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Abstract

This paper introduces a new family of multivariate distributions based on Gram-Charlier and
Edgeworth expansions. This family encompasses many of the univariate semi-nonparametric
densities proposed in �nancial econometrics as marginal of its di¤erent formulations. Within
this family, we focus on the analysis of the speci�cations that guarantee positivity to obtain
well-de�ned multivariate semi-nonparametric densities. We compare two di¤erent multivariate
distributions of the family with the multivariate Edgeworth-Sargan, Normal, Student�s t and
skewed Student�s t in an in- and out-sample framework for �nancial returns data. Our results
show that the proposed speci�cations provide a quite reasonably good performance being so of
interest for applications involving the modelling and forecasting of heavy-tailed distributions.

Key words: Financial assets returns; Gram-Charlier and Edgeworth-Sargan densities; Leptokur-
tic multivariate distributions; MGARCH models; Skewness.

JEL classi�cation: C16, G1.
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1 Introduction

There is abundant literature on the non-normality of asset returns and its implications for pricing
and measuring �nancial risk. Currently, decisions on capital allocation and portfolio management
rely on computations of value-at-risk (VaR hereafter) measures or short-fall probabilities, for what
normality or non-normality is a key assumption. Since Maldelbrot (1963), �nancial econometricians
have analyzed the models misspeci�cation related to the normality assumption, since it is certainly
possible that models can produce the most accurate forecasts if the correct density is speci�ed;
recent developments on this line of research are provided in, for instance, Jurczenko et al. (2004),
Jondeau and Rockinger (2005, 2006a, 2006b, 2007) and Boudt et al. (2007). These articles provide
evidence on the importance of correctly accounting for, not only the time-varying dependence
of conditional moments (i.e. conditional heteroskedasticity, skewness, or kurtosis), but also the
shape of the whole underlying leptokurtic and possibly skewed density, specially that of the tails.
Furthermore, they also highlight the convenience of modelling the joint portfolio distribution by
assuming multivariate speci�cations and incorporating cross-moments structures (e.g. covariance,
co-skewness, co-kurtosis).

Multivariate GARCH-type processes (MGARCH hereafter) have undergone important exten-
sions since the constant conditional correlation (CCC) model of Bollerslev (1990) to the dynamic
conditional correlation (DCC) model of Engle (2002) and Engle and Sheppard (2001); see Bauwens
et al. (2005) for a complete survey on MGARCH models. On the other hand, di¤erent multivariate
distributions have been introduced in �nancial econometrics, from which parametric approaches
include: Student�s t (Harvey et al., 1992), mixtures of Normals (Vlaar and Palm, 1993), skewed
Normal (Azzalini and Dalla Valle, 1996), skewed Student�s t (Sahu et al. (2003) and Bauwens
and Laurent (2005)), Edgeworth-Sargan (Perote, 2004), Weibull (Malevergne and Sornette, 2004),
Kotz-type (Olcay, 2005) and Normal Inverse Gaussian (Aas et al., 2006). Alternatively, any true
target distribution can be approximated (�tted) through an in�nite (�nite) Gram-Charlier (GC
hereafter) or Edgeworth series in terms of its moments or cumulants (see Sargan (1975, 1976) for
the �rst applications of these techniques to econometrics). This semi-nonparametric (SNP here-
after) approach has the advantage of its general and �exible structure, since endogenously admits
as much parameters as necessary depending on the empirical features of the data. Nonetheless, the
applications of these distributions in �nance, mainly for asset or option pricing, usually have not
considered expansions beyond the fourth order (see, e.g., Corrado and Su (1996, 1997), Harvey and
Siddique (1999), Jondeau and Rockinger (2001) and León et al. (2005)).1 It is worth mentioning
that, the application of SNP densities requires of the use of methods to ensure that the resulting
truncated density is well-de�ned, i.e., it is positive for all values of its parameters in the parametric
space. For this purpose di¤erent alternatives have been proposed in the literature depending on
the end-use of the model, namely: i) accurate selection of initial values for the maximum likelihood
algorithms (Mauleón and Perote, 2000), ii) parametric constraints (Jondeau and Rockinger, 2001),
and iii) density function transformations based on the methodology of Gallant and Nychka (1987)
and Gallant and Tauchen (1989). The �rst method is appropriate for in-sample analysis, whilst the

1On the other hand, Mauleón and Perote (2000) and Ñíguez and Perote (2004) have shown that expansions to the
eighth order may provide a better goodness-of-�t.
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second and the third are also useful for out-of-sample analysis (see, León et al. (2005) and Ñíguez
and Perote (2004) for applications of the latter method in in- and out-of-sample contexts). How-
ever, it is known that parametric constraints may lead to sub-optimization, the model losing out
some of its �exibility, whilst reformulations may lead to theoretically less tractable speci�cations.
Empirical works on SNP densities has shown their superior performance with respect to di¤erent
speci�cations used in �nance in the univariate framework but, to the knowledge of the authors,
much less is known on their performance in the multivariate context. In particular, Perote (2004)
generalized the Edgeworth-Sargan distribution (ES hereafter) to the n-dimensional case de�ning
the Multivariate ES (MES hereafter), and provided evidence on its goodness-of-�t for �nancial
returns data, despite the MES function not really being a well-de�ned probability density function
because for some parameter values it might be negative.

In this article we tackle those issues by presenting a general family of multivariate densities
based on GC expansions (MGC densities hereafter) that is well-de�ned and encompasses most of
the univariate GC densities proposed in the literature as marginals. We focus on two particular
speci�cations that generalize to the multivariate framework the SNP and the Positive ES (PES
hereafter) densities in León et al. (2007) and Ñíguez and Perote (2004), respectively. The theoretical
properties of these densities (e.g. marginal distributions, cumulative distribution functions (cdf
hereafter), univariate moments and cross-moments) are straightforwardly derived, showing that
these distributions might be potentially superior in terms of �exibility to other alternative
formulations, and analytically and empirically more tractable. The in-sample performance of the
MGC speci�cations to �t �nancial data is compared to the MES, the Multivariate Normal (MN
hereafter) and the (skewed) Multivariate Student�s t ((Sk)-MST hereafter) through an empirical
application to stock returns. We provide evidence on that the MGC distributions capture more
accurately the heavy tails of portfolio returns distributions than the MN or the MST. This result
is also obtained when the comparison is undertaken among skewed speci�cations (particularly
we compare the asymmetric versions of the MGC and MES distributions with the Sk-MST). An
application of the MGC densities for full density forecasting, based on the methodology in Diebold et
al. (1998, 1999) and Davidson and MacKinnon (1998), is also provided. We compared a particular
speci�cation of our family with the MN, given its widely use by practitioners through the popular
software package RiskMetrics of J.P. Morgan (1996). We show that the MGC densities provide a
reasonably good performance for forecasting the full density of the portfolio and clearly overcomes
the MN model.

The remainder of the article is structured as follows. Section 2 deals with the de�nitions and
properties of the MGC family of densities. Section 3 tests the in- and out-of-sample performance
of the proposed densities through an empirical application to a portfolio of stocks indexes, and
Section 4 presents the main conclusions and suggests possible lines for further research.

2 Multivariate Gram-Charlier densities

In this section we introduce the family of MGC distributions, which is based on the SNP density
approach derived from the Edgeworth and GC series. This family encompasses most of the
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univariate distributions based on expansions of this type used in the literature to model high-
frequency �nancial returns for risk management purposes.

The "standardized" MGC family of densities is de�ned in terms of the "standardized" MN
density, G(�), (i.e. with zero mean and unitary variance for all its marginal densities, g(�), and
correlation coe¢ cients denoted by �ij 8i; j = 1; : : : ; n; i 6= j), and the so-called Hermite polynomials,
Hs(�), as given in the de�nition below.2

De�nition 1 A random vector X = (x1; x2; : : : ; xn)
0 2 Rn belongs to the MGC family of

distributions if it is distributed according to the following density function,

F (X) =
1

n+ 1
G(X) +

1

n+ 1

(
nY
i=1

g (xi)

)(
nX
i=1

1

ci
h (xi)

0Aih (xi)

)
; (1)

where Ai is a matrix of order (q + 1),3 h (xi) = [1;H1(xi);H2(xi); � � � ;Hq(xi)]0 2 Rq+1, Hs(�)
stands for the s� th order Hermite polynomial described in equation (2),

Hs(xi) =

8>>><>>>:
s=2P
i=0
(�1)ixs�2ii

s!
2ii!(s�2i)! 8s is even

(s�1)=2P
i=0

(�1)ixs�2ii
s!

2ii!(s�2i)! otherwise,

(2)

and ci is the constant such that,

ci =

Z
h (xi)

0Aih (xi) g (xi) dxi. (3)

The MGC family of functions straightforwardly integrates up to one and represents density
functions providing that Ai is a positive de�nite matrix for all i = 1; : : : ; n. Within this family two
straightforward but interesting cases deserve special attention. The �rst one arises when Ai admits
the following decomposition, Ai = did

0
i, with di= (1; di1; : : : ; diq)

0 2 Rq+1 containing the density
parameters (weights) of the i� th density dimension. For this particular case, a positive version of
the MGC density, hereafter named as MGCI, can be de�ned as in equation (4) below,

FI(X) =
1

n+ 1
G(X) +

1

n+ 1

(
nY
i=1

g (xi)

)8<:
nX
i=1

1

ci

"
1 +

qX
s=1

disHs (xi)

#29=; : (4)

For this density, and based on the well-known orthogonality properties given in equations (5),
(6) and (7),4 Z

Hs(xi)Hj(xi)g(xi)dxi = 0 8s 6= j; (5)Z
Hs(xi)Hj(xi)g(xi)dxi = s! 8s = j; (6)Z

Hs(xi)g(xi)dxi = 0 8s; (7)

2Note that although we de�ne the "standardised" MGC densities in terms of Gaussian densities with unitary
variance, the resulting distributions do not have unitary variance, since variances, as the rest of the density moments,
depend on the whole set of density parameters.

3Note that without loss of generality we have considered that for all dimensions the Gram-Charlier (Type A)
expansions are truncated at the same order q.

4See Kendall and Stuart (1977) for further details about Hermite polynomials properties.

5

Page 6 of 28

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

it can be straightforwardly proved that:

(i) The constant that weights the squared sum of Hermite polynomials for every variable xi (see
Proof 1 in the Appendix) is,

ci =

Z
g (xi)

"
1 +

qX
s=1

disHs (xi)

#2
dxi = 1 +

qX
s=1

d2iss! (8)

(ii) The density integrates up to one, (see Proof 2 in the Appendix).

(iii) The marginal density for variable xi is a mixture of a univariate Normal and a univariate
SNP density of the type recently analyzed in León et al. (2005, 2007), as shown in equation
(9) (see Proof 3 in the Appendix).

fI(xi) =
n

n+ 1
g(xi) +

1

(n+ 1)ci

"
1 +

qX
s=1

disHs (xi)

#2
g(xi): (9)

As a result of the last property, the moments of the distribution can be obtained immediately
in terms of the moments of the normal distribution and the SNP density (see Fenton and Gallant
(1996) or León et al. (2007) for a complete description of the moments of the SNP density). This
fact also permits to introduce dynamic structures for the conditional moments of the distribution
as proposed by Harvey and Siddique (1999) and León et al. (2005). For example, equation (10)
considers conditional skewness for every variable i, sit, in the "standardized" MGCI expanded to
the third term.

FI(X) =
1

n+ 1
G(X) +

1

n+ 1

(
nY
i=1

g (xi)

)(
nX
i=1

1

1 +
s2it
6

h
1 +

sit
6

�
x3i � 3xi

�i2)
: (10)

Moreover, the covariances of this model are 1
n+1 times the covariances of the MN process,

G(�), and the co-skewness and co-kurtosis matrices can be worked out from the corresponding
co-skewness and co-kurtosis matrices of the MN and the moments of the univariate normal and
SNP distributions. To clarify this assessment we include the de�nitions of the co-skewness and
co-kurtosis and an example of both types of cross-moments for the zero mean MGCI distribution
(see Proof 4 in the Appendix). Particularly, the co-skewness (Harvey and Siddique, 2000) and
co-kurtosis (Dittmar, 2002) matrices are de�ned in equations (11) and (12), respectively, and two
examples for the MGCI are shown in equations (13) and (14).

M3 = E
�
(X� �)(X� �)0 
 (X� �)0

�
= fsijkg ; 8i; j; k = 1; : : : ; n; (11)

M4 = E
�
(X� �)(X� �)0 
 (X� �)0 
 (X� �)0

�
= f�ijklg ; 8i; j; k; l = 1; : : : ; n; (12)

s112 =
1

n+ 1

�
s�112 + EGC

�
x21
�
EN [x2] + EN

�
x21
�
EGC [x2] + EN

�
x21
�
EN [x2]

	
; (13)

�1112 =
1

n+ 1

�
��1112 + EGC

�
x31
�
EN [x2] + EN

�
x31
�
EGC [x2] + EN

�
x31
�
EN [x2]

	
; (14)

where 
 stands for the Kronecker product, � is the mean vector, s�ijk and ��ijkl represent
the co-skewness and co-kurtosis for the MN distribution 8i; j; k; l = 1; : : : ; n, and EN [�] and

6
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EGC [�] denote the expected value with respect to the univariate normal and univariate GC
distribution, respectively. These results emphasize another potential advantage of using this
family of distributions: It is not only their parametric �exibility to potentially improve data �ts
and incorporate di¤erent time-varying patterns for any moment (e.g. for modelling conditional
skewness), but also their analytical simplicity. In fact, despite their apparently complex structure,
the MGC distributions are theoretically easily tractable and easy to estimate by using the estimates
of their marginal GC distributions as starting values for the optimization algorithms. In the next
section, we provide empirical evidence supporting these issues, by illustrating the great �exibility
of these densities to come out with varied shapes. We show that the MGC densities may present
heavier tails than other distributions usually employed in �nance, such as, the Student�s t or
the normal, besides being capable of capturing multimodality, what makes them very useful to
accurately forecast risk measures related with the tails of assets returns distributions.

Furthermore, the MGCI distribution overcomes the aforementioned non-positivity problem that
may arise when estimating the MES density in Perote (2004), equation (15).5

FES(X) = G(X) +

(
nY
i=1

g (xi)

)(
nX
i=1

qX
s=1

disHs (xi)

)
; (15)

The second case that is noteworthy arises when Ai = diag(1; d2i1; : : : ; d
2
iq) 8i; j = 1; : : : ; n. For

these Hermite polynomials weighting matrices, the resulting density is de�ned in equation (16)
below, which we denote as MGCII.

FII(X) =
1

n+ 1
G(X) +

1

n+ 1

(
nY
i=1

g (xi)

)(
nX
i=1

1

ci

"
1 +

qX
s=1

d2isHs (xi)
2

#)
: (16)

Obviously this density is a particular case of the former formulation but it may result more useful
and parsimonious in di¤erent applications. For this density the scaling constants, ci 8i = 1; : : : ; n;
are also those in equation (8), but its marginals, displayed in equation (17), are mixtures of a
univariate Normal and the univariate PES de�ned in Ñíguez and Perote (2004).

fII(xi) =
n

n+ 1
g(xi) +

1

(n+ 1)ci

"
1 +

qX
s=1

d2isHs (xi)
2

#
g(xi): (17)

Therefore the MGCII distribution moments can be obtained as a combination of those of the
univariate Gaussian and PES. Particularly the k� th order PES even moment can be expressed as
given in equation (18),

mik =
1

ci
EN [x

k
i ] +

1

ci

nX
s=1

k=2X
j=0

j!s!�jd
2
s; 8k even, (18)

where EMN [x
k
i ] denotes the k � th order moment of the Gaussian density and f�jg

k=2
j=0 is the

sequence of constants that makes xki =
k=2X
j=0

�jHj(x)
2 (see Ñíguez and Perote (2004) for the details

5Note that for the maximum likelihood estimates the MES must be necessarily positive and thus this density
can be estimated in many applications by choosing accurate initial values, based on the estimates for its marginal
densities that are distributed as the univariate ES in Mauleón and Perote (2000).
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of the moments of this distribution). For the sake of clarity, Table 1 includes the �rst four moments
of the "standardized" PES expanded to the fourth order compared to the ES and SNP counterparts.

[Table 1 Here]

Regarding the cross-moments all the comments stated for the MGCI apply for the MGCII as
well. Furthermore, the MGCII cdf can be easily worked out as shown in equation (19) (see Proof 5
in the Appendix), and consequently, they can be used easily for risk management purposes, either
for modelling and forecasting credit risk, portfolio VaR or short-fall probabilities. The multivariate
cdf of the MGCI can be obtained analogously in terms of the cdf of the univariate N(0,1) and
univariate SNP distributions, see León et al. (2007) for further details.

Pr [x1 � a1; � � � ; xn � an]

=
1

n+ 1

a1Z
�1

� � �
anZ
�1

G(X)dx1 � � � dxn +
n�1Y

j=1; j 6=i

ajZ
�1

g (xj) dxj

�
nX
i=1

24 aiZ
�1

g (xi) dxi �
g(ai)

ci

qX
s=1

d2is

s�1X
k=0

s!

(s� k)!Hs�k(ai)Hs�k�1(ai)

35 : (19)

The MGC densities straightforwardly admit the speci�cation of GARCH-type processes
(Engle (1982) and Bollerslev (1986)) to explain the dynamics of their conditional moments.
Particularly, the conditional variances, k2it, are introduced by considering transformations of the
type ut = �t(�) �X where �t(�) = diag(k1t; k2t; � � � ; knt).6 Speci�cally, we consider the following
speci�cation,7

rt = �t(�) + ut; (20)

utj
t�1 � MGC(0;�t(�)): (21)

In the next section we test the performance of the bivariate versions of the MGCI and MGCII
in comparison with the previous but "non-positive" attempt to generalize GC densities to the
multivariate framework, i.e. the MES, and the most widely used distributions in �nance: the MN,
implemented in the popular software package RiskMetrics (J.P. Morgan, 1996), and the MST, which
is thick-tailed for low values of the degrees of freedom parameter, �. In addition, we also include
the comparison of the asymmetric versions of the MES and MGCI densities (hereafter Sk-MES
and Sk-MGCI, respectively) with the skewed MST (hereafter Sk-MST) in Bauwens and Laurent
(2005). The "standardized" cases of the n-dimensional MST and Sk-MST are de�ned in equations
(22) and (23), respectively.8

6Note that this model is a special case of the CCC model of Bollerslev (1990), where the constant correlations
coe¢ cients are the �ij included in the "standardised" MN of the MGC densities.

7 It must be noted that the covariance matrix of rt is�t(�) = �t(�)
t(d;�)�t(�); where
t(d;�) is the covariance
matrix of the MGC process and �0 = (�;d;�), with � > 0 being the vector containing the parameters of the GARCH-
type process for the conditional variances of rt, d the vector of weights, and � the vector of correlation parameters.

8See Kotz and Nadarajah (2004) for a complete survey on the existing alternative speci�cations of the MST
distributions.
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FST (Xj�) =

�
�
�+n
2

�
(�(� � 2))

n
2 �
�
�
2

� �1 + X0X

� � 2

���+n
2

: (22)

FSST (Xj�;�) =
�
�
�+n
2

�
(�(� � 2))

n
2 �
�
�
2

�  nY
i=1

2bi

�i +
1
�i

!�
1 +

"0"

� � 2

���+n
2

; (23)

"i = (bixi + ai)�
�It
i ;

It =

(
1 if xi � �ai

bi

�1 if xi < �ai
bi

;

bi =

��
�2i +

1

�2i
� 1
�
� a2i

�1=2
;

ai =
�
�
��1
2

�p
� � 2

p
��
�
�
2

� �
�i �

1

�i

�
;

where � (�) is the gamma function, � = (�1; : : : ; �n) > 0 is the vector of asymmetry parameters,
so FSST (Xj�;�) is skewed to the right (left) if ln(�i) > 1 (< 1) and FSST (Xj�;�) reduces to
FST (Xj�) when � = 0, and � is constrained to be larger than 2 for ensuring the existence of the
covariance matrix.9

3 An empirical application to portfolio returns

The data used are daily returns of S&P500 and the Hang-Seng indices of the New York and Hong
Kong Stock Exchange, respectively, rt = (r1t; r2t), over the period December 19, 1991 to December
19, 2006 for a total of T = 3; 913 observations, obtained from Datastream. Plots and descriptive
statistics of rt are presented in Figure 1.

[Figure 1 Here]

Let the conditional distribution of rt, be either MN, MES, MGCI, MGCII or MST, with
conditional mean and covariance matrix modelled according to equations (20) and (21). In
particular, we use an AR(1) process (selected according to the Schwarz Bayesian Information
Criterion (BIC)) to �lter the small structure presented by the conditional mean of rt, and a
GARCH(1,1) process to account for volatility clustering in the conditional variance of rt, as shown
in equations (24) and (25),

�it = �i0 + �i1rit�1; 8i = 1; 2; (24)

k2it = �i0 + �i1u
2
t�1 + �i2k

2
it�1; (25)

The estimation procedure is carried out in two steps using an in-sample window of S = 3; 512
observations. Firstly, the AR(1) process is estimated by ordinary least squares and, secondly,

9For the particular bivariate-FSST (Xj�;�) case, "0" =("21t + "22t � 2�"1t"2t)=
�
1� �2

�
:
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covariance matrix coe¢ cients and density function parameters are estimated by (quasi)-maximum
likelihood ((Q)ML) using the AR(1) residuals from the �rst step. Robust QML covariance
estimators are calculated by using Bollerslev and Wooldridge (1992) formula. The Hermite
polynomials expansions were truncated at the 8th term according to accuracy criteria.10 For the
purpose of concentrating on the heavy tails of the distribution and considering the fact that the odd
parameters were found not statistically jointly signi�cant, in a �rst approach these odd parameters
were constrained to zero.11

The likelihood function is maximized using the Newton-Raphson method. We observe that
the estimation of the MGC models is not computationally very demanding providing that starting
values are chosen properly. As MGC models are nested, a usual procedure to choose those values
is to start with the estimation of simpler speci�cations and use those estimates as starting values
for the estimation of more complex models. This is important given the high nonlinearity of the
likelihood functions of MGC models. On the other hand, as it is known that estimated MGC
densities for stock returns may present multiple local modes, it is important to ensure that the
numerical maximization of the likelihood function do not yield a local optimum. For this purpose the
optimization is monitored using di¤erent starting values to ensure that the obtained ML estimates
are global optimums.12

Table 2 displays the estimates and their corresponding t-statistics (in parentheses) of the
parameters of the considered symmetric models. A �rst observation is that both indexes present
a very small linear dependency in the conditional mean: the estimated unconditional mean is
higher for the Hang-Seng (b�20 > b�10), and the AR(1) slope coe¢ cient is signi�cantly higher for
the S&P500. All AR(1) coe¢ cients are not signi�cant at 5% level, but b�10; b�20, b�11 are at 10%
level. Secondly, we observe the typical estimates of GARCH processes for �nancial returns; for
both indexes the GARCH parameters estimates of all models re�ect the existence of clustering and
high persistence in volatility (b�i1+ b�i2 near but smaller than one), although the sum (b�i1+ b�i2) is
signi�cantly lower for the MCGII model, in line with the results in Ñíguez and Perote (2004).

[Table 2 Here]

In relation to the estimated correlations, b�, they are also signi�cant and slightly higher for MGC
and MES models. It must be noted though that the correlation coe¢ cients and the conditional
variance parameters of those speci�cations have to be interpreted carefully. For example, � in the
MGC does not capture exactly the correlation among both variables, which explains the di¤erences
of this parameter estimate among the MGC densities and, the MN and MST models. Speci�cally,

10The BIC was employed to decide on the optimal lenght of the expansions. The truncation order is consistent
to other papers that use expansions beyond the fourth Hermite polynomial; see, e.g., Mauleón and Perote (2000),
Ñíguez and Perote (2004) or Perote (2004).
11The corresponding Likelihood ratio (LR) test accepted the null hypothesis H0 : di1 = di3 = di5 = di7 = 0 for

all the considered densities. Those LR test results are not displayed in the text for the sake of simplicity but are
available from the authors upon request.
12Monitored optimization is also used in the out-of-sample application below. Speci�cally, we proceed using the

same starting value for all windows, instead of using the usual optimum from the previous data window. Of course,
this mechanism is computationally ine¢ cient, i.e., more time consuming, but it is necessary to avoid getting trapped
in successive local optimums.
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for the analyzed MGC densities, the Pearson�s correlation coe¢ cient can be computed as �=3�1t�2t
where �it is the standard error of every variable obtained from the corresponding univariate GC
marginal densities, which, e.g., for the MGCII is given by,

�it = kit

�
2=3 + (1=3)

1 + 10d2i2 + 216d
2
i4 + 9360d

2
i6 + 685440d

2
i8

1 + 2d2i2 + 24d
2
i4 + 720d

2
i6 + 40320d

2
i8

�1=2
; 8i = 1; 2: (26)

Even more, the stationarity conditions of the GARCH processes in MGC distributions are also
slightly di¤erent from the usual ones as well.13

In relation to the parameter weights estimates in Table 2 (bdis; i = 1 (S&P500), i = 2 (Hang-
Seng), s = 2; 4; 6; 8) (hereafter i; j = 1; 2) we observe that most of them are signi�cant at reasonable
con�dence levels, only clearly bd12 arises as not signi�cant for the MGCII model and bd22 for all SNP
models. These estimates explain that the portfolio distribution is highly leptokurtic and that the
MGC models are able to capture parsimoniously that tail shape. This result is con�rmed by the
estimated degrees of freedom of the MST model, b�, which equals 7.1. An interesting observation
is that, the coe¢ cient bdi8 is clearly signi�cant in most of the cases, reinforcing the fact that the
densities need to be expanded at least up to the 8th polynomial to capture the probabilistic mass
in the extreme range of the tails. Note that although the interpretation of the parameters of the
MGC densities requires a complete study of the distribution moments, it is clear that dij is linked
to higher moments (i.e. heavier tails) the bigger the j � th subindex is.

For the purpose of comparing the accuracy of the di¤erent speci�cations and as a �rst
orientative approach, Table 2 includes the log-likelihood value (lnL) and the BIC, computed as
� lnL + p ln(S)=2, where p stands for the number of parameters of the model. According to
these criteria the densities based on Edgeworth and GC expansions outperform the most popular
distributions in �nance (MN and MST). This improvement in accuracy is due to that MGC
models present higher �exibility than MST models since they count with more parameters to
parsimoniously account for the target distribution shape. Among the densities based on Edgeworth
and GC series, the MGCI seems to provide the best �t in the whole domain. Nevertheless, this
result does not necessarily imply the best performance in the tails.

An illustration of the allowable shapes of the MGCII density in comparison with the MN for
their di¤erent ranges and domains, including the multimodality feature, is provided in Figure 2.
Left plots (Figures 2.A, 2.C and 2.E) correspond to the �tted MGCII and right plots (Figures
2.B, 2.C and 2.F) to the MN. Particularly, Figures 2.A and 2.B represent the whole domain of the
functions, and the rest of the �gures illustrate details of the distributions tails. It is noteworthy the
fact that the MGCII is capable of capturing di¤erent jumps in the probabilistic mass (see Figure
2.C) whilst for the same range the MN density decreases smoothly (see Figure 2.D). Furthermore,
the MGCII captures more accurately the leptokurtic density behaviour since it assigns positive
probability to areas in the tails where the MN does not (see Figures 2.E and 2.F).

[Figure 2 Here]

13See See Ñíguez and Perote (2004) for an example of the GARCH(1,1) stationarity conditions for the particular
case of the univariate PES density.

11

Page 12 of 28

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

These �ndings can also be illustrated by depicting the marginal densities of every variable
computed from the estimates of the multivariate distributions. Figure 3 includes the �tted
marginal density for S&P500 under di¤erent speci�cations (MN, MST, MES, MGCI and MGCII)
in comparison to the histogram of the data. Figure 3.A represents the densities for the whole
domain whilst Figure 3.B includes only the distributions left tails. From these pictures it is clear
that although the MES seems to capture more accurately the sharply peaked density behaviour,
the MGCII outperforms the other speci�cations in the tails. Speci�cally, this distribution is clearly
superior to less �exible distributions such as the MN and MST and other semi-nonparametric
alternatives (MES or MGCI).14 Therefore in the out-of-sample application below we analyze the
performance of the MGCII as a representative well-behaved MGC distribution.

[Figure 3 Here]

The aforementioned comparisons are focused on the tail behaviour of symmetric density
speci�cations. Nevertheless �nancial returns also seem to feature skewness. This evidence was
specially found when conditional skewness processes were incorporated in the modelling of the
returns distribution (Harvey and Siddique,1999 and 2000). In order to account also for this
feature we estimated the Sk-MES and Sk-MGCI distributions, expanded up to 8th term but also
including the odd Hermite polynomials. The corresponding results are presented in Table 3, which
also displays the estimates for the Sk-MST for comparison purposes.15 Furthermore, to provide
more evidence on the conditional dynamics of the skewness of �nancial returns, we extended the
time-varying skewness approach of Harvey and Siddique (1999) (see also León et al., 2005) to
the multivariate framework by estimating the model in equation (10) with conditional skewness
following a GARCH-type process (equation (27)),

sit = 
i0 + 
i1

�
uit�1
kit�1

�3
+ 
i2sit�1; (27)

where �1 < 
i0 < 1 represents the unconditional skewness, and 
i1 2 R and 
i2 2 R gather
the relationship between current skewness, sit, and past shocks to skewness, (uit�1=kit�1)

3, and
lagged skewness, sit�1, respectively. The stationarity condition for the conditional skewness is that

i1 + 
i2 < 1. The estimates of the corresponding density, that we denote CSk-MGCI are also
displayed in Table 3. Firstly, we note that the estimates of the conditional variance processes,
and the correlation coe¢ cients and degrees of freedom are similar to those of the corresponding
symmetric models in Table 2. A second observation is that for the S&P500 index the skewness
coe¢ cient, b�1, in the Sk-MST model is not signi�cantly di¤erent from 1, meaning that the S&P500
returns density is unconditionally symmetric, whilst for the Hang-Seng, b�2 is signi�cantly smaller
than 1 at 10% level, so the Hang-Seng returns density is slightly unconditionally skewed. This
result is con�rmed by the individual signi�cance tests of the coe¢ cients b
10 and b
20 in the CSk-
MGCI model, and the even weights coe¢ cients in the Sk-MES and Sk-MGCI models. However,
14Note that, as pointed by Mauleón and Perote (2000), the degrees of freedom of the MST might be understated

in an attempt to capture both the sharp peak and heavy tails with only this parameter. This fact explains the
misspeci�ed tail behaviour of the MST.
15The AR(1) coe¢ cients of models in Table 3 are not presented in that table for symplicity, since they are the

same than those in Table 2 because of the two-steps estimation procedure.
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the LR test cannot reject the null hypothesis H0 : d13 = d15 = d17 = d23 = d25 = d27 = 0 at any
reasonable signi�cance level for both Sk-MES and Sk-MGCI distributions. An explanation of these
results is that although the marginal density of the Hang-Seng index returns is slightly skewed,
the magnitude of its skewness coe¢ cient is not large enough so that the joint null hypothesis of
symmetry for the bivariate distribution is rejected. Turning to the conditional skewness of the
bivariate MGCI density, the estimates of b
i1 and b
i2 are positive and signi�cant, what shows that
for both indexes, days with high skewness are followed by days with high skewness, and shocks to
skewness are signi�cant, although they are less relevant than its persistence. This dynamics are
similar to those of the conditional variance of the returns indexes, i.e., there is skewness clustering
similar to volatility clustering, however the skewness persistence is lower than that observed in
volatility, as the sum b
i1 + b
i2 is not as near one as the corresponding one of the coe¢ cients in
the conditional variance process; this result is in line with those of León et al. (2005) for exchange
rates. The BIC statistics in Table 3 are just orientative since they are only comparable for the
Sk-MES and Sk-MGCI models.

[Table 3 Here]

Finally, we test the performance of the MGC densities for forecasting the full density of the
portfolio and compare the forecasts with those of a MN model by using the methodology in Diebold
et al. (1998, 1999) and Davidson and MacKinnon (1998). The application of this methodology in a
multivariate framework is based on cdfs, evaluated at the forecasted standardized AR(1) residuals,buit+1 = (rit+1 � b�it+1)=bk�1it+1, through the out-of-sample period (N = 400 observations). The
resulting so-called probability integral transforms (PITs) sequences, labelled pit; pijjt; 8i; j = 1; 2

are i.i.d. U(0; 1) under correct density speci�cation,

pit =

Z buit+1
�1

fit+1(uit+1)duit+1;

pijjt =

Z buit+1
�1

fijjt+1(uit+1)duit+1 =

R buit+1
�1

R bujt+1
�1 ft+1(uit+1; ujt+1)duit+1dujt+1R bujt+1
�1 fjt+1(ujt+1)dujt+1

; (28)

where fit(�); fijjt(�) and ft(�) denote marginal, conditional and joint distributions, respectively.
Moreover since pit is also interpreted as the p-value corresponding to the quantile buit+1 of the
forecasted density we use the p-value plot methods in Davidson and MacKinnon (1998) to compare
the models forecasting performance.16 So, if the model is correctly speci�ed the di¤erence between
the cdf of pit and the 450 line should tend to zero asymptotically. The empirical distribution
function of pit can be easily computed as,

bPpit(y%) = 1

N

NX
t=1

1(pit � y%); (29)

where 1(pit � y%) is an indicator function that takes the value 1 if its argument is true and 0
otherwise, and y% is an arbitrary grid of % points, which it is made �ner on its extremes to highlight

16Note that Davidson and MacKinnon (1998) used this method to compare the size and power of hypothesis
tests, while following Fiorentini et al. (2003) we use it to discriminate among alternative models according to their
performance for forecasting the full density.
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models di¤erences in the goodness-of-�t of the density tails. Alternatively, the p-value discrepancy
plot (i.e. plotting bPpit(y%)�y% against y%) can be more revealing when it is necessary to discriminate
among speci�cations that perform similarly in terms of the p-value plot (see Fiorentini et al., 2003).
Consequently, under correct density speci�cation, the variable bPpit(y%)� y% must converge to zero.

In Figures 4 and 5 we plot the marginal and conditional cdfs for the PIT series under either
the MN (red line) or the MGCII (blue line) densities. A sharp observation that emerges from
those graphs is that the MGCII model provides a reasonably good performance for forecasting the
full density of the portfolio and clearly overcomes the MN model commonly used in �nancial risk
applications.

[Figures 4 and 5 Here]

4 Concluding remarks

This paper introduces a family of multivariate distributions based on Edgeworth and GC
expansions. This family encompasses most of the univariate densities proposed in �nancial literature
(e.g. the so-called SNP or PES distributions), which can be obtained as the marginal densities of
the di¤erent densities nested in this family. Therefore, the MGC densities inherit the properties of
their univariate precursories in terms of their �exible parameter structure to accurately represent
all the characteristic features of most high-frequency �nancial variables (i.e. thick tails, sharp peak,
asymmetries, multimodality, conditional heteroskedasticity, etc.). The distributions of the family
are necessarily positive since they can be understood as extensions of the Gallant and Nychka
(1987) methodology to the multivariate framework. Therefore these formulations overcome the
de�ciencies of the MES density, which was the previous attempt to generalise the ES density to a
multivariate framework.

The performance of these densities is compared to �t and forecast the full density of a portfolio of
asset returns, and it is found that they perform quite satisfactorily and are superior to the MN and
the MST (or skewed versions), the most commonly used distributions in �nancial risk management.
Within the multivariate densities based on Edgeworth and GC expansions the MGCI seems to be
more accurate than the other formulations. Moreover this speci�cation allows the consideration
of conditional time-varying skewness and thus the generalization of Harvey and Siddique (1999)
model.

Nevertheless, the good performance in terms of accuracy measures in the whole domain do not
necessarily imply the best �t in the distribution tails. We show that in some cases other more
parsimonious speci�cations, such as MGCII, provide a better adjustment in the tails (although at
the cost of a loss in accuracy when accounting for the skewness or the sharp peak in the mean).
Therefore the choice among the di¤erent possibilities within the family depends not only on accuracy
issues but also on other empirical and econometric considerations.

This paper opens a hopefully fruitful line of research providing general formulations for MGC
densities, and showing evidence of their reasonably good in- and out-sample performance through
an empirical application. These results suggest that although the MGC distributions could be an
interesting tool for risk management further research seems worthwhile at both theoretical and
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empirical level, e.g. to improve data �ts by considering dynamic structures for other moments (e.g.
correlations or kurtosis) and to investigate the model performance for other �nancial applications,
such as asset pricing or credit and market risk forecasting.

Appendix

This appendix includes the proofs of some properties of the MGC densities. Particularly, the
constant that makes both the MGCI and the MGCII densities integrate up to one, the marginal
densities and the cross-moments of the MGCI distribution and the cdf for the MGCII are derived.
The corresponding proofs for other multivariate densities of the same family can be obtained
likewise.

Proof 1: The constants that make MGCI and the MGCII integrate up to one are ci = 1+
qP
s=1

d2iss!,

8i = 1; : : : ; n:

ci =

Z
g(xi)dxi +

Z " qX
s=1

disHs(xi)

#2
g(xi)dxi + 2

qX
s=1

dis

Z
Hs(xi)g(xi)dxi

=

Z
g(xi)dxi +

Z " qX
s=1

disHs(xi)

#2
g(xi)dxi

= 1 +

qX
s=1

qX
j=1

disdij

Z
Hs(xi)Hj(xi)g(xi)dxi

= 1 +

qX
s=1

d2is

Z
Hs(xi)

2g(xi)dxi = 1 +

qX
s=1

d2iss! �

Proof 2: The MGCI density integrates up to one provided that ci are the constants in Proof 1.

Z
� � �
Z
FI(X)dx1 � � � dxn =

1

n+ 1

Z
� � �
Z
G(X)dx1 � � � dxn

+
1

n+ 1

Z
� � �
Z ( nY

i=1

g (xi)

)8<:
nX
i=1

1

ci

"
1 +

qX
s=1

disHs (xi)

#29=; dx1 � � � dxn
=

1

n+ 1
+

1

n+ 1

nX
i=1

g (xi)
1

ci

"
1 +

qX
s=1

disHs (xi)

#2
=

1

n+ 1
+

n

n+ 1
= 1 �
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Proof 3: The marginal densities of MGCI are convex combinations of a normal density and a
univariate SNP density.

fI(xi) =

Z
� � �
Z
FI(X)dx1 � � � dxi�1dxi+1 � � � dxn

=
1

n+ 1

Z
� � �
Z
G(X)dx1 � � � dxi�1dxi+1 � � � dxn

+
1

(n+ 1)ci
g(xi)

"
1 +

qX
s=1

disHs (xi)

#2 Z
� � �
Z nY

j=1; j 6=i
g (xj) dx1 � � � dxi�1dxi+1 � � � dxn

+
1

n+ 1
g(xi)

nX
j=1; j 6=i

1

cj

Z
� � �
Z 24 nY

h=1; h 6=i
g (xh)

35"1 + qX
s=1

djsHs (xj)

#2
dx1 � � � dxi�1dxi+1 � � � dxn

=
1

n+ 1
g(xi) +

1

n+ 1

1

ci
g(xi)

"
1 +

qX
s=1

disHs (xi)

#2
+
n� 1
n+ 1

g(xi)

=
n

n+ 1
g(xi) +

1

n+ 1

1

ci
g(xi)

"
1 +

qX
s=1

disHs (xi)

#2
�

Proof 4: The co-skewness of the MGCI density can be obtained in terms of the corresponding co-
skewness of the MN density and the univariate moments of both the normal and SNP distribution.

s113 =

Z
� � �
Z
x21x2FI(X)dx1 � � � dxn

=
1

n+ 1

Z
� � �
Z
x21x2G(X)dx1 � � � dxn

+
1

(n+ 1)

Z
x21
1

c1
g(x1)

"
1 +

qX
s=2

d1sHs (x1)

#2
dx1

Z
x2g (x2) dx2

nY
j=3

�Z
g (xj) dxj

�

+
1

(n+ 1)

Z
x21g (x1) dx1

Z
x2
1

c2
g(x2)

"
1 +

qX
s=2

d2sHs (x2)

#2
dx1

nY
j=3

�Z
g (xj) dxj

�

+
1

(n+ 1)

nX
i=3

24Z x21g(x1)dx1

Z
x2g(x2)dx2

Z
1

ci
g(xi)

"
1 +

qX
s=2

disHs (xi)

#2
dxi

24 nY
j=1;j 6=1;2;i

Z
g (xj) dxj

3535
=

1

n+ 1

�
s�113 + EGC

�
x21
�
EN [x2] + EN

�
x21
�
EGC [x2] + EN

�
x21
�
EN [x2]

	
�

Note that s�ijk stands for the co-skewness of the MN distribution 8i; j; k = 1; : : : ; n and EN [�]
and EGC [�] denote the expected value with respect to the univariate normal and univariate GC
distribution, respectively. The other cross-moments (e.g. �1112 = EMGC

�
x31x2

�
in equation (14))

are obtained likewise.
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Proof 5: The cdf of the MGCII density can be obtained in terms of the cdf of the MN density and
the cdf of the univariate normal and PES distribution.

a1Z
�1

� � �
anZ
�1

FII(X)dx1 � � � dxn =
1

n+ 1

a1Z
�1

� � �
anZ
�1

G(X)dx1 � � � dxn

+
1

n+ 1

a1Z
�1

� � �
anZ
�1

"
nY
i=1

g (xi)

#(
nX
i=1

1

ci

"
1 +

qX
s=1

d2isHs (xi)
2

#)
dx1 � � � dxn

=
1

n+ 1

a1Z
�1

� � �
anZ
�1

G(X)dx1 � � � dxn

+
1

n+ 1

nX
i=1

2664
aiZ
�1

1

ci
g (xi)

"
1 +

qX
s=1

d2isHs (xi)
2

#
dxi

nY
j=1
j 6=i

ajZ
�1

g (xj) dxj

3775
=

1

n+ 1

a1Z
�1

� � �
anZ
�1

G(X)dx1 � � � dxn+

+
1

n+ 1

nX
i=1

2424 aiZ
�1

g (xi) dxi �
g(ai)

ci

qX
s=1

d2is

s�1X
k=0

s!

(s� k)!Hs�k(ai)Hs�k�1(ai)

35 nY
j=1; j 6=i

ajZ
�1

g (xj) dxj

35 �

See Ñíguez and Perote (2004) for the details of the proof for the cdf of the PES density.
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Tables

Table 1. Moments of the univariate ES, SNP and PES distributions de�ned in terms of H3(xi) =
x3i � 3xi and H4(xi) = x4i � 6x2i + 3.

ES SNP PES

E [xi] 0
48di3di4

1 + 6d2i3 + 24d
2
i4

0

E
�
x2i
�

1
1 + 42d2i3 + 216d

2
i4

1 + 6d2i3 + 24d
2
i4

1 + 42d2i3 + 216d
2
i4

1 + 6d2i3 + 24d
2
i4

E
�
x3i
�

6di3
12d2i3 + 576di3di4
1 + 6d2i3 + 24d

2
i4

0

E
�
x4i
�

3 + 24di3
3 + 450d2i3 + 2952d

2
i4 + 48di4

1 + 6d2i3 + 24d
2
i4

3 + 450d2i3 + 2952d
2
i4 + 48di4

1 + 6d2i3 + 24d
2
i4
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Table 2. Multivariate symmetric densities.

MN MST MES MGCI MGCII

�10

�11

.0341 (1.20)*

.0272 (1.65)*

�10

�11

�12

.0222 (2.49)

0722 (6.02)

.9209 (71.4)

.0169 (2.39)

.0542 (5.40)

.9390 (82.5)

.0173 (1.90)

.0551 (4.06)

.9299 (50.6)

.0275 (2.59)

.0712 (4.03)

.9277 (51.8)

.0136 (2.49)

.0422 (6.02)

.9208 (71.4)

�20

�21

.0321 (1.89)*

-.0138 (-.81)*

�20

�21

�22

.0059 (2.20)

.0592 (4.88)

.9369 (74.4)

.0033 (2.08)

.0466 (5.14)

.9517 (102.4)

.0042 (2.26)

.0564 (5.26)

.9411 (89.3)

.0033 (2.49)

.0529 (5.68)

.9407 (102.3)

.0031 (2.20)

.0477 (4.88)

.9364 (74.4)

d12

d14

d16

d18

.2175 (1.13)

.2602 (4.84)

.0458 (3.19)

.0062 (4.42)

-.5019 (-7.13)

.1581 (6.35)

-.0130 (-4.65)

.0009 (3.76)

.5450 (1.08)*

.0350 (4.62)

-.0086 (2.94)

.0007 (4.17)

d22

d24

d26

d28

.0001 (0.71)*

.1370 (5.04)

.0187 (2.43)

.0035 (4.56)

-.0048 (-.10)*

.0360 (7.11)

-.0022 (-2.95)

.0005 (1.41)*

.3149 (.58)*

.0001 (4.45)

-.0013 (1.33)*

.0006 (3.10)

�

�

LnL

BIC

.1097 (6.22)

-10701.8

21432.3

.1078 (6.49)

7.01 (11.5)

-10552.6

21137.8

.2859 (6.61)

-10527.0

21115.2

.2672 (6.58)

-10500.4

21062.1

.3323 (6.22)

-10554.5

21170.2

Bivariate density for S&P500 (variable 1) and Hang-Seng (variable 2) indices. t-ratios in parentheses. The
asterisk denotes approximate non-signi�cance at 5% con�dence level.
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Table 3. Multivariate skewed densities.

Sk-MST Sk-MES Sk-MGCI CSk-MGCI

�10

�11

�12

.0171 (2.39)

.0545 (5.40)

.9384 (82.1)

.0161 (1.98)

.0542 (3.78)

.9319 (49.2)

.0251 (2.52)

.0675 (4.17)

.9324 (57.6)

.0188 (2.68)

.0457 (5.11)

.9411 (87.6)

�20

�21

�22

.0035 (2.13)

.0476 (5.20)

.9506 (101)

.0034 (1.97)

.0630 (4.95)

.9367 (83.7)

.0029 (2.33)

.0554 (6.15)

.9445 (105.1)

.0041 (1.98)

.0441 (2.15)

.9478 (47.1)


10


11


12

-.0081 (-.78)*

.0539 (5.20)

.8792 (21.7)


20


21


22

-.1285 (-2.66)

.0952 (4.84)

.6329 (2.95)

�1 .9941 (62.2)

d12

d13

d14

d15

d16

d17

d18

.2126 (1.08)*

-.0298 (-.77)*

.2579 (4.62)

-.0208 (-1.27)*

.0448 (2.94)

-.0015 (-.67)*

.0061 (4.17)

-.5068 (-7.13)

-.0096 (-.51)*

.1575 (6.34)

-.0030 (-.78)*

-.0132 (-4.66)

-.0003 (-.95)*

.0009 (3.51)

�2 .9622 (42.4)

d22

d23

d24

d25

d26

d27

d28

.0001 (0.58)*

-.1014 (-2.45)

.1216 (4.45)

-.0429 (-2.33)

.0111 (1.33)*

-.0052 (-2.16)

.0002 (3.10)

-.0711 (-2.94)

-.0022 (-.25)*

.0264 (4.88)

.0012 (.59)*

-.0065 (-8.53)

.0009 (3.83)

.0001 (1.16)*

�

�

.1059 (6.35)

7.07 (11.5)

.2881 (6.70) .2717 (6.62) .3187 (6.92)

LnL

BIC

-10550.8

21142.4

-10520.6

21126.9

-10497.4

21080.5

-10623.3

21299.6

Bivariate density for S&P500 (variable 1) and Hang-Seng (variable 2) indices. t-ratios in parentheses. The
asterisk denotes approximate non-signi�cance at 5% con�dence level.
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Figures

Figure 1. S&P 500 and Hang-Seng indices daily returns. Sample: 19/12/1991 - 06/06/2005
(observations 3,513). Out-of-sample: 07/06/2005 - 19/12/2006 (observations 400).
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Figure 2: Fitted bivariate MN and MGCII densities of the Hang-Seng and S&P500 indexes returns
for di¤erent ranges and domains.

Figure 2.A Figure 2.B

Figure 2.C Figure 2.D

Figure 2.E Figure 2.F

The �rst column of the �gure corresponds to the �tted bivariate-MGCII density, and the second column to
the �tted bivariate-MN density.
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Figure 3: Fitted marginal density of S&P500 index computed from the estimated MN, MST,
MES, MGCI and MGCII compared to the histogram of the data.
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Figure 3.A. Fitted densities
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Figure 3.B. Fitted densities (left tails)
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Figure 4. P-value plots of the PITs of buit+1 obtained under the MGCII and MN models.
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Figure 5: P-value discrepancy plots of the PITs of buit+1 obtained under the MGCII and MN
models.
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