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Dynamics of State Price Densities

Wolfgang Härdle a, Zdeněk Hlávka b,∗
aCASE—Center for Applied Statistics and Economics

Wirtschaftswissenschaftliche Fakultät, Humboldt-Universität zu Berlin
Spandauer Str. 1, 10178 Berlin, Germany

bCharles University in Prague, Department of Statistics
Sokolovská 83, 18675 Praha, Czech Republic

Abstract

State price densities (SPDs) are an important element in applied quantitative fi-
nance. In a Black-Scholes world they are lognormal distributions but in practice
volatility changes and the distribution deviates from log-normality. In order to
study the degree of this deviation, we estimate SPDs using EUREX option data
on the DAX index via a nonparametric estimator of the second derivative of the
(European) call pricing function. The estimator is constrained so as to satisfy no-
arbitrage constraints and corrects for the intraday covariance structure in option
prices. In contrast to existing methods, we do not use any parametric or smoothness
assumptions.

Key words: Option pricing, State price density, Nonlinear least squares,
Constrained estimation

JEL classification: C13, C14, G13

1 Introduction

The dynamics of option prices carries information on changes in state price
densities (SPDs). The SPD contains important information on the behavior
and expectations of the market and is used for pricing and hedging. The
most important application of SPD is that it allows to price options with
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hlavka@karlin.mff.cuni.cz (Zdeněk Hlávka).
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complicated payoff functions simply by (numerical) integration of the payoff
with respect to this density.

Prices Ct(K, T ) of European options with strike price K observed at time t
and expiring at time T allow to deduce the state price density f(.) using the
relationship (Breeden and Litzenberger, 1978):

f(K) = exp{r(T − t)}∂
2Ct(K, T )

∂K2
. (1)

Equation (1) can be used to estimate SPD f(K) from the observed option
prices. An extensive overview of parametric and other estimation techniques
can be found, e.g., in Jackwerth (1999). An application to option pricing is
given in Buehler (2006).

Kernel smoothers were in this framework proposed and successfully applied
by, e.g., Äıt-Sahalia and Lo (1998), Äıt-Sahalia and Lo (2000), Äıt-Sahalia,
Wang, and Yared (2000) or Huynh, Kervella, and Zheng (2002). Äıt-Sahalia
and Duarte (2003) proposed a method for nonparametric estimation of the
SPD under constraints like positivity, convexity, and boundedness of the first
derivative. Bondarenko (2003) calculates arbitrage-free SPD estimates using
positive convolution approximation (PCA) methodology and demonstrates its
properties in a Monte Carlo studied based on closing prices of the S&P 500
options. Another sophisticated approach based on smoothing splines allow-
ing to include these constraints is described and applied on simulated data in
Yatchew and Härdle (2006). In the majority of these papers, the focus was
more on the smoothing techniques rather than on a no-arbitrage argument al-
though a crucial element of local volatility models is the absence of arbitrage
(Dupire, 1994). Highly numerically efficient pricing algorithms, e.g., by Ander-
sen and Brotherton-Ratcliffe (1997), rely heavily on no-arbitrage properties.
Kahalé (2004) proposed a procedure that requires solving a set of nonlinear
equations with no guarantee of a unique solution. Moreover, for that algorithm
the data feed already is (unrealistically) expected to be arbitrage free (Fen-
gler, 2005; Fengler, Härdle, and Mammen, 2007). In addition, the covariance
structure of the quoted option prices (Renault, 1997) is rarely incorporated
into the estimation procedure.

Insert Table 1

In Table 1, we give an overview of selected properties of different estimation
techniques. The parametric approach may be used to estimate parameters of
a probability density lying in some preselected family. The parametric mod-
els may be further extended by considering more flexible probability densities
or mixtures of distributions. Approaches based on nonparametric smoothing
techniques are more flexible since the shape of a nonparametric SPD esti-
mate is not fixed in advance and the method controls only the smoothness
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of the estimate. For example, the smoothness of a kernel regression estimator
depends mostly on the choice of the bandwidth parameter, the smoothness
of the PCA estimator (Bondarenko, 2003) depends on the choice of the ker-
nel, the smoothness of the NNLS estimator (Yatchew and Härdle, 2006) is
controlled by constraining the Sobolev norm of the SPD; using these nonpara-
metric estimators, systematic bias may typically occur in case of oversmooth-
ing. Constraints on estimators are more easily implemented for globally valid
parametric models than for local (nonparametric) models. The use of a stan-
dard smoothing technique which does not account for the constraints is not
advisable. The value of the nonparametric estimate cannot be calculated in
regions without any data and, therefore, the support of the nonparametrically
estimated SPDs is limited by the range of the observed strike prices even for
the nonparametric-under-constraints techniques.

Most of the commonly used estimation techniques do not specify explicitely
the source of random error in the observed option prices, see Renault (1997)
for an extensive review of this subject. A common approach in the SPD es-
timation is to use either the closing option prices or to correct the intraday
option prices by the current value of the underlying asset. Both approaches
lack interpretation if the shape of the SPD changes rapidly. This can be made
clear by a gedankenexperiment: if the shape of the SPD changes dramati-
cally during the day, correcting the observed option prices by the value of the
underlying asset and then estimating the SPD would lead to an estimate of
some (nonexisting) daily average of the true SPDs. We try to circumvent this
problem by introducing a simple model for the intraday covariance structure
of option prices which allows us to estimate the value of the true SPD at an
arbitrarily chosen fixed time, see also Hlávka and Svoj́ık (2008). Most often,
we are interested in the estimation of the current SPD.

We develop a simple estimation technique in order to construct constrained
SPD estimates from the observed intraday option prices which are treated as
repeated observations collected during a certain time period. The proposed
technique involves constrained LS-estimation, it enables us to construct con-
fidence intervals for the current value of SPD and prediction intervals for its
future development, and it does not depend on any tuning (smoothness) pa-
rameter. The construction of a simple approximation of the covariance struc-
ture of the observed option prices follows naturally from the derivation of our
nonparametric constrained estimator. This covariance structure is interesting
in itself, it separates two sources of random errors, and it is applicable to other
SPD estimators.

We study the development of the estimated SPDs in Germany over 8 years. A
no-arbitrage argument is imposed at each time point leading (mathematically)
to the above mentioned no-arbitrage constraints. This, of course, is a vital
feature for the trading purposes where the derived (implied) volatility surfaces
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for different strikes and maturities are needed for proper judgment of risk and
return.

The resulting SPDs and implied volatility surfaces are not smooth per se.
In most applications, this is not a disadvantage though since, first, we may
smooth the resulting SPD estimates (Hlávka and Svoj́ık, 2008) and, second,
we are mostly interested in functionals of the estimated SPD like, e.g., the
expected payoff or the forward price. Another important feature that can be
easily estimated from the nonsmooth SPDs are the quantiles, see Section 6.2
for an application.

In Section 2, we introduce notation, discuss constraints that are necessary for
estimating SPDs, and we construct a very simple unconstrained SPD estimator
using simple linear regression. In Section 3, this estimator is modified so that
it satisfies the shape constraints given in Section 2.1. We demonstrate that the
covariance structure of the option prices exhibits correlations depending both
on the strike price and time of the trade in Section 4. In Section 5, we apply our
estimation technique on option prices observed in year 1995 and we show that
the proposed approximation of the covariance structure removes dependency
and heteroscedasticity of the residuals. The dynamics of the estimated SPDs
in years 1995–2003 is studied in Section 6.

2 Construction of the estimate

The fair price of a European call option with payoff (ST − K)+ = max(ST −
K, 0), with ST denoting the price of the stock at time T , t the current time,
K the strike price, and r the risk free interest rate, can be written as:

Ct(K, T ) = exp{ −r(T − t)}
∞∫

0

(ST − K)+f(ST )dST , (2)

i.e., as the discounted expected value of the payoff with respect to the SPD
f(.). For the sake of simplicity of the following presentation, we assume in the
rest of the paper that the discount factor exp{ −r(T −t)} = 1. In applications,
this is achieved by correcting the observed option prices by the known risk free
interest rate r and the time to maturity (T −t) in (2). At the time of the trade,
the current index price and volatility are common to all options and, hence,
do not appear explicitly in equation (2).

Let us denote the i-th observation of the strike price by Ki and the correspond-
ing option price, divided by the discount factor exp{ −r(T − t)} from (2), by
Ci = Ct,i(Ki, T ). In practice, on any given day t, one observes option prices
repeatedly for a small number of distinct strike prices. Therefore, it is useful

4
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to adopt the following notation. Let C = (C1, . . . , Cn)⊤ be the vector of the
observed option prices on day t sorted by strike price. Then, the vector of
strike prices has the following structure:

K =




K1

K2

...

Kn




=




k11n1

k21n2

...

kp1np




,

where k1 < k2 < · · · < kp, nj =
∑n

i=1 I(Ki = kj) with I(.) denoting the
indicator function and 1n a vector of ones of length n.

2.1 Assumptions and constraints

Let us now concentrate on options corresponding to a single maturity T ob-
served at fixed time t. Let us assume that the i-th observed option price
(corresponding to strike price Ki) follows the model

Ct,i(Ki, T ) = µ(Ki) + εi, (3)

where εi are iid random variables with zero mean and variance σ2. In practice,
one might expect that the errors exhibit correlations depending on strike price
and time. Heteroscedasticity can be incorporated in model (3) if we assume
that the random errors εi have variance Var εi = σ2

Ki
leading to weighted

least squares. The assumptions on the distribution of random errors will be
investigated in more detail in Subsection 5.3. Following Renault (1997), we
interpret the observed option price as the price given by a pricing formula
plus an error term and in Section 4, we suggest a covariance structure for
the observed option prices taking into account the dependencies across strike
prices and times of trade.

Harrison and Pliska (1981) characterized the absence of arbitrage by the exis-
tence of a unique risk neutral SPD f(.). From formula (2) and properties of a
probability density it follows that, in a continuous setting, the function µ(.),
defined on R+, has to satisfy the following no-arbitrage constraints:

1’: it is positive,
2’: it is decreasing in K,
3’: it is convex,
4’: its second derivative exists and it is a density (i.e., nonnegative and it

integrates to one).

Let us now have a look at functions satisfying Constraints 1’–4’.

5
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LEMMA 1 Suppose that µ : R+ → R+ satisfies Constraints 1’–4’. Then the
first derivative, µ(1)(.), is nondecreasing and such that limx→0 µ

(1)(x) = −1
and limx→+∞ µ(1)(x) = 0.

Proof:
Constraint 4’ implies that the first derivative, µ(1), exists and that it is dif-
ferentiable. lim

x→+∞
µ(1)(x) exists since the function µ(1) is nondecreasing (Con-

straint 3’) and bounded (Constraint 2’). Next, lim
x→ ∞µ(1)(x) = 0 since a neg-

ative limit would violate Constraint 1’ for large x (µ(1)(x) cannot be pos-

itive since µ(x) is decreasing). Finally, Constraint 4’, 1 =
∞∫
0
µ(2)(x)dx =

lim
x→+∞

µ(1)(x) − lim
x→0

µ(1)(x), implies that lim
x→0

µ(1)(x) = −1. 2

REMARK 1 Lemma 1 allows us to restate Constraints 3’ and 4’ in terms of
µ(1)(.) by assuming that µ(1)(.) is differentiable, nondecreasing, and such that
limx→0 µ

(1)(x) = −1 and limx→+∞ µ(1)(x) = 0.

In this section, we stated only constrains guaranteeing that the SPD estimate
will be a probability density. Constraints for the expected value of the SPD
estimate are discussed in Subsection 3.6.

2.2 Existence and uniqueness

In this subsection we address the issue of existence and uniqueness of a re-
gression function, Ĉ(.), satisfying the required assumptions and constraints.
In practice, we don’t deal with a continuous function. Hence, we restate Con-
straints 1’–4’ for discrete functions, defined only on a finite set of distinct
points, say k1 < · · · < kp, in terms of their function values, C(ki), and their

scaled first differences, C
(1)
ki,kj

= {C(ki) − C(kj)}/{ki − kj }.

1: C(ki) ≥ 0, i = 1, . . . , p,
2: ki < kj implies that C(ki) ≥ C(kj),

3: ki < kj < kl implies that −1 ≤ C
(1)
ki,kj

≤ C
(1)
kj ,kl

≤ 0.

It is easy to see that Constraints 1–2 are discrete versions of Constraints 1’
and 2’. Constraint 3 is a discrete version of Constraints 3’ and 4’, see Remark 1.

From now on, similarly as in Robertson, Wright, and Dykstra (1988), we
think of the collection, C, of functions satisfying Constraints 1–3 as a subset
of a p-dimensional Euclidean space, where p is the number of distinct ki’s.
The constrained regression, Ĉ, is in this setting the closest point of C to the
vector C of the observed option prices with distances measured by the usual

6
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Euclidean distance

d(f, C) = (f − C)⊤(f − C) =
n∑

i=1

{f(Ki) − C(Ki)}2. (4)

From this point of view, the regression function, Ĉ, consists only of the values
of the function in the points k1, . . . , kp. The first and second differences are
used to approximate the first and the second derivatives, respectively.

We claim that the set, C, of functions satisfying Constraints 1–3, is closed
in the topology induced by the metric given by Euclidean distance and it is
convex, i.e., if f, g ∈ C and 0 ≤ a ≤ 1, then af + (1 − a)g ∈ C.

LEMMA 2 If Ĉ ∈ C is the regression of C(Ki), i = 1, . . . , n, on k1 < · · · <
kp under Constraints 1–3 and if a and b are constants such that a ≤ C(Ki) ≤ b,

∀i, then a ≤ Ĉ(ki) ≤ b+ (kp − k1).

Proof:
It is not possible that Ĉ(ki) lies above b for all ki’s (otherwise we would
get a better fit only by shifting Ĉ(ki)). The upper bound now follows from
Constraint 3.

The validity of the lower bound may be demonstrated similarly. Clearly, it is
not possible that Ĉ(ki) lie below a for all ki’s. Moreover, it is not possible that
Ĉ(k1) ≥ · · · ≥ Ĉ(ki) ≥ a > Ĉ(ki+1) ≥ · · · ≥ Ĉ(kp) for any i since in such

situation the fit could be trivially improved by increasing Ĉ(ki+1), . . . , Ĉ(kp)

by some small amount, e.g., by a − Ĉ(ki+1) without violating any of the Con-
straints 1–3. 2

THEOREM 1 A regression, Ĉ = arg minf ∈C d(f, C), satisfying Constraints
1–3, exists and it is unique.

Proof:
Lemma 2 implies that Ĉ belongs to a subset, S, of C bounded below by a and
above by b + (kp − k1). Thinking of the functions as of points in Euclidean
space, it is clear that the continuous function d(f, C) attains its minimum on
the closed and bounded set S. The uniqueness of Ĉ follows from the convexity
of S using, e.g., Robertson, Wright, and Dykstra (1988, Theorem 1.3.1). 2

7
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2.3 Linear model

With the given option data, constraints 1–3 of Subsection 2.2, can be refor-
mulated using linear regression models with constraints.

In the following, we fix the time t and the expiry date T and we omit these
symbols from the notation. In Subsection 2.2 we have noted that the option
prices are repeatedly observed for a small number p of distinct strike prices.
Defining the expected values of the option prices for a given strike price,
µj = µ(kj) = E{C(kj)}, we can write

µp = β0,

µp−1 = β0 + β1,

µp−2 = β0 + 2β1 + β2,

µp−3 = β0 + 3β1 + 2β2 + β3,
...

µ1 = β0 + (p − 1)β1 + (p − 2)β2 + · · · + βp−1.

Thus, we fit our data using coefficients βj, j = 1, . . . , p. The conditional means
µi, i = 1, . . . , p are replaced by the same number of parameters βj , j =
0, . . . , p − 1 which allow to impose the shape constraints in a more natural
way.

Insert Figure 1

The interpretation of the coefficients βj can be seen in Figure 1, which shows
a simple situation with only four distinct strike prices (p = 4). β0 is the mean
option price at point 4. Constraint 1’, Subsection 2.1, implies that it has to
be positive. β1 is the difference between the mean option prices at point 4 and
point 3; Constraint 2’ implies that it has to be positive. The next coefficient, β2,
approximates the change in first derivative in point 3 and it can be interpreted
as an approximation of the second derivative in point 3. Constraint 3’ implies
that β2 has to be positive. Similarly, β3 is an estimate of the (positive) second
derivative in point 2. Constraint 4’ can be rewritten as β2 + β3 ≤ 1.

In practice, we start with the construction of a design matrix which allows
us to write the above model in the following linear form. For simplicity of
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presentation, we again set p = 4:




µ1

µ2

µ3

µ4




=




1 3 2 1

1 2 1 0

1 1 0 0

1 0 0 0







β0

β1

β2

β3




. (5)

Ignoring the constraints on the coefficients would lead to a simple linear re-
gression problem. Unfortunately, this approach does not have to lead, and
usually does not, to interpretable and stable results.

Model (5) in the above form can be reasonably interpreted only if the observed
strike prices are equidistant and if the distances between the neighboring ob-
served strike prices are equal to one. If we want to keep the interpretation of
the parameters βj as the derivatives of the estimated function, we should use
the design matrix

∆ =




1 ∆1
p ∆1

p−1 ∆1
p−2 · · · ∆1

3 ∆1
2

1 ∆2
p ∆2

p−1 ∆2
p−2 · · · ∆2

3 0
...

...

1 ∆p−2
p ∆p−2

p−1 0 · · · 0 0

1 ∆p−1
p 0 0 · · · 0 0

1 0 0 0 · · · 0 0




(6)

where ∆i
j = max(kj − ki, 0) denotes the positive part of the distance between

ki and kj, the i-th and the j-th (1 ≤ i ≤ j ≤ p) sorted distinct observed values
of the strike price.

The vector of conditional means µ can be written in terms of the parameters
β as follows




µ1

µ2

...

µp




= µ = ∆β = ∆




β0

β1

...

βp−1




. (7)

The constraints on the conditional means µj can now be expressed as condi-
tions on the parameters of the model (7). Namely, it suffices to request that
βi > 0, i = 0, . . . , p − 1 and that

∑p−1
j=2 βj ≤ 1.

9
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The model for the option prices can now be written as

C(K) = X∆β + ε, (8)

where X∆ is the design matrix obtained by repeating each row of matrix ∆
ni-times, i = 1, . . . , p.

3 Implementing the constraints

In order to impose Constraints 1–3 on parameters βi, i = 0, . . . , p − 1, we
propose the following reparameterization of the model in terms of parameters
θ = (θ0, . . . , θp−1)

⊤:

β0(θ) = exp(θ0),

β1(θ) = exp(θ1),
...

βp−1(θ) = exp(θp−1),

under the constraint that
∑p−1

j=2 exp(θj) < 1. Clearly, the parameters βi(θ)
satisfy the constraints

βi(θ)> 0, i = 0, . . . , p − 1,
p−1∑

j=2

βj(θ)< 1.

This means that the parameters β2(θ), . . . , βp−1(θ) can be considered as point
estimates of the state price density (the estimates have to be positive and
integrate to less than one). Furthermore, in view of Lemma 1, it is worthwhile
to note that the parameters satisfy also

−
k∑

j=1

βj ∈ (−1, 0), for k = 1, . . . , p − 1.

The model (8) rewritten in terms of parameters θi, i = 0, . . . , p is a nonlin-
ear regression model which can be estimated using standard nonlinear least
squares or maximum likelihood methods (Seber and Wild, 2003). The main
advantage of these methods is that the asymptotic distribution is well known
and that the asymptotic variance of the estimator can be approximated using
numerical methods implemented in many statistical packages.

10
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3.1 Reparameterization

The following reparameterization of the model in terms of parameters ξ =
(ξ0, . . . , ξp)

⊤ simplifies the calculation of the estimates because it guarantees
that all constraints are automatically satisfied:

β0(ξ)= exp(ξ0),

β1(ξ)=
exp(ξ1)∑p

j=1 exp(ξj)
,

...

βp−1(ξ)=
exp(ξp−1)∑p
j=1 exp(ξj)

.

This property simplifies the numerical minimization algorithm needed for the
calculation of the estimates.

The equality

1
∑p−1

j=1 βj(ξ)
= 1 +

exp(ξp)∑p−1
j=1 exp(ξj)

shows the meaning of the additional parameter ξp. Setting this parameter to
−∞ would be the same as requiring that

∑p−1
j=1 βj(ξ) = 1. Large values of

the parameter ξp indicate that the estimated coefficients sum to less than one
or, in other words, the observed strike prices do not cover the support of the
estimated SPD. Notice that, by setting ξp = −∞, we could easily modify our
procedure and impose the equality constraint

∑p−1
j=1 βj(ξ) = 1.

3.2 Inverse transformation of model parameters

For the numerical algorithm, it is useful to know how to calculate ξs from
given βs. This is needed, for example, to obtain reasonable starting points for
the iterative procedure maximizing the likelihood.

LEMMA 3 Given β = (β1, . . . , βp)
⊤, where βp = 1 −∑p−1

i=1 βi, the parameters
ξ = (ξ1, . . . , ξp)

⊤ satisfy the system of equations

(
β1⊤

p − Ip

)
exp ξ⊤ = A exp ξ⊤ = 0, (9)

where Ip is the (p × p) identity matrix. Furthermore,

rank A = p − 1. (10)
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The system of equations (9) has infinitely many solutions which can be ex-
pressed as

exp(ξ) =
(

A − A − Ip

)
z, (11)

where A − denotes a generalized inverse of A and where z is an arbitrary vector
in Rp such that the right hand side of (11) is positive.

Proof:
Parts (9) and (10) follow from the definition of β(ξ) and from simple algebra
(notice that the sum of rows of A is equal to zero). Part (11) follows, e.g.,
from Anděl (1985, Theorem IV.18). 2

It remains to choose the vector z in (11) so that the solution of the system of
equations (9) is positive.

PROPOSITION 1 The rank of the matrix A − A − Ip is 1. Hence, any so-
lution of the system of equations (9) is a multiple of the first column of the
matrix A − A − Ip. The vector z in (11) can be chosen, e.g., as z = ±1p, where
the sign is chosen so that the resulting solution is positive.

Proof:
The definition of a generalized inverse is

A A − A − A = A(A − A − Ip) = 0. (12)

Lemma 3 says that rank A = p − 1 and, hence, equation (12) implies that
rank(A − A −Ip) ≤ 1. Noticing that A − A 6= Ip means that rank(A − A −Ip) > 0
and concludes the proof. 2

3.3 The algorithm

The proposed algorithm consists of the following steps:

1: obtain a reasonable initial estimate β̂, e.g., by running the Pool-Adjacent-
Violators algorithm (Robertson, Wright, and Dykstra, 1988, Chapter 1)
on the unconstrained least squares estimates of the first derivative of the
curve,

2: transform the initial estimates β̂ into the estimates ξ̂ using the method
described in Subsection 3.2,

3: estimate the parameters of the model (8) by minimizing the sum of
squares {C(K) − X∆β(ξ)} ⊤ {C(K) − X∆β(ξ)} in terms of parameters ξ
(see Subsection 3.1) using numerical methods.

12
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An application of this simple algorithm on real data is given in Subsection 5.1.

3.4 Asymptotic confidence intervals

We construct confidence intervals based on the parameterization β(θ) intro-
duced at the beginning of this section. The confidence limits for parameters
θi are exponentiated in order to obtain valid pointwise confidence bounds for
the true SPD. The main advantage of this approach is that such confidence
bounds are always positive.

An alternative approach would be to construct confidence intervals based on
the parameterizations in terms of βi (Section 2.3) or ξi (Section 3.1). However,
the limits of confidence intervals for βi may be negative and confidence inter-
vals for the SPD based on parameters ξi would have very complicated shapes
in high-dimensional space and could not be easily calculated and interpreted.

Another approach to the construction of the asymptotic confidence intervals
can be based on the maximum likelihood theory. Assuming normality, the
log-likelihood for the model (8) can be written as:

l(C, X∆, θ, σ) = −n log σ − 1

2σ2
{ C − X∆β(θ)} ⊤ { C − X∆β(θ)}, (13)

where X∆ is the design matrix given in (8). This normality assumption are
justified later by a residual analysis. The maximum likelihood estimator is
defined as:

θ̂ = arg max
θ
l(C, X∆, θ, σ) (14)

and it has asymptotically a p-dimensional normal distribution with mean θ
and the variance given by the inverse of the Fisher information matrix:

F −1
n =

{
−E

(
∂2

∂θ∂θ⊤ l(C, X∆, θ, σ)

)}−1

. (15)

More precisely, n1/2(θ̂−θ)
L−→ Np(0, F −1

n ). In this framework, the Fisher infor-
mation matrix can be estimated by numerically differentiated Hessian matrix
of the log-likelihood. For details we refer, e.g., to Serfling (1980, Chapter 4).
The confidence intervals calculated for parameters θ may be transformed (ex-
ponentiated) to a confidence intervals for the SPD (β). We have not pursued
the maximum likelihood approach since it was numerically less stable in this
situation.

Note that, under the assumptions of normality, the maximum likelihood esti-
mate is equal to the nonlinear least squares estimate (Seber and Wild, 2003,
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Section 2.2) and the asymptotic variance of θ̂ = exp(β) may be approximated
by Var θ̂ = {diag(exp θ̂)X ⊤

∆ X∆ diag(exp θ̂)} −1σ̂2. Hence, asymptotic confidence
intervals for θi may be calculated as (θ̂i ± u1−α/2ŝii), where u1−α/2 is 1 − α/2
quantile of standard Normal distribution and ŝii denotes the i-th diagonal el-
ement of Var θ̂. By exponentiating both limits of this confidence interval, we
immediately obtain 1 − α confidence interval for βi = exp θi.

The construction of the estimator guarantees that the matrix X∆ has full
rank—this implies that X ⊤

∆ X∆ is invertible and the asymptotic variance matrix
Var θ̂ always exists. If the number of observations is equal to the number of
distinct strike prices (if there is only one option price for each strike price), it
may happen that σ̂2 = 0 and the confidence intervals degenerate to a single
point.

3.5 Put-Call parity

The prices of put options can be easily included in our estimation technique
by applying the Put-Call parity of the option prices. Assuming that there are
no dividends or costs connected with the ownership of the stock, each put
option with price Pt(K, T ) corresponds to a call option with price

Ct(K, T ) = Pt(K, T ) + St − Ke−r(T −t).

In this way, the prices of the put options can be converted into the prices of
call options and used in our model (Stoll, 1969). Statistically speaking, these
additional observations will increase the precision of the SPD and will lead to
more stable results.

In Germany, the Put-Call parity might be biased by an effect of DAX index
calculation which is based on the assumption that the dividends are reinvested
after deduction of corporate income tax. As the income tax of some investors
might be different, the value of DAX has to be corrected before using Put-Call
parity in subsequent analysis. For the exact description of this correction we
refer to Hafner and Wallmeier (2000) who were analyzing the same data set.

Insert Figure 2

The construction of our estimates allows to include the put option prices
in more direct way by fitting the two curves separately using two sets of
parameters. The situation is displayed in Figure 2. Our assumption that the
same SPD drives both the put and call option prices is naturally translated
in terms of the coefficients αi and βi

14
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αi = βp−i+1, for i = 2, . . . , p − 1

α1 = 1 −
p−1∑

i=1

βi.

The problem of estimating regression functions under such linear equality
constraints is solved, e.g., in Rao (1973). In Section 4.3, we will investigate
also the covariance of the observed call and put option prices and the suggested
model will be presented in detail.

3.6 Expected value constraints

In Subsection 2.3, we have explained that the parameters β2, . . . , βp−1 can be
interpreted as estimates of the state price density in points k2, . . . , kp−1. From
the construction of the estimator, see also Figure 1, it follows that parameter β1

can be interpreted as the mass of the SPD lying to the right of kp−1. Assuming
that the observed strike prices cover entirely the support of the SPD, the mass
β1 could be attributed to the point kp. Notice that the reparameterization
introduced in Subsection 3 guarantees that

∑p−1
i=1 βi(ξ) < 1 and it immediately

follows that interpreting β1 as the estimate of the SPD in point kp does not
violate any constraints described in Subsection 2.2.

Referring to the previous Subsection 3.5 it is clear that the parameter βp ≡
α1 = 1 − ∑p−1

i=1 βi can be interpreted as the estimator of the SPD in k1. The
parameterization of the problem now guarantees that

∑p
i=1 βi = 1.

The expected value of the underlying stock under the risk-neutral measure can

now be estimated as ÊSPD =
∑p

i=1 kiβp−i+1. From economic theory it follows

that ÊSPD has to be equal to the forward price of the stock. This constraint
can be easily implemented by using the fact that β1 and βp estimate the mass
of the SPD respectively to the right of kp−1 and to the left of k2.

If ÊSPD is smaller than the forward price exp{r(T − t)}St of the stock, it

suffices to move the mass β1 further to the right. If ÊSPD is too large, we move
the mass βp to the left. More precisely, setting

k̃1 = k1 − I(ÊSPD > exp{r(T − t)}St)(ÊSPD − exp{r(T − t)}St)/βp,

k̃p = kp + I(ÊSPD < exp{r(T − t)}St)(exp{r(T − t)}St − ÊSPD)/β1,

we get

exp{r(T − t)}St = k̃1βp +
p−1∑

i=2

kiβp−i+1 + k̃pβ1.

15
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This choice of k̃1 and k̃p guarantees that the expected value corresponding to
the estimator β1, . . . , βp is equal to the forward price St of the stock, see the
beginning of Section 6 for an application of this technique.

In the following Sections 5 and 4, we will concentrate on the properties of
β2, . . . , βp−1 and further improvements in the estimation procedure.

4 Covariance structure

In this section, we use a model for the SPD development throughout the day
to derive the covariance structure of the observed option prices depending on
the strike prices and time of the trade. Considering the covariance structure
in the estimation procedure solves the problems with heteroscedasticity and
correlation of residuals that will be demonstrated in Subsection 5.3.

In this model, most recent option prices have the smallest variance and thus
the largest weight in the estimation procedure. Similarly, the covariance of
two option prices with the same strike price at approximately the same time
is larger than covariances of prices of some more dissimilar options.

We start by rewriting the model with iid error terms so that it can be more
easily generalized. In Subsection 4.1, we present a model that accounts for
heteroscedasticity and which is further developed in Subsections 4.2 and 4.3
where an approximation of the covariance is calculated for any two options
prices using only their strike prices and time of the trade. In Subsection 4.4,
we suggest to decompose the error term into two parts and we show how
to estimate these additional parameters by maximum likelihood method. The
analysis of the resulting standardized residuals in Subsection 5.4 suggests that
this covariance structure is applicable to our dataset.

Until now, we assumed that the i-th option price (on a fixed day t) satisfies

Ci(kj) =∆j β̃ + εi (16)

or

Ci(kj) =∆j β̃i + εi,

β̃i = β̃i−1, (17)

where εi are iid random errors with zero mean and constant variance σ2,
β̃ = β̃1 = · · · = β̃i denotes the column vector of the unknown parameters, and
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∆j denotes the j-th row of the matrix ∆ defined in (6), i.e.,

∆j = (1,∆j
p,∆

j
p−1, . . . ,∆

j
j+1, 0, . . . , 0︸ ︷︷ ︸

(j−1)

).

The residual analysis in Section 5.3 clearly demonstrates that the random
errors εi are not independent and homoscedastic and we have to consider
some generalizations that lead to a better fit of the data set.

4.1 Heteroscedasticity

Assume that the i-th observation, corresponding to the j-th smallest exercise
price kj , can be written as

Ci(kj) =∆j β̃i, (18)

β̃i = β̃ + εi, (19)

i.e., there are iid random vectors εi having iid components with zero mean
and variances σ2 in the state price density β̃i. Clearly, the variance matrix of
the vector of the observed option prices C is then

VarC = σ2 diag(X∆X ⊤
∆ ), (20)

where X∆ is the design matrix in which each row of the matrix ∆ is repeated
nj times, j = 1, . . . , p.

REMARK 2 Assuming that the observed option prices have the covariance
structure (20), the least squares estimates do not change and

Var β̂ = σ2{ X ⊤
∆ diag(X∆X ⊤

∆ )−1X∆}.

Another possible model for the heteroscedasticity would assume that the
changes are multiplicative rather than additive.

Ci(kj) =∆j β̃i

log β̃i = log β̃ + εi

This model leads to a variance of Ci(kj) that depends on the value of the SPD:

VarCi(kj) = σ2{β2
0 +(∆j

p)
2β2

1 +(∆j
p−1)

2β2
2 +(∆j

p−2)
2β2

3 + · · · +(∆j
j+1)

2β2
j }.

It is straightforward that Remark 2 applies also in this situation.
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4.2 Covariance

Let us now assume that there are random changes in the state price density
coefficients β̃i over time so that we have

Ci(kj) =∆j β̃i,

β̃i = β̃i−1 + εi, (21)

where, for fixed i, β̃i is the parameter vector and εk, k = i, i − 1, . . . are
iid random vectors having iid components with zero mean and variances σ2.
For nonequidistant time points, let δi denote the time between the i-th and
(i − 1)-st observation. The model is

Ci(kj) =∆j β̃i,

β̃i = β̃i−1 + δ
1/2
i εi (22)

and it leads to the covariance matrix with elements

Cov{Ci−u(kj), Ci−v(ki)} = Cov(∆j β̃i−u,∆iβ̃i−v)

= σ2∆j∆
⊤
i

min(u,v)∑

l=1

δi+1−l. (23)

When we observe the i-th observation, we are usually interested in the esti-
mation of the current value of the vector of parameters β̃i.

4.3 Including put options

Similarly, we obtain the covariance for the price of the put options, Pi(kj).
Using the relations between the α and β parameters, αk = βp−k+1, for k =
2, . . . , p − 1 and after some simplifications, we can write the model for the
price of the put options, Pi(kj), as

Pi(kj) =∆jα̃i,

α̃i = α̃i−1 + δ
1/2
i εi, (24)

where α̃ = (α0, α1, βp−1, βp−2, . . . , β2)
⊤ and ∆P

j denotes the corresponding row
of the design matrix, i.e.,

∆P
j = (1,∆1

j ,∆
2
j , . . . ,∆

j−1
j , 0, . . . , 0︸ ︷︷ ︸

(p−j)

).
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In this way, we obtain a joint estimation strategy for both the call and put
option prices:

Ci(kj) =∆j β̃i,

Pi(kj) =∆P
j α̃i,



β̃i

α̃i


=



β̃i−1

α̃i−1


+ δ

1/2
i εi, (25)

which directly leads to covariance

Cov{Pi−u(kj), Pi−v(ki)} =Cov(∆P
j α̃i−u,∆

P
i α̃i−v)

=σ2∆P
j (∆P

i )⊤
min(u,v)∑

l=1

δi+1−l (26)

and

Cov{Ci−u(kj), Pi−v(ki)}
=Cov(∆jβ̃i−u,∆

P
i α̃i−v)

=σ2
min(u,v)∑

l=1

δi+1−l

p−1∑

k=2

∆j
p+1−k∆

p+1−k
i . (27)

Together with (23), equations (26) and (27) allow to calculate the covariance
matrix of all observed option prices using only their strike prices and the times
between the transactions.

4.4 Error term for option prices

Using the model (25) would mean that all changes observed in the option
prices are due only to changes in the SPD. It seems natural to add another
error term, ηi, as a description of the error in the option price:

Ci(kj) =∆j β̃i + ηi,

Pi(kj) =∆P
j α̃i + ηi,



β̃i

α̃i


=



β̃i−1

α̃i−1


+ δ

1/2
i εi, (28)

where ηi ∼ N(0, ν2) are iid random variables independent of the random
vectors εi. Here, normality assumptions are added both for ηi and εi so that the
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variance components parameters ν2 and σ2 may be estimated by the maximum
likelihood method.

Next, in order to simplify the notation, let us fix the index i and let Y denote
the vector of observed call and put option prices, X∆ the corresponding design
matrix consisting of the corresponding rows ∆j and ∆P

j , and γ̃ the combined
vector of unknown parameters. Denoting by Σi the matrix containing the
covariances defined in (23,26,27), we can rewrite the model (25) as

Y = X∆γ̃ + ξ, (29)

where Var ξ = VarY = σ2Σi+ν
2In = σ2(Σi+ψ

2In) = σ2V , where ψ2 = ν2/σ2.
Differentiating the log-likelihood

l(β, σ2, ψ2) = −n

2
log(2π) − 1

2
log |σ2V | − 1

2σ2
(Y − X∆γ̃)

⊤V −1(Y − X∆γ̃)

we obtain

∂l(β, σ2, ψ2)

∂ψ2
= − 1

2
tr(V −1) +

1

2σ2
(Y − X∆γ̃)

⊤V −2(Y − X∆γ̃). (30)

For any fixed value of the parameter ψ2, it is straightforward to calculate
optimal σ2 and γ̃. Hence, the numerical maximization of the log-likelihood can
be based on a search for a root (zero) of the one-dimensional function (30).

Moreover, the variance components parameters σ2 and ν2 = ψ2σ2 have a very
natural econometric interpretation: σ2 describes the speed of change of the
SPD and ν2 the error in observed option prices.

5 Application to DAX data

We analyze a data set containing observed option prices for various strike
prices and maturities. Other variables are the interest rate, date, and time. In
1995, one observed every day about 500 trades, in todays more liquid option
markets this number has increased approximately 10 times. In our empirical
study we will consider the time period from 1995 up to 2003 thus also covering
more recent liquid option market.

Figure 3 displays the observed prices of European call options written on the
DAX for the 16. January 1995. The left panel shows the ensemble of call option
prices for different strikes and maturities as a free structure together with a
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smooth surface. The typical shape of dependency of the option price on the
strike price can be observed on the right panel containing the option prices
only for the shortest time to expiry, τ = T − t = 4 days.

Insert Figure 3

In order to illustrate the method, we apply it to DAX option prices on two
consecutive days. These days (16th and 17th January 1995) were selected since
they provide nice insight into the behavior of the presented methods.

5.1 Estimator with iid random errors

We start by a comparison of the unconstrained and constrained estimator
described respectively in Subsections 2.3 and 3.1.

Insert Figure 4

For the European call option prices displayed in the right hand plot in Figure 3,
we obtain the estimates plotted in Figure 4. The top plot displays the original
data, the second plot shows the estimate of the first derivative, and the third
plot shows the estimate of the second derivative, i.e., the state price density.
Actually, all plots contain two curves, both obtained using model (8). The
thick line is calculated using the parameters βi without constraints whereas
the thin line uses the reparameterization βi(ξ) given in Subsection 3.1. In
Figure 4, these two estimates coincide since the model maximizing the likeli-
hood without constraints, by chance, fulfills the constraints (∃ξ : βi = βi(ξ),
i = 0, . . . , p− 1) and hence it is clear that the same parameters maximize also
the constrained likelihood.

Insert Figure 5

The situation, in which the call pricing functions fitted with and without
constraints differ, is displayed in Figure 5. Notice that the difference between
the two regression curves is small whereas the difference between the estimates
of the state price density (i.e., the second derivative of the curve) is surprisingly
large. The unconstrained estimate shows very unstable behavior on the left
hand side of the plot. The constrained version behaves more reasonably. Very
small differences between the fitted call pricing functions in the top plot in
Figure 5 leads to huge differences in the estimates of second derivative.

We therefore conclude that small error in the estimate of the call pricing
function may lead to large scale error in the estimates of the first and second
derivatives. The scale of this type of error seems to be limited by imposing
the shape constraints given in Subsection 2.2.
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5.2 Confidence intervals

Insert Figure 6

Insert Figure 7

In Figures 6 and 7 we plot both estimates together with 95% confidence in-
tervals. Notice that, in the unconstrained model, the estimates of the values
of the SPD are just the parameters of the linear regression model. Hence, the
confidence intervals for the parameters are, at the same time, also confidence
intervals for the SPD. These confidence intervals for 16th and 17th January
are displayed in the upper plots in Figures 6 and 7. The drawbacks of this
method are clearly visible. In Figure 6, the lower bounds of the confidence
intervals only asymptotically satisfy the condition of positivity. In Figure 7,
we observe large variability on the left-hand side of the plot (the region with
low number of observations). Again, some of the lower bounds are not posi-
tive. Clearly, the confidence intervals based on the unconstrained model make
sense only if the constraints are, by chance, satisfied. Even if this is the case,
there is no guarantee that the lower bounds will be positive. The lower panels
in Figures 6 and 7 display the nonnegative asymptotic confidence intervals
calculated according to Subsection 3.4.

In Figure 6, both type of confidence intervals provide very similar results. The
only difference is at the minimum and maximum value of the independent
variable (strike price) where the unconstrained method provides negative lower
bounds and the conditional method leads to very large upper bounds of the
confidence intervals.

In Figure 7, we plot the confidence intervals for January 17th. In the central
region of the graphics, both types of confidence intervals are quite similar. On
the left and right hand side, both methods tend to provide confidence intervals
that seem to be overly wide. For the constrained method, we observe that the
length of the confidence intervals explodes when the estimated value of the
SPD is very close to zero and, at the same time, the number of observation in
that region (see the description of the horizontal axis) is small.

5.3 Residual analysis

Insert Figure 8

The residuals on 17th January 1995 are plotted in Figure 8. The time of
trade (in hours) is denoted by the plotting symbol. The circle, square and the
star denote denote the trades carried out in the morning, midday and in the
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afternoon, respectively. The size of the symbols corresponds to the number of
residuals lying in the respective areas.

The majority of the residuals correspond to the strike prices of 2075DEM and
2100DEM. The variance of the residuals is very low on the right hand side of
the plot and it rapidly increases when moving towards smaller strike prices.
On the left hand side of the plot, for strike prices smaller than 2000, we have
only very few observations and cannot judge the residual variability reliably.

Apart of the obvious heteroscedasticity we observe also a very strong system-
atic movement in the SPD throughout the day: the circles, corresponding to
the first third of the day, are positive and all stars, denoting the afternoon
residuals, are negative. Similar patterns can be observed every day—residuals
corresponding to the same time are having the same sign.

We conclude that the assumption of iid random errors is obviously not fulfilled
as the option prices tend to follow the changes of the market during the day.

5.4 Application of the covariance structure

Insert Figure 9

In Figure 9, we present the estimator combining both put and call option prices
and using the covariance structure proposed in Subsection 4.4. In comparison
with the results plotted in Figure 7, we observe shorter length of the confidence
intervals.

The estimates of the variance components parameters are ψ̂2 = 17.77, σ̂2 =
0.0041, and ν̂2 = 0.0722. For interpretation, it is more natural to consider
ν̂ = 0.2687 suggesting that 95% of the option prices were on 17th January
1995 not further than 0.5DEM from the correct option price implied by the
current (unobserved) SPD.

Insert Figure 10

The standardized residuals in the top panel of Figure 10 were plotted using the
same technique as the residuals in Figure 8. Whereas the residuals for the iid
model showed strong correlations and heteroscedasticity, the structure of the
standardized residuals looks much better. It is natural that the residuals are
larger in the central part since more than 90% of observations have strike price
between 2050 and 2100. The largest residuals were omitted in the residual plot
so that the structure in the central part is more visible but the lower panel
of Figure 10 displays the histogram of all residuals. The distribution of the
residuals seems to be symmetric and its shape is not too far from Normal
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distribution. However, the kurtosis of this distribution is too large and formal
tests reject normality.

Insert Figure 11

In Figure 11 we plot prediction intervals for the SPD obtained only by recal-
culating the covariance structure (28) with respect to some future time. More
precisely, the prediction intervals are obtained from option prices observed
until i. Then, using the notation of Subsection 4.4, we have for the future β̃i+1

and α̃i+1:

Ci(kj)= ∆j β̃i + ηi,

Pi(kj)= ∆P
j α̃i + ηi,



β̃i+1

α̃i+1


=



β̃i

α̃i


+ δ

1/2
i+1εi+1. (31)

It is now easy to see that the only modification that has to be done for es-
timating β̃i+1 is to add the length of the forecasting horizon δi+1 to the sum
in (23), (26), and (27) and to recalculate the confidence regions using this
variance matrix with the same estimates of the variance parameters σ2 and
ν2. In Figure 11, the 95% confidence intervals for the true SPD are denoted
by black dashed line. The grey dashed lines denote the prediction intervals
calculated for each 30 minutes for next 5 hours. In this way, we can obtain a
simple approximation for future short-term fluctuations of the SPD. In long
run, the prediction intervals become too wide to be informative.

6 Dynamics of SPD

In order to study the dynamics of SPDs, we calculated basic moment char-
acteristics of the estimated SPDs. Note that the estimator does not allow to
estimate the SPD in the tails of the distribution. We can only estimate the
probability mass lying to the left (1 − ∑p−1

i=1 βi) and to the right (β1) of the
available strike price range. Hence, the moments calculated in this section
are only approximations which cannot be calculated more precisely without
additional assumptions, e.g., on the tail behavior or parametric shape of the
SPD.

Insert Figure 12

Insert Figure 13
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The estimated mean and variance in the first Quarter of 1995 are plotted
as lines in Figures 12–13. Note, that the SPDs in this period were always
estimated using the options with shortest time to maturity. This means that
the time to maturity is decreasing linearly in both plots, but it jumps up
whenever the option with the shortest time to maturity expires. These jumps
occurred at days 16, 36, and 56.

From no-arbitrage considerations it follows that the mean of the SPD should
correspond to the value of DAX,

ÊSPD =
∫
STf(ST )dST = exp{r(T − t)}St.

see also the discussion in Subsection 3.6. In Figure 12, the observed values
of DAX multiplied by the factor exp{r(T − t)} are plotted as circles for the
first 65 trading days in 1995 and we observe that the estimated means of the
SPD estimates, displayed as the line, follow very closely the theoretical value.
A small difference is mainly due to the fact that in 1995, the observed strike
prices do not cover entirely the support of the SPD. For example, on day 16,
the difference between the SPD mean (2018.7) and the DAX multiplied by the
discount factor (2012.1) is equal to 6.6. The fact that there are not any trades
for strike prices smaller than 1925 means that we only know that the proba-
bility mass lying to the left from 1950 is equal to 0.25. In the calculation of the
estimate of the SPD mean plotted in Figure 12, this probability mass is as-
signed to the value 1925 as this is the leftmost observed strike price. Obviously,
assigning this probability mass rather to the value 1925 − (6.6/0.25) = 1898.6
leads more realistic estimate of the SPD and to the equality of the SPD mean
and the discounted DAX.

In Figure 13, we see that the variance of SPD decreases linearly as the option
moves closer to its maturity. This observation suggests that SPD estimates
calculated for neighboring maturities can be linearly interpolated in order to
obtain SPD estimate with arbitrary time to maturity. Such an estimate is
important for making the SPD estimates comparable and for studying the
development of the market expectations.

6.1 Estimate with the fixed time to expiry

The variances displayed in Figure 13 suggest that the variance of the SPD
estimates changes approximately linearly in time when moving closer to the
date of expiry.

Hence, from the estimates fτ1(.) and fτ2(.) of centered SPDs corresponding to
the times of expiry τ1 < τ2, we construct an estimate fτ (.) for any time of
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expiry τ ∈ (τ1, τ2) as

fτ (.) =
(τ2 − τ)fτ1(.) + (τ − τ1)fτ2(.)

τ2 − τ1
. (32)

In this way, the variance, Vτ , of the centered SPD with time to expiry equal
to τ can be expressed as

Vτ =
∫
x2fτ (x)dx

=
∫
x2 (τ2 − τ)fτ1(x) + (τ − τ1)fτ2(x)

τ2 − τ1
dx

=
(τ2 − τ)Vτ1 + (τ − τ1)Vτ2

τ2 − τ1
.

We argue that such an estimate is reasonable since we observed in Figure 13
that the SPD variances change linearly in time.

6.2 Verification of the market’s expectations

Insert Figure 14

Under the risk neutral (equivalent martingale) measure, the SPD reflects mar-
ket’s expectation of the behavior of the value of the DAX in 45 days. Hence,
it is interesting to use our data set to verify how these expectations compare
with reality. In the left plot in Figure 14, we plot intervals based on the SPD
together with the true future value of the DAX: the black lines display the
2.5% and 97.5% quantiles of the estimated SPD, the future value of DAX
is displayed as a grey line. In the right plot, we show in the same way the
45-days ahead predictions based on the historical distribution of the 45-days
absolute returns in the last 100 trading days, the 2.5% and 97.5% quantiles of
this distribution are plotted as black lines.

Figure 14 suggests that the method works well and that the DAX mostly stays
well within the quantiles calculated from the estimated SPDs. The DAX was
sometimes rising faster than the market expected from 1995 till mid 1998.
After a fast decrease in the second half of 1998, the market increases again till
the beginning of year 2000. Since then, the market decreases. However, the
changes stay mostly within or very close to the bounds predicted by our SPD
estimates. The only exception is a large shock observed in September 2001
caused by the terrorist attack on the World Trade Center.

The upper quantiles, 97.5%, of the historical distribution of 45-days abso-
lute returns mostly agree with the upper quantiles of the SPD. The lower
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quantiles, 2.5%, of the SPDs seem to be much more variable than the same
quantiles of the historical distribution. Both the lower and the upper quantiles
of the historical distribution lie mostly above the corresponding quantiles of
the estimated SPD, respectively in 69.44% and 81.75%. This observation just
confirms the fact that the observed SPD includes effects of risk aversion.

Insert Table 2

In Table 2, we show the fraction of the year that the DAX stays in the predic-
tion corridor. This suggests that the coverage is slightly better for the historical
simulation if the DAX is increasing and better for the SPD based prediction
if DAX is decreasing (years 2000 and 2002).

6.3 Evaluation of the quality of the forecasts

The quality of the forecasts can be evaluated by comparing the true future
observation with its predicted distribution (the SPD). Diebold, Gunther, and
Tay (1998) propose to evaluate density forecasts using the probability integral
transformed observations zh,t, where t denotes the time and h the forecasting
horizon. More precisely, we define

zh,t =
∫ Xt+h

− ∞
f̂h,t(u)du,

where f̂h,t(.) denotes our estimate of the SPD h days ahead at time t and Xt+h

is the future observation. In other words, zh,t is the probability value of Xt+h

with respect to f̂h,t(.). Clearly, the zh,t should be uniformly U(0, 1) distributed

if the estimated SPD f̂h,t(.) is equal to the true density of Xt+h. In Figure 15,
we display the histograms of zh,t’s for each year for the estimated SPDs and
historical simulation using full and dashed histograms, respectively. Clearly,
in the ideal case, the histograms should not be too far from Uniform U(0, 1)
distribution. In our data, for the prediction horizon h = 45 days, we observe
that the histograms look quite different than we would expect. Especially in
years 1995–1999, the DAX was moving mainly in the upper quantiles of the
predicted SPD. The forecasts based on the historical distribution of the 45-
days returns behave similarly.

Insert Figure 15

In order to account for the overlapping forecasting periods, we calculate the
confidence limits for the empirical distribution function

F̂ (u) =
1

T

T∑

t=1

I(zh,t ≤ u)
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of zh,t’s that take into account the autocorrelation structure.

V̂ar{F̂ (u)} =
1

T



γ̂u(0) + 2

h∑

j=1

(
1 − j

T

)
γ̂u(j)



 , (33)

where γu(j) is the sample autocovariance of order j:

γu(j) =
1

T

T∑

t=j+1

{
I(zh,t ≤ u) − F̂ (u)

} {
I(zh,t−j ≤ u) − F̂ (u)

}
.

Insert Figure 16

The empirical distribution functions F̂ (.) are plotted separately for years 1995–
2002 in Figure 16. The distribution function of U(0, 1) and the limits following
from (33) are displayed as dotted lines. The year 2003 was not included since
our dataset contains only two months of the year 2003 which did not leave
enough observations to confirm the forecasts.

In years 1996 and 1997, the market was growing much faster than the SPDs
were indicating. In year 1996, it never happened that the DAX fell below
the 10% quantile of the SPD and there were only few days when this value
was below 20%. The situation in years 1998 and 1999 was less extreme even
though the fast growth of DAX continued. The distribution given by the SPD
estimate f̂t,h(.) for the horizon h = 45 days does not differ significantly from
the true distribution of Xt+h in years 2000–2001 but in 2002, we again observe
significant differences. Thus, the DAX was growing faster than the option
market expected in years 1996, 1997, and 1999 and it was falling faster in
2002.

Insert Figure 17

Figure 17 shows the same graphics for forecast based on the historical distri-
bution of the returns. The deviations are more clearly visible but the overall
picture is very similar, the only difference arises in 2001 when the predictions
did not stay between the limits.

7 Conclusion

We have proposed a simple nonparametric model for arbitrage free estimation
of the SPD. Our procedure takes care of the daily changing covariance struc-
ture and involves both types of European options. Moreover, the covariance
structure allows to calculate prediction intervals capturing future behavior of
the SPD. We analyze the moment dynamics of the SPD from 1995–2003. An
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application to DAX EUREX data for the years 1995–2003 produces a corridor
that is compared to the future DAX index value. The proposed technique en-
ables not only to price exotic options but also to measure the risk and volatility
ahead of us.
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Fengler, M.R., W. Härdle, and E. Mammen, 2007, A dynamic semiparametric

factor model for implied volatility string dynamics. Journal of Financial
Econometrics 5(2), 189–218.

Hafner, R. and M. Wallmeier, 2000, The Dynamics of DAX Implied
Volatilities, University of Augsburg Working Paper. Available at SSRN:
http://ssrn.com/abstract=234829 or DOI: 10.2139/ssrn.234829.

Harrison, J. and S. Pliska, 1981, Martingale and stochastic integral in the
theory of continuous trading. Stochastic Processes and their Applications
11, 215–260.

Hlávka, Z. and M. Svoj́ık, 2008, Application of extended Kalman filter to
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Methods

Parametric Standard Nonparametric This paper
smoothing method under constraints

Shape fixed flexible flexible flexible

Control choice of family smoothness smoothness none

SPD support infinite restricted restricted restricted

Constraints by design local yes yes

Table 1
Summary of properties of parametric and nonparametric estimators.
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Year 1996 1997 1998 1999 2000 2001 2002

SPD 84.40% 66.13% 75.30% 74.60% 97.22% 85.66% 94.84%

Historical 82.00% 79.44% 76.89% 77.38% 93.25% 86.06% 80.56%

Table 2
Fraction of the year that DAX stays in the prediction corridor.
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Fig. 1. Illustration of the dummy variables for call options.
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Fig. 2. Illustration of the dummy variables for both call (β) and put (α) options.
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Fig. 3. Option prices plotted against strike price and time to maturity with two-di-
mensional kernel regression surface (left) in January 1995 and the ensemble of the
call option prices with shortest time to expiry against strike price (right) on 16th Jan-
uary 1995. SFB and CASE data base: sfb649.wiwi.hu-berlin.de.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2000 2050 2100 2150 2200

0
20

40
60

80

strike price

op
tio

n 
pr

ic
e

2000 2050 2100 2150 2200

0.
2

0.
4

0.
6

0.
8

1.
0

strike price

2000 2050 2100 2150 2200

0.
05

0.
15

0.
25

strike price

Fig. 4. On 16th January 1995, the unconstrained estimate satisfies the constraints.
Hence, it is equal to the constrained estimate. The top panel shows the original
data with the fitted call pricing functions. The second and the third panel show the
estimates of the first and second derivative, respectively.
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Fig. 5. On 17th January 1995, the unconstrained estimate, displayed using the thin
line, does not satisfy the constraints. The top panel shows the original data with the
two fitted call pricing functions. The estimates of the first derivative in the second
panel look rather different. The constrained estimate of the second derivative in the
bottom panel is clearly much more stable than the unconstrained estimate.
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Fig. 6. The unconstrained and constrained confidence intervals for SPD on 16th
January 1995. The description on the x-axis shows the number of observations in
each point.
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Fig. 7. Confidence intervals for SPD on 17th January 1995. The description on the
x-axis shows the number of observations in each point.
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Fig. 8. The time dependency and the heteroscedasticity of the residuals during one
day. The circle, square and the star denote the trades carried out in the morning,
midday and in the afternoon, respectively. Size of the symbols denotes number of
residuals.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1950 2000 2050 2100 2150 2200

0
50

10
0

15
0

strike price

op
tio

n 
pr

ic
e

1950 2000 2050 2100 2150 2200

0.
0

0.
1

0.
2

0.
3

0.
4

SPD estimate with confidence intervals

Fig. 9. Estimate using the covariance structure (28) on 17th January. The upper
plot shows the observed option prices and the constrained estimate. The size of
the plotting symbols corresponds to the weight of the observations. The lower plot
shows estimated SPD with confidence intervals.
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Fig. 10. The development of the standardized residuals resulting from model with
the covariance structure (28) on 17th January during the day where circles, squares,
and stars denote the residuals from morning, midday, and afternoon and a histogram
of the standardized residuals.
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Fig. 11. SPD estimate on 17th January 1995 with prediction intervals for next
5 hours calculated for every 30 minutes.
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Fig. 12. Daily development of the expected value of the uncorrected SPD from
January till March 1995. The circles denote the corresponding closing value of DAX.
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Fig. 13. Daily development of the SPD variance from January till March 1995.
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Fig. 14. Prediction intervals for DAX based on SPDs and historical simulation from January 1995 till March 2003.
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Fig. 15. Histograms for the SPDs (full line) and historical simulation (dashed line).
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Fig. 16. Integral transformation for estimated SPDs.
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Fig. 17. Integral transformation for historical simulation.


