.111 0.132 0.108 0.129
6 0.110 0.125 0.111 0.125 6 0.113 0.127 0.108 0.125
7 0.108 0.121 0.106 0.121 7 0.109 0.120 0.107 0.121
8 0.107 0.116 0.107 0.119 8 0.109 0.118 0.108 0.119
9 0.109 0.118 0.111 0.119 9 0.107 0.119 0.107 0.118
10 0.109 0.117 0.106 0.116 10 0.109 0.119 0.107 0.116
25 0.105 0.107 0.104 0.107 25 0.105 0.109 0.106 0.110
50 0.103 0.104 0.103 0.105 50 0.106 0.109 0.105 0.107

Intercept Trend Intercept Trend
T N No corr. Corr. No corr. Corr. T N No corr. Corr. No corr. Corr.
50 2 0.106 0.137 0.104 0.149 100 2 0.104 0.136 0.106 0.148

3 0.107 0.135 0.106 0.135 3 0.106 0.133 0.105 0.135
4 0.107 0.129 0.105 0.129 4 0.107 0.127 0.107 0.133
5 0.108 0.127 0.108 0.128 5 0.108 0.126 0.107 0.125
6 0.108 0.125 0.106 0.122 6 0.106 0.122 0.107 0.121
7 0.108 0.120 0.109 0.124 7 0.107 0.120 0.105 0.119
8 0.107 0.120 0.105 0.117 8 0.106 0.117 0.106 0.118
9 0.108 0.118 0.106 0.116 9 0.108 0.118 0.105 0.118
10 0.107 0.116 0.106 0.114 10 0.108 0.116 0.106 0.116
25 0.105 0.109 0.107 0.111 25 0.108 0.112 0.105 0.110
50 0.102 0.104 0.105 0.107 50 0.105 0.107 0.106 0.107

Notes: a’No corr.’ refers to the case where no correction is made in order to
account for cross-sectional correlation. ’Corr.’ refers to the case where
the cross-sectional mean is subtracted from each time-series observation.
b Data is generated as yi;t = εi;t, with εi;t ∼ N(0, 1).
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Table 2: Response surface parameters for critical values.

Intercept
Sig. Level β0 β1;TS β2;TS β1;CS β2;CS βCS;TS R2

10% 1.317 0.387 -15.564 -0.023 0.900 38.309 0.889
5% 1.793 -0.304 -9.666 -0.383 2.596 19.337 0.957

2.5% 2.241 -1.501 7.247 -0.828 4.530 -24.375 0.967
1% 2.784 -3.711 41.326 -1.386 7.174 -107.421 0.967

Intercept and trend
Sig. Level β0 β1;TS β2;TS β1;CS β2;CS βCS;TS R2

10% 1.347 0.233 -11.488 -0.278 1.302 26.713 0.914
5% 1.805 -0.490 -4.170 -0.593 2.757 6.036 0.958

2.5% 2.223 -1.416 9.018 -0.945 4.361 -32.051 0.966
1% 2.739 -3.181 39.163 -1.454 6.639 -111.125 0.965
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Table 3: Size of demeaned test.a

Intercept
N T=25 T=50 T=100 T=250 T=500
2 0.052 0.053 0.050 0.050 0.052
3 0.049 0.049 0.050 0.049 0.050
4 0.048 0.047 0.050 0.048 0.049
5 0.049 0.049 0.050 0.049 0.049
10 0.052 0.050 0.050 0.050 0.052
25 0.050 0.049 0.049 0.049 0.050
50 0.047 0.049 0.048 0.048 0.049

Intercept and trend
N T=25 T=50 T=100 T=250 T=500
2 0.052 0.052 0.050 0.049 0.048
3 0.048 0.048 0.048 0.048 0.048
4 0.047 0.048 0.050 0.048 0.050
5 0.048 0.050 0.050 0.050 0.050
10 0.050 0.051 0.050 0.052 0.051
25 0.050 0.050 0.050 0.047 0.049
50 0.048 0.046 0.046 0.048 0.048

Notes: a Data is generated as yi;t = εi;t, with εi;t ∼ N(0, 1).
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Table 4: Power of demeaned test.a;b

Intercept
N NH1 T=25 T=50 T=100 T=250 T=500
2 1 0.693 0.896 0.982 0.999 1.000
3 1 0.705 0.903 0.984 1.000 1.000
4 2 0.905 0.990 1.000 1.000 1.000
5 2 0.900 0.990 1.000 1.000 1.000
10 5 0.997 1.000 1.000 1.000 1.000
25 12 1.000 1.000 1.000 1.000 1.000
50 25 1.000 1.000 1.000 1.000 1.000

Intercept and trend
N NH1 T=25 T=50 T=100 T=250 T=500
2 1 0.510 0.850 0.983 1.000 1.000
3 1 0.518 0.854 0.986 1.000 1.000
4 2 0.758 0.982 1.000 1.000 1.000
5 2 0.737 0.978 1.000 1.000 1.000
10 5 0.969 1.000 1.000 1.000 1.000
25 12 1.000 1.000 1.000 1.000 1.000
50 25 1.000 1.000 1.000 1.000 1.000

Notes: aWe use NH1 to denote the number of cross sections that
are non-stationary under the alternative hypothesis.

bData is generated as yi;t = εi;t + ξi;t, with εi;t ∼ N(0, 1) and ξi;t = 0 for
N −NH1 cross-sectional units and ξi;t = ξi;t−1 + υi;t, with υi;t ∼ N(0, 1),
for NH1 cross-sectional units.
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Table 5: Size of demeaned test when CSD is present.a

Intercept
N T=25 T=50 T=100 T=250 T=500
2 0.052 0.052 0.051 0.051 0.050
3 0.047 0.049 0.049 0.048 0.047
4 0.049 0.050 0.049 0.050 0.051
5 0.050 0.049 0.052 0.049 0.050
10 0.050 0.050 0.049 0.052 0.049
25 0.050 0.048 0.050 0.050 0.049
50 0.048 0.046 0.049 0.049 0.047

Intercept and trend
N T=25 T=50 T=100 T=250 T=500
2 0.052 0.051 0.049 0.050 0.048
3 0.049 0.048 0.046 0.049 0.050
4 0.048 0.051 0.048 0.048 0.049
5 0.048 0.049 0.049 0.049 0.050
10 0.050 0.050 0.050 0.050 0.051
25 0.049 0.050 0.049 0.051 0.050
50 0.046 0.047 0.046 0.049 0.047

Notes: a Data is generated as yi;t = εi;t + θt, with εi;t ∼ N(0, 1) and θt ∼ N(0, 1).
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Table 6: Power of demeaned test when CSD is present.a;b

Intercept
N NH1 T=25 T=50 T=100 T=250 T=500
2 1 0.689 0.896 0.982 1.000 1.000
3 1 0.704 0.904 0.985 1.000 1.000
4 2 0.905 0.991 1.000 1.000 1.000
5 2 0.901 0.990 1.000 1.000 1.000
10 5 0.997 1.000 1.000 1.000 1.000
25 12 1.000 1.000 1.000 1.000 1.000
50 25 1.000 1.000 1.000 1.000 1.000

Intercept and trend
N NH1 T=25 T=50 T=100 T=250 T=500
2 1 0.508 0.852 0.985 1.000 1.000
3 1 0.513 0.858 0.985 1.000 1.000
4 2 0.756 0.981 1.000 1.000 1.000
5 2 0.737 0.980 1.000 1.000 1.000
10 5 0.969 1.000 1.000 1.000 1.000
25 12 1.000 1.000 1.000 1.000 1.000
50 25 1.000 1.000 1.000 1.000 1.000

Notes: aWe use NH1 to denote the number of cross sections that
are non-stationary under the alternative hypothesis.

bData is generated as yi;t = εi;t + θt + ξi;t, with εi;t ∼ N(0, 1),
θt ∼ N(0, 1) and ξi;t = 0 for N −NH1 cross-sectional units and
ξi;t = ξi;t−1 + υi;t, with υi;t ∼ N(0, 1), for NH1 cross-sectional units.
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