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SUMMARY

A sweep operator is defined for stepwise sequential inversion of triangular ma-

trices and its properties are compared to those of the sweep operator for inverting

symmetric matrices. The algorithm is used to study joint distributions generated

over a directed acyclic graph. Three main applications are derived. The first is to

prove a simple form for the joint distribution resulting after marginalising over and

conditioning on arbitrary subsets of variables in such a linear system. The second

is to extend the results for linear systems to general distributions by interpreting

structural zeros in matrices in terms of missing edges in associated graphs and sym-

bolic matrix transformations as modifications of graphs. The third is to show the

equivalence of several criteria for reading off independence statements from directed

acyclic graphs.
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1. Generating processes and independence graphs

Association models may be defined over an independence graph (Wermuth & Cox,

1998), which has a vertex or node set V of dV elements, where the nodes correspond

to random variables Y1, . . . , YdV
. The graph is called a directed, acyclic graph and

denoted by GV
dag, if each pair of nodes has at most one edge, each edge is an arrow

and starting from any one node it is impossible to return to this node by following

only directions in which the arrows point. Figure 1 shows a directed acyclic graph

in ten nodes that we shall use to illustrate results.

Figure 1: A directed acyclic graph in 10 nodes

Each directed acyclic graph may describe independencies in a univariate recursive

generating process for a joint distribution, in which variable Y1 denotes the most

recent response variable; YdV
denotes the last, purely explanatory variable; all other

variables are intermediate since they may play the role of responses to some and the

role of explanatory variables to some other variables in the system. A generating

process starts with the marginal distribution of the purely explanatory variable and

generates the conditional distribution of response variable Yi for i = 1, . . . , dV − 1,

in terms of a subset of Yi+1, . . . , YdV
. The generating process provides a full ordering

of the nodes (1, 2, . . . , dV ) such that the joint density fV factorizes accordingly into

dV univariate (conditional) densities as

f1,...,dV
(Y1, . . . , YdV

) = fdV
(YdV

)ΠdV −1
i=1 fi(Yi | Ypar(i) = ypar(i)). (1)

Here Ypar(i) is the subset of {Yi+1, . . . , YdV
} for which arrows point in GV

dag directly

to node i. They are the directly explanatory variables; the corresponding nodes are
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Figure 2: A joint response chain graph as implied by Figure 1 for Ya given Yb with (a, b) =
(1, . . . , 10); a conditional covariance graph for Ya given Yb; arrows for each component of
Ya projected on Yb; a concentration graph for the marginal distribution of Yb

called the parent nodes of i. The nodes in the set {i, i + 1, . . . , dv} are potential

ancestors of i in a given generating process. They are to be distinguished from the

proper ancestors. Node j is an ancestor of node i, i.e. a proper one, if a direction-

preserving path leads from j to i. A path of length n is a succession of n edges

connecting nodes i0, . . . , in, irrespective of the orientation of the edges. For instance

in Figure 1 nodes 7, 8, 10 are ancestors of node 6, nodes 7, 8 are its parents and

nodes 7, 8, 9, 10 are its potential ancestors. Whenever j is an ancestor of i, node i is

called a descendant of node j.

The factorization (1) of the joint density specifies for each i < dV the joint

density of Yi, . . . , YdV
written in condensed form as

fi,...,dV
= fi|par(i)fi+1,...,dV

so that fi|i+1,...,dV
, the conditional density of Yi given its potential ancestors, depends

only on Ypar(i). Therefore the defining independence structure may be written in

terms of response variables by referring only to the nodes and edges in GV
dag as

{i ⊥⊥ (potential ancestors of i excluding parents of i) | parents of i}. (2)

The information on the factorization of a density (1) may, equivalently, be stored

in the edge matrix of the graph, an indicator matrix of zeros and ones. The edge
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Figure 3: A joint response chain graph as implied by Figure 1 for Yb given Ya with
(a, b) = (1, . . . , 10); a block-regression graph for Yb given Ya; a concentration graph for the
marginal distribution of Ya

matrix, A of a directed acyclic graph, GV
dag has ones along the diagonal, zeros below

the diagonal, and a nonzero entry for node pair (i, j) if and only if node j is a

parent of node i, or, equivalently, if Yj is directly explanatory for Yi. Because of this

property the directed acyclic graph of a generating process is sometimes called the

parent graph. Here and in the following we use the conventions that nodes (h, i, j, k)

are ordered so that h has the smallest and k the largest numbering of the four nodes

and that node 1 in the generating process corresponds to the first row and node dV

to the last row of A.

We shall use further edge matrices of graphs such as the edge matrix of an

ancestor graph. It has a nonzero (i, j)-entry if and only if node j is an ancestor of

node i in the corresponding parent graph.

As we shall see, transformations on edge matrices help us to understand indepen-

dence structures for joint response models induced by systems of univariate recursive

regressions. Figures 2 to 4 present examples of such independence structures result-

ing from the directed acyclic graph in Figure 1. We shall show how to derive and

interpret them, first for linear systems by transforming matrices, then for general

systems by transforming graphs, or equivalently, their edge matrices.

In Section 2 we introduce a new sweep operator for triangular matrices to supple-

ment the usual sweep operator for symmetric matrices. Both permit us to perform
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Figure 4: A chain graph of connected univariate dependencies as implied by Figure 1 for
Yu, u ⊂ a conditional given YK , K ⊂ b with (a, b) = (1, . . . , 10); a directed acyclic graph
permitting arrows or dashed lines as edges or both as edge components for the conditional
distribution of Yu given YK , a transformed matrix of projecting each component of Yu on
YK and a concentration graph for the marginal distribution of YK

certain matrix manipulations such as inversion by repeated steps involving three

positions one at a time. In Section 3 we study some key properties of Gaussian sys-

tems defined via a linear recursive system and in Section 4 we give in matrix form

the properties for a new linear system derived by a combination of marginalising

over some variables and conditioning on others. In Section 5 the relation between

the matrix transformations and paths in associated graphs is developed. This leads

to the conclusion that independencies obtained as structural properties of all Gaus-

sian systems generated over a directed acyclic graph apply to arbitrary distributions

generated over the same graph, essentially because of the factorization property (1).

Section 6 gives results about different but equivalent separation criteria for directed

acyclic graphs.

Thus one central theme of the paper concerns the interplay between properties

of matrices and of associated graphs, derived from a triangular matrix defining a

linear system over a generating directed acyclic graph, GV
dag. Among our conclusions

are quantitative results for the direction and strength of dependencies obtained by

conditioning on some variables and marginalising over others in such linear systems.

Further we show the remarkable result that if a conditional or marginal indepen-

dency holds for all possible Gaussian distributions generated over the graph GV
dag

then it holds for all possible distributions generated over the same graph. For de-
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ciding on whether any given conditional independence statement is implied by the

generating graph a matrix algorithm is given which involves nothing but replacing

in a systematic fashion zeros by ones in the edge matrix of the generating graph.

2. Sweep operators

A sweep-operator had been designed by Beaton (1964) as a tool for inverting sym-

metric matrices. It has nice properties, since it defines stepwise changes of the

matrix which can be readily undone by a corresponding resweep-operator and it is

an efficient way to successively orthogonalize a symmetric matrix (Dempster, 1969,

Section 4.3). As such it is closely related to Gram-Schmidt orthogonalisation and it

gives a Cholesky-factorization of a symmetric matrix. For completeness, definitions

are repeated in Appendix 1.

We define here a simpler sweep operator for triangular matrices having unit diag-

onal elements. With the original sweep operator a wealth of matrix identities related

to multivariate least squares regressions can be derived. Similarly, with the sweep

operator for triangular matrices we derive joint response models generated from sys-

tems of linear univariate recursive regressions. More important is that triangular

matrices which are swept on some or on all of their indices can be reinterpreted

as modifications of directed acyclic graphs. This means that results obtained by

sweeping on linear systems generalize to distributions of arbitrary type provided

they are generated over directed acyclic graphs.

Let an upper-triangular r × r matrix A have ones as diagonal elements and let

its element in position (i, j) be denoted by aij. Then a simple sweeping step on row

and column i gives another r × r upper triangular matrix Ã in which for h < i < j:

ãij = −aij, ãhj = ahj − ahiaij, (3)

and all other elements of Ã coincide with those of A.

In this way possibly none, but at most r2/4, elements of A are modified. We

write the simple sweeping step on a triangular matrix as (A swt i) to distinguish it

from the original sweep operator for symmetric matrices M , which is abbreviated
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as (M swp i).

The following main properties of the swt-operator result by direct calculations.

(1) Sweeping the matrix A on all rows and columns gives the inverse matrix:

B = A−1 = (. . . ((A swt 1) swt 2) . . . swt r)

(2) the order of sweeping can be interchanged without altering the result:

((A swt i) swt j) = ((A swt j) swt i)

(3) sweeping on i of A is undone by reapplying the swt-operator on i of Ã:

A = ((A swt i) swt i).

For instance, for a 5 × 5 matrix A, the inverse B can be written as

B =




1 −a12 −a13.2 −a14.23 −a15.234

0 1 −a23 −a24.3 −a25.34

0 0 1 −a34 −a35.4

0 0 0 1 −a45

0 0 0 0 1




,

where e.g. a13.2 = a13 − a12a23, a24.3 = a24 − a23a34, and, for instance a14.23 can

be computed in a number of different ways depending on the order in which the

sweeping is carried out

a14.23 = a14.3 − a12a24.3 = a14.2 − a13.2a34

and it will be a structural zero i.e. it will be zero for all possible values of free

parameters in A, if and only if all individual terms in the following sum vanish

a14 + a12a24 + a13a34 + a12a23a34.

The notion of a structural zero is essential in this paper. A structural zero contrasts

with a zero that occurs only for special constellations in any given set of parameters.
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By direct extension we denote by (A swt a) the matrix A swept on the set of rows

and columns a. As we shall see, there is a quite close connection between sweeping

over rows and columns a and the operation of marginalising over the distribution

of random variables in a corresponding linear system of equations discussed in the

next Section.

One matrix identity for the matrices A and B = A−1 partitioned into two parts

a and b results for instance from (A swt a)=(B swt b). When rows and columns

are thereby split into two adjacent components so that (1, . . . , r) = (a, b), i.e. a =

(1, . . . , r∗), and b = (r∗ + 1, . . . , r), this gives

(
A−1

aa −A−1
aa Aab

0 Abb

)
=

(
Baa BabB

−1
bb

0 B−1
bb

)
.

3. Some joint response models derived from linear recursive systems

In the special case in which the directed acyclic graph GV
dag corresponds to a linear

system in Gaussian variables the joint Gaussian distribution is generated by a set

of linear recursive regressions with independent residuals. Such linear systems had

been introduced in genetics as models of path analysis (Wright, 1921, 1934) and were

generalized in psychometrics to linear structural relation models (Jöreskog, 1981).

These systems had also been advocated and studied in econometrics (Wold & Jureen,

1953, pp. 48-53; Wold, 1959). They are treated there as a subclass of simultaneous

equation models having some appealing features (Goldberger, 1964, pp. 354-355).

In the context of graphical Markov models (Lauritzen, 1996; Edwards, 1995; Cox &

Wermuth, 1993; 1996) the relation between structural equation models and cyclic

independence graphs has been derived by Spirtes (1995) and Koster (1996, 1999a)

and Spirtes et al. (1998).

In the ith regression equation in a linear system generated over GV
dag the param-

eters are regression coefficients and the residual variance obtained when regressing

Yi on Ypar(i). The regression coefficient of Yj for j ∈ par(i) is written as βij.par(i)\j,

the residual variance as σii.par(i). We assume without loss of generality that all
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components of Y have mean zero. In matrix notation the whole system is

AY = ε, cov(ε) = ∆, (4)

where A is upper triangular with elements aij = −βij.par(i)\j and ∆ is diagonal with

elements δii = σii.par(i).

The covariance matrix Σ of YV and the concentration matrix Σ−1 of YV are

obtained from cov(YV ) = Bcov(ε)BT as

Σ = B∆BT , Σ−1 = AT ∆−1A, (5)

i.e. (A, ∆−1) is the triangular decomposition of the concentration matrix and (B, ∆)

is the triangular decomposition of the covariance matrix corresponding to the or-

dering (1, . . . , dV ). For variables with a joint Gaussian distribution a structural

(i, j)-zero in Σ means Yi ⊥⊥ Yj, one in Σ−1 means Yi ⊥⊥ Yj | YV \{i,j} (see e.g. Cox &

Wermuth, 1996, p. 69).

Direct calculations show that the matrix product B∆ has as elements in the

upper-triangular part partial variances along the diagonal and partial covariances

elsewhere, while A∆−1 has as diagonal elements partial precisions and negative

values of partial covariances, elsewhere. If the generating process for the distribution

of YV leads to a saturated model, i.e. if A has no structural zeros, then par(i) = i +

1, . . . , dV , and with structural zeros the factorization in (1) implies that σii.i+1,...,dV
=

σii.par(i).

For example, for YV having five components and A being without structural zeros

the two matrices are

A∆−1 =




σ11 −σ12.345 −σ13.245 −σ14.235 −σ15.234

0 σ22 −σ23.45 −σ24.35 −σ25.34

0 0 σ33 −σ34.5 −σ35.4

0 0 0 σ44 −σ45

0 0 0 0 σ55




,

where σii denotes the precision in the i-th linear regression equation which is the
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reciprocal value of the residual variance, σii = 1/σii.i+1,...,dV
;

B∆ =




σ11.2345 σ12.345 σ13.45 σ14.5 σ15

0 σ22.345 σ23.45 σ24.5 σ25

0 0 σ33.45 σ34.5 σ35

0 0 0 σ44.5 σ45

0 0 0 0 σ55




.

For joint Gaussian distributions defined by (4) this representation implies that

every structural zero in A and in B is equivalent to a specific independence state-

ment, since for Gaussian distributions Yh is independent of Yk given YC if and only

if the conditional covariance vanishes for the pair, i.e. σhk.C = 0.

If the generating process is for example characterized by the subgraph induced by

nodes 1, . . . , 5 in Figure 1, i.e. it is the graph obtained by keeping just these nodes

and its edges, then A and B have structural zeros and free parameters as given by

A =




1 a12 a13 0 0
0 1 0 0 0
0 0 1 0 a35

0 0 0 1 a45

0 0 0 0 1




, B =




1 b12 b13 0 b15

0 1 0 0 0
0 0 1 0 b35

0 0 0 1 b45

0 0 0 0 1




. (6)

For instance, for the two structural zeros in row 1 of A this implies σ14.235 = σ15.234 =

0, so that Y1 ⊥⊥ (Y4, Y5) | (Y2, Y3) and the three structural zeros in column 3 of B mean

that σ14.5 = σ24.5 = σ34.5 = 0 so that the independence statement Y4 ⊥⊥ (Y1, Y2, Y3) |
Y5 follows.

To derive the edges displayed in Figure 2 for a Gaussian system we equate the

result of sweeping Σ on indices b (Σ swp b) to the form resulting from (5) after

partitioning into two adjacent blocks with (1, . . . , dV ) = (a, b)

(
Σaa.b Πa|b

. −Σ−1
bb

)
=

(
Baa∆aaB

T
aa BabB

−1
bb

. −AT
bb∆

−1
bb Abb

)
, (7)

where Πa|b denotes the matrix of regression coefficients resulting from linear regres-

sion of Ya on Yb and dots in the left hand lower corner indicate that we have a

symmetric matrix. The matrix Πa|b can be computed in a number of different ways,

some of which may be derived from (Σ swp b) = (−Σ−1 rswp a), from (B swt
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b) = (A swt a), and Πa|b = ΣabΣ
−1
bb = (Bab∆bbB

T
bb)(Bbb∆bbB

T
bb)

−1 to give

Πa|b = ΣabΣ
−1
bb = −(Σaa)−1Σab = BabB

−1
bb = −A−1

aa Aab.

The structural zeros and the free parameters in Πa|b can thus be determined via

the matrix product of A−1
aa = Baa, (containing the information on ancestors of a

within a) and Aab (containing the information on the parents of a in b). In Figure

1 for a = 1, . . . , 5 and b all remaining indices this gives BaaAab = Πa|b as




1 b12 b13 0 b15

0 1 0 0 0
0 0 1 0 b35

0 0 0 1 b45

0 0 0 0 1







0 0 0 0 0
0 a27 0 0 0
0 a37 0 0 0
0 0 a48 a49 0
0 0 0 0 0




=




0 π17 0 0 0
0 π27 0 0 0
0 π37 0 0 0
0 0 π48 π49 0
0 0 0 0 0




. (8)

By replacing nonzero entries in a matrix of regression coefficients by ones, an

indicator matrix of structural zeros is obtained which is here the edge matrix between

blocks in a graph representing multivariate regression of Ya on Yb.

The linear equations reflected in the conditional distribution of Ya given Yb = yb

in Figure 2 are sometimes called the reduced form equations of the recursive system

(1). The linear equations for the joint distribution of YV are then

Ya − Πa|byb = Baaεa, Yb = Bbbεb (9)

The graph of the marginal distribution of Yb in Figure 2 represents a concentra-

tion graph model, which for Gaussian variables was introduced under the name of

covariance selection by Dempster (1972).

The linear equations corresponding to the conditional distribution of Yb given

Ya may also be expressed in terms of the parameters of the recursive system (1)

and a corresponding reduced form. However, this is less direct, since the order of

dependencies of the generating system is thereby reversed.

With the matrix in (7) reswept on b and swept further on a the covariance matrix

and the concentration matrix of all variables can be expressed in partitioned form

as

Σ =


 Σaa Σab

. Σbb


 =


 Baa∆aa−bB

T
aa Bab∆bbB

T
bb

. Bbb∆bbB
T
bb


 , (10)
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Σ−1 =


 Σ−1

aa.b −Σ−1
aa.bΠa|b

. Σ−1
bb.a


 =


 AT

aa∆
−1
aa Aaa AT

aa∆
−1
aa Aab

. AT
bb∆

bb+aAbb


 ,

where ∆aa−b = ∆aa + Θa|b∆bbΘ
T
a|b is the covariance matrix of residuals obtained

for a of system (4) after having marginalised over b, i.e. of εa−b = εa − Θa|bεb

and where ∆bb+a = ∆−1
bb + ΘT

a|b∆
−1
aa Θa|b is the concentration matrix of εb in the

joint distribution of εb and εa−b. Furthermore, −Θa|b = −AaaA
−1
bb is the matrix of

regression coefficients obtained in the linear regression of εa−b on εb, and Πb|a =

ΣT
abΣ

−1
aa = −Bbb(∆bbΘ

T
a|b∆

−1
aa−b)Aaa is the matrix of regression coefficients resulting

from linear regression of Yb on Ya. Since

AbbΣbb.aA
T
bb = ∆bb(∆

−1
bb − ΘT

a|b∆
−1
aa−bΘa|b)∆bb, BT

bbΣ
−1
bb.aBbb = ∆bb+a,

it follows in particular that both the conditional covariance matrix Σbb.a, as well

as its inverse, can be expressed in terms of parameters (5) of system (4), with the

inverse having a simpler representation, since ∆bb is always a diagonal matrix, but

∆aa−b is typically not of diagonal form.

Conversely, the marginal covariance matrix of Ya has simpler representation than

its inverse, which follows from the dual equalities

AaaΣaaA
T
aa = ∆aa−b, BT

aaΣ
−1
aa Baa = −∆−1

aa (∆aa − Θa|b(∆
bb+a)−1ΘT

a|b)∆
−1
aa .

While proofs of the equalities are tedious by inverting special sums of matrices,

they are direct by sweeping on the covariance and concentration matrix of εa−b =

AaaYa and εb = AbbYb, For system (4) these are given by

cov(εa−b, εb) =


 ∆aa−b −Θa|b∆bb

. ∆bb


 , cov(εa−b, εb)

−1 =


 ∆−1

aa ∆−1
aa Θa|b

. ∆bb+a


 ,

respectively.

The linear equations corresponding to the conditional distribution of Yb given Ya

derived from the recursive system of Figure 1 can then be written as

Yb − Πb|aya = Bbb(εb + Πεb|εa−b
εa−b), Ya = Baaεa−b (11)
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where Πεb|εa−b
= (−∆bbΘ

T
a|b)∆

−1
aa−b = (∆bb+a)−1(ΘT

a|b∆
−1
aa ) and εa−b = εa − Θa|bεb,

Πb|a = BbbΠεb|εa−b
Aaa, i.e. they are as defined above for (10).

Thus, when the order of dependencies is reversed as compared to the order in

the generating process, it is possible, but not simple, to express the new mean

parameters in terms of parameters of the generating process. This suggests that for

general results on induced joint distributions it will be useful to preserve the original

ordering as far as possible.

If the independence structure of Yb given Ya is expressed in terms of block-

regression (Wermuth, 1992) and the independencies in the margin of Ya as a con-

centration graph structure, then its representation is relatively simple despite the

dependence reversal. Block-regression of Yb on Ya means that each single component

of the response vector Yb is regressed on all remaining components of this response

vector and on all components of the explanatory vector variable Ya so that an (i, j)-

structural zero within b and between b and a means for joint Gaussian variables

conditional independence given all remaining variables (V \ {i, j}).
Therefore, it follows with (5) that there is a structural zero in the block-regression

equations of Yb on Ya if and only if there is a structural zero in (AT A)V,b, i.e. in

the submatrix of all rows V and of columns b. The representation of Σ−1
aa in (10)

implies that there is an (i, j)-structural zero in the marginal concentration matrix

of Ya if and only if there is a (i, j)-structural zero in AT
aa∆

−1
aa−bAaa. These results

are illustrated in Figure 3. We return to their interpretation in terms of graphs in

Section 5.

Given just the independence structures of joint response models such as in Fig-

ures 2 and 3 it is in general not possible to recover the independence structure of the

generating graph. Also, the independence structures derived from covariance graphs

or concentrations graphs after marginalising or conditioning on some variables typi-

cally contain more edges than if they are derived directly from the generating graph.

As we shall see this is different for the form of the independence structure derived

in the next Section.
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4. Linear recursive systems after marginalising and conditioning

Starting from the univariate generating process (4) we now divide the overall set of

indices V into any three disjoint sets S, C, M and examine the distribution of YS

given YC marginalising over YM .

Two main special cases were treated in Section 3 with YV partitioned into two

ordered subvectors Ya, Yb, i.e. with V = (a, b). If we condition Ya only on potential

ancestors Yb as in (9) the distribution of Ya given Yb = yb is unchanged, it being

determined by the subsystem AaaYa|b = εa, where Ya|b denotes the deviation of

Ya from its conditional mean given Yb. If however we condition Yb on common

descendants within Ya as in (11) the conditional distribution of Yb given Ya has

correlated residuals. Correspondingly, if we marginalise only over descendants Ya

then the marginal distribution of Yb is unchanged, whereas if we marginalise over

common ancestors in Yb the marginal distribution of Ya has correlated residuals.

In general, however, there will be no simple ordering between the components

forming S, C, M and a generalisation of the above arguments is required which we

now set out.

4.1 Preliminaries, the two main results and the outline for deriving them

To keep the information on which components of S and which of M = V \(S∪C)

are ancestors of C in the generating directed acyclic graph we introduce first some

further definitions. As mentioned before from an ancestor of C a direction-preserving

path leads to a node in C. We refer to the nonancestors of a set C, i.e. to those

nodes from which no direction-preserving path leads into C, as the offspring of C.

For example, the offspring of node 3 in Figure 1 are the nodes in {1, 2, 4}; and,

if we choose for Figure 1 the set of selected nodes as S = {1, 3, 4, 7, 10} and the

conditioning set as C = {6, 9}, then the remaining nodes are to be marginalised

over, i.e. they are in M = {2, 5, 8}. For ancestors of C outside C we distinguish

two possibilities. They are either in S and denoted by Sanc = v or they are in M

and denoted by Manc = q. Correspondingly, there are offspring of C in S, denoted

by Soff = u, and there are offpring of C in M , denoted by Moff = p. In this way
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Figure 5: A partitioning of the node set to derive the structure in the distribution of YS

given YC as induced by a generating directed acyclic graph in nodes V

S and M are further partitioned as S = u ∪ v and M = p ∪ q. The definitions are

illustrated with Figure 5. For the previous example to Figure 1 with C = {6, 9},
S = {1, 3, 4, 7, 10} and M = {2, 5, 8} we get u = {1, 3, 4}, v = {7, 10} and p = {2, 5},
q = {8}.

As the first main result in this Section we derive the distribution of YS given

YC as the conditional distribution of Yu given both YC and Yv, and the conditional

distributon of Yv given YC to be of the following form:

ΓuuYu|C + Γuvyv|C = ηu, Yv|C = ηv, (12)

where Yt|C denotes a (vector) variable Yt centred at its conditional mean given YC ,

Γuu and Γvv are upper-triangular matrices, the residuals between the two blocks, i.e.

ηu and ηv, are uncorrelated, but residuals within each block may be correlated so

that the system is still univariate recursive but possibly has equations in which one

contains some information on the other.

As the second main result we prove that each system of connected univariate

dependencies (12) has a covering model with the same structural zeros in the co-

variance matrix of YS given YC as implied by (12) but fewer structural zeros, i.e.

fewer restrictions elsewhere. This covering model is simpler in structure than (12)

since it is univariate recursive in the components of YV \C with exclusively indepen-

dent residuals.
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To derive the results we denote some further special subsets of all nodes V =

S ∪ C ∪ M as follows:

H = Soff ∪ Moff = u ∪ p, D = Sanc ∪ Manc = v ∪ q, L = C ∪ D, K = C ∪ v,

where offspring and ancestors are defined relative to the conditioning set C, as

described for Figure 5. Offspring nodes H of C are also offspring of L and ancestors

q of C outside C are also ancestors of K. The outline of the reasoning is then as

follows. We get first the marginal distribution of YK (in 4.2), then the conditional

distribution of Yu given YK = yk (in 4.3). Finally, we condition both Yu and Yv on

YC (in 4.4). As additional results we show (in 4.5) that marginalising first over YM ,

and conditioning next YS on YC leads to the same equations (12) and give (in 4.6)

the concentration and the covariance matrix of YS given YC , both expressed in terms

of parameters of (12) and of (4). Finally, the indicator matrix of structural zeros

in the conditional covariance matrix of varibles outside C given C is derived via a

covering model to (12) which is univariate recursive and has independent residuals.

Expressed more formally we shall derive the equations for the conditional distri-

bution of Yu given YK = yK and the marginal distribution of YK as

Auu.p(Yu − Πu|KyK) = εu−M − ∆uK−M∆−1
KK−qεK−q, AKK.qYK = εK−q, (13)

where e.g. εK−q = εK − AKqA
−1
qq εq, we use the notation

cov(ε(V \M)−M) =

(
∆uu−M ∆uK−M

. ∆KK−M

)
,

and note that the split of M into offspring p and ancestors q of C implies ∆KK−M =

∆KK−q and ∆uu−M = ∆uu−p. Furthermore, Aaa.b denotes the submatrix (A∗)a,a

obtained after sweeping A on b and

Auu.pΠu|K = AuK.p + Auq.pΠq|K , AqqΠq|K = ∆qqB
T
KqΣ

−1
KK − AqK .

Thereby, we use for the matrix obtained after projecting Yu linearly on YK , i.e. for

Πu|K , the matrix version of Cochran’s (1938) recursion formula for linear regression

coefficients: Πu|K = Πu|K.q + Πu|q.KΠq|K . It may be obtained with the help of the
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original sweep operator as shown here in Appendix 1 or by taking expectations of

conditional expectations in equations regressing Yu on YK . We partition the matrix

−Πu|L = A−1
uu.pAuL.p = A−1

uu.p(AuK.p Auq.p) and note that the matrix of regression

coefficients of YK has the special form Πu|K.q = −A−1
uu.pAuK.p and that, similarly, the

one of Yq is Πu|q.K = −A−1
uu.pAuq.p.

To obtain the matrix Πq|K in terms of parameters of (4) the matrix products

ALLΣLL = ∆LLBT
LL are partitioned into K and q

(
AKK AKq

AqK Aqq

) (
ΣKK ΣKq

ΣqK Σqq

)
=

(
∆KK 0

0 ∆qq

) (
BT

KK BT
qK

BT
Kq BT

qq

)
.

The second row on the left multiplied by the first column with the matrix on

the right gives AqKΣKK + AqqΣqK = ∆qqB
T
Kq. The matrix of regression coefficients

Πq|K = ΣqKΣ−1
KK reduces to simpler forms, whenever nodes within q and K are

adjacent. For instance if in that case descendants are conditioned on ancestors, so

that AKq = BKq = 0, then Πq|K = −A−1
qq AqK as derived from (7) above.

4.2 The marginal distribution of YK

To illustrate first the result in (13) for the marginal distribution of an arbitrary

subset K of L we partition L by preserving the order as L = (a, b, c, d, e, f, g) and

marginalise over q = {b, d, f}. Then the remaining nodes, still ordered as in the

generating system, are K = (a, c, e, g). We then get

AKK.q = (ALL swt q)K,K =




Aaa Aac.b Aae.bd Aag.bdf

0 Acc Ace.d Acg.df

0 0 Aee Aeg.f

0 0 0 Agg


 . (14)

We note that

A−1
KK.q = (AKK.q swt K) = (ALL swt q, K)K,K = BKK ,

and that as a consequence of (ALL swt q) = (BLL swt K) the essential part of

the residual εK−q = εK − ΘK|qεq in the marginal distribution, i.e. ΘK|q, can be

expressed in (at least) two different ways, as ΘK|q = AKqA
−1
qq = −B−1

KKBKq also
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when the indices within K and within q are not adjacent. For the above special

choice of K and q this gives, written explicitly,

ΘK|q = (ALL swt q)K,q =




Aab Aad.b Aaf.bd

0 Acd Acf.d

0 0 Aef

0 0 0





 Abb 0 0

0 Add 0
0 0 Aff




−1

, (15)

and

ΘK|q = (BLL swt K)K,q =




Baa 0 0 0
0 Bcc 0 0
0 0 Bee 0
0 0 0 Bgg




−1 


Bab Bad.c Baf.ce

0 Bcd Bcf.e

0 0 Bef

0 0 0


 .

(16)

Several useful further matrix equalities result from (ALL swt q)−1 = (ALL swt K) =

(BLL swt q) written for a partitioning of L into K and q as(
AKK.q AKqA

−1
qq

−A−1
qq AqK A−1

qq

)−1

=

(
A−1

KK −A−1
KKAKq

AqKA−1
KK Aqq.K

)
=

(
BKK.q BKqB

−1
qq

−B−1
qq BqK B−1

qq

)
.

For instance, from the product of the first row on the left with the first column of

the matrix in the middle it follows that AKK.q = AKK −AKqA
−1
qq AqK , i.e. it has the

same form as in the case when the indices are adjacent, and from the product of

the first row on the left with the second column of the matrix on the right it follows

that BKq = −A−1
KK.qAKqA

−1
qq .

For completeness we note the form of the remaining parts of ALL after sweeping

it on q

(ALL swt q)q,K =


 Abb 0 0

0 Add 0
0 0 Aff




−1 
 0 Abc Abe.d Abg.df

0 0 Ade Adg.f

0 0 0 Afg


 , (17)

and

A−1
qq =


 Abb 0 0

0 Add 0
0 0 Aff




−1
 Abb −Abd −Abf.d

0 Add −Adf

0 0 Aff





 Abb 0 0

0 Add 0
0 0 Aff




−1

. (18)

In spite of the apparent similarities in form of the entries in the 3 × 4 block matrix

obtained from the right-hand matrix product in (17) are in general not matrices of

regression coefficients.
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The marginal covariance and concentration matrix of YK may now be written as

cov(YK) = ΣKK = BKK∆KK−qB
T
KK , conK(YK) = Σ−1

KK = AT
KK.q∆

−1
KK−qAKK.q.

(19)

There is a structural zero in ∆KK−q if and only if there is a zero element in the

symbolic outer matrix product ΘK|qΘ
T
K|q. For structural zeros in ∆−1

KK−q the expla-

nation is different. It depends crucially on q containing exclusively ancestors of C

outside the set C as is explained in the following.

For general covariance matrices some nonzero entries may vanish after condition-

ing. For instance, for Figure 1, the marginal covariance corresponding to nodes (6,9)

is not a structural zero, but after conditioning on 8 or 10 it becomes a structural

zero. However, for the residual covariance matrix ∆KK−q every entry correspond-

ing to a node pair (i, j) within K is a free parameter if and only if either Yj is a

directly explanatory variable for Yi in the generating system (4), or the pair has a

common explanatory variable within q such that all intermediate variables are also

in q. Such a free parameter cannot turn into a structural zero by conditioning on

nodes of K = L \ q.

This implies in particular that ∆−1
KK−q has a free (i, j)-parameter if and only if

there is a sequence of nodes i = i0, i1, . . . , it, it+1 = j such that each adjacent pair

corresponds to a free parameter in ∆KK−q, otherwise it has a structural (i, j)-zero.

Alternatively, structural zeros in the concentration matrix of YK may be ex-

pressed in terms of parameters of the generating system (4) as follows. In general

concentration matrices some nonzero entries can vanish after marginalising. For in-

stance in Figure 2, the concentration corresponding to nodes (7,8) is not a structural

zero, but after marginalising over node 6 it becomes a structural zero. However, this

cannot happen if marginalising is exclusively over ancestor nodes of a given condi-

tioning set C not in C. This is the case when K = C ∪ v is obtained from L by

marginalising over q, since by definition every node in q is an ancestor of C outside

C.

With L = V \H = K∪q denoting adjacent indices, it follows from (5) that there

is a structural zero in conL(YK) if and only if there is one in the matrix product
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AT
LLALL. By marginalising L over ancestors q of C outside C some structural zeros

present in conL(YK) can get removed but none can get added in Σ−1
KK = conK(YK).

Inverting a concentration matrix corresponds to marginalising. If in the conditional

covariance matrix of Yq given YC there is a sequence of free parameters an indepen-

dence statement for the endpoints is no longer preserved after marginalising over

nodes q.

From the matrix version of Dempster’s (1969) recursion formula for concentra-

tions, Σaa.bc = Σaa.c−Σab.c(Σbb.c)−1Σba.c, it then follows in the special case of interest

here, i.e. for a = K, b = q, c = H, that there is a (i, j)-structural zero in conK(YK)

if and only if there is such a structural zero in conL(YK) and there is no sequence

i = i0, i1, . . . , it, it+1 = j with indices il, l = 1, . . . , t within q such that each adjacent

index pair in the whole sequence corresponds to a free parameter in conL(YK).

In preparation for the next sections we take as one example to Figure 1 v = {2, 9}
and C = {1, 4, 6} so that the set H of offspring of C is empty and q = {3, 5, 7, 8, 10}.
Figure 6 shows the overall concentration graph with nodes of K = C ∪ v being

darkened. It has an edge present if and only if there is a free parameter in conV (Y ) =

AT ∆−1A. No structural zero remains after marginalising over q in Figure 6, that

is in conK(YK), since for every unconnected pair (i, j) within K there is in this

example a sequence of free parameters in q connecting i and j.

Figure 6: The overall concentration graph induced by the generating graph in Figure 1,
nodes for K = {1, 2, 4, 6, 9} are darkened; marginalising over the remaining nodes which
in Figure 1 are all ancestors of K removes each structural zero within K

As another example to Figure 1 let v = {7, 8, 9}, u = ∅, C = {1, 2, 3, 5}, and

q = 10, so that H = p = {4, 6} and L = V \H consists of the remaining eight nodes.
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Then the submatrix of v in conL(YL) is diagonal, i.e. has three structural zeros,

while the structural zero for (8,9) is removed after marginalising over 10. Thus,

a structural (i, j)-zero present in A for ancestors v of a conditioning set C can be

removed in conK(YK) by conditioning on K, by marginalising over q or only by a

combination of the two.

4.3 The conditional distribution of Yu given YK

To obtain the special form in equations (13) for the conditional distribution of Yu

given YK we note first that by sweeping A on p at most components corresponding

to the offspring H of C are modified but not those in V \H = L. In particular, after

writing (A swt p)u,V \p = (Auu.p AuL.p) we get the corresponding linear equations

for the joint distribution of Yu, YL as

Auu.pYu + AuL.pyL = εu−p, ALLYL = εL.

In these equations an essential part of the order of the variables in the generating

system is preserved, since u consists of offspring of C and hence of L = C∪ ancestors

of C. Indices within L are adjacent, but within u they need not be. The residuals

between the two blocks are uncorrelated, since they have no components in common.

The residuals within u may be correlated and the matrices Auu.p and ALL are both

of upper triangular form. Therefore, the conditional distribution of Yu given YL is

described by equations which represent univariate recursive regressions conditionally

given YL and have possibly connected dependencies within block u. The matrix of

regression coefficients in the linear regression of Yu and YL is Πu|L = −A−1
uu.pAuL.p

since εu−p is uncorrelated with εL and hence with YL.

After partitioning L into q and K, moving Auq.pYq to the right-hand side and

adding Auq.pΠq|KYK on both sides, the equations for Yu given YL are modified into

equations of Yu given YK alone as

Auu.p(Yu − Πu|KyK) = εu−p − Auq.p(Yq − Πq|KyK). (20)

Since nodes q and K need not be adjacent we have Yq = A−1
qq (εq−AqKYK) and since,

21



as explained above, AqqΠq|K = ∆qqB
T
KqΣ

−1
KK − AqK , it follows that

Yq − Πq|KyK = A−1
qq (εq − ∆qqB

T
KqΣ

−1
KKyK).

For the equivalent form of (20) to the first equations in (13) we need further that

εu−M = εu−p−Auq.pA
−1
qq εq, ∆uK−M = Auq.pA

−1
qq ∆qqA

−T
qq AT

Kq, BT
Kq = −A−T

qq A−T
Kq A

−T
KK.q,

Σ−1
KK = AT

KK.q∆
−1
KK−qAKK.q and YK = A−1

KK.qεK−q.

From the explicit form for the residuals in (20) it can be derived directly that

they have zero covariance with the residuals εKK−q. Therefore, the equations in u

of (20) for selected offspring of the conditioning set C remain unchanged when the

joint marginal distribution of C and selected ancestors v is represented in different

ways, for instance by the covariance matrix, by the concentration matrix or by the

univariate recursive system of connected dependencies AKK.qYK = εK−q of Section

4.2.

4.4 Deriving equations and structural zeros for the distribution of YS|C

Equations (13) specify a linear system for the joint distribution of Yu and YK

in two blocks which have uncorrelated residuals between blocks. Equations for the

joint distribution of YS given YC are to be derived from them, where S = u ∪ v and

K = C ∪ v. This is achieved by rewriting equations (13) explicitly in terms of v and

C as

ΓuuYu + Γuvyv + ΓuCyC = ηu, ΓKKYK = ηK .

The concentration matrix of the residuals after regressing Yv on YC , i.e. after taking

Yv = Πv|CyC + εv|C , is the (v, v)-submatrix of Σ−1
KK = conK(YK). The matrix of

regression coefficients obtained by projecting Yv on YC , i.e. Πv|C can for example be

obtained by sweeping Σ−1
KK on v, but explicit expressions are complex.

After writing Yv|C = Yv − Πv|CyC and inserting yv in the first equation we get

ΓuuYu + Γuv(Πv|CyC + yv|C) + ΓuCyC = ηu,

and observe that ηu is uncorrelated with yv|C since it is uncorrelated with yK . Finally,

we obtain from the explicit form of the Γ-matrices in (13) that

Yu + (Γuu)
−1(ΓuC + ΓuvΠv|C)yC = Yu − (Πu|C.v + Πu|v.CΠv|C)yC = Yu − Πu|CyC .
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so that the joint distribution has the claimed form (12)

Auu.pYu|C + Auu.pΠu|v.Cyv|C = ηu, Yv|C = ηv.

With Πu|v.CΣvv.C = Σuv.C the covariance matrix of the residuals results as

cov(η) =

(
Ψuu 0

0 Ψvv

)
=

(
Auu.pΣuu.vCAT

uu.p 0

0 Σvv.C

)
,

and, as mentioned above, Σ−1
vv.C = (Σ−1

KK)v,v. This completes the proof of (12).

4.5 Orthogonalising correlated residuals

To understand how marginalising first over M = p∪ q and then conditioning Yu

on YK leads to the same form of equations as given in (13) and (12) we note that

(A swt M)V \M,V \M =

(
Auu.p AuK.pq

0 AKK.q

)
, εu−M = εu−p − Auq.pA

−1
qq εq.

Since εu−M and εK−q are in general correlated, because both contain εq, an orthog-

onalisation step is needed to get from

Auu.pYu + AuK.pqyK = εu−M , AKK.qYK = εK−q

to the equations in (13). This is achieved by subtracting Πεu−M |εK−q
AKK.qYK from

both sides of the equations, observing that

Πεu−M |εK−q
= ∆uK−M∆−1

KK−q, AuK.pq = AuK.p − Auq.pA
−1
qq AqK

and making again use of some of the above matrix equalities.

4.6 The covariance and concentration matrices of YS given YC

With the explicit results for the equations of Yu given YC , Yv and of Yv given YC ,

at the end of Section 4.4, the conditional covariance and concentration matrix of YS

given YC are directly expressible in terms of parameters of the system of univariate

connected dependencies (12).
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The covariance matrix of YS given YC is

ΣSS.C =


 Γ−1

uu −Γ−1
uuΓuv

0 Ivv





 Ψuu 0

0 Ψvv





 Γ−T

uu 0

−ΓT
uvΓ

−T
uu Ivv


 , (21)

where Ivv denotes the identity matrix of a size corresponding to Yv, Γuu = Auu.p and

−Γ−1
uuΓuv = Πu|v.C . There can be no additional structural zero in Ψvv = Σvv.C which

is not present in its inverse Ψ−1
vv , since an additional structural (i, j)-zero in v could

only be generated by marginalising over an index h within v which has both i and j

as parents in the generating process but no descendant in C. Since v contains only

ancestors of C this would contradict the definition. Hence, structural zeros can only

get removed by inverting Ψ−1
vv , i.e. by marginalising over nodes of v. More precisely,

there is a (i, j)-structural zero in Ψvv if and only if there is such a structural zero in

Ψ−1
vv and there is no sequence i = i0, i1, . . . , it, it+1 = j with indices il, l = 1, . . . , t

within v such that each adjacent index pair in the whole sequence corresponds to a

free parameter in Ψ−1
vv .

This implies in particular that Ψvv has a complete block-diagonal form, i.e. it

consists exclusively of complete nonoverlapping blocks. Blocks indicate (vector)

components of v which are mutually independent and remain independent after

conditioning on C.

The concentration matrix of YS given YC is then

Σ−1
SS.C =


 ΓT

uuΨ
−1
uuΓuu ΓT

uuΨ
−1
uuΓuv

. Ψ−1
vv


 =


 Σuu.M Σuv.M

. Σvv.M


 ,

where the right-hand side shows the notation after sweeping the overall concentration

matrix on M , i.e. for marginalising in Σ−1 over M . There is for instance a structural

(j, k)-zero in ΓT
uuΨ

−1
uuΓuv if and only if each individual term in the matrix product

is zero, i.e. if and only if γhj(Ψ
−1
uu )hiγik = 0 for indices h, i, j ∈ u and k ∈ v.

By conditioning on u, i.e. by inverting Ψuu, no additional structural zeros can be

induced since an edge in it is present in the generating graph or it is generated

by marginalising over M or conditioning on K, hence it cannot be removed by

conditioning on indices outside M and K.
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For the representation of conV \M(YS, YC) in terms of the parameters of the

generating system (4), we partition M into r and w, where w are ancestors of

S ∪ C outside S ∪ C and r are offspring of S ∪ C and denote the union of S, C, w

by N = V \ r. Marginalising over offspring leaves the marginal distibution of

the remaining variables unchanged. Therefore the concentration marix of YN is

ΣNN.r = AT
NN(∆NN)−1ANN . There are typically more structural zeros in ΣNN.r

than in the submatrix of N in the overall concentration graph, i.e. in (Σ−1)N,N . By

marginalising over the ancestors w of S ∪ C no additional structural zero can get

induced but only structural zeros present in ΣNN.r can get removed.

These properties assure that in

conV \M(YS, YC) =

(
ΣSS.r ΣSC.r

. ΣCC.r

)
−

(
ΣSw.r ΣCw.r

)
(Σww.r)−1

(
ΣwS.r

ΣwC.r

)

there is a structural (i, j)-zero if and only if there is one in ΣNN.r and there is no

sequence of indices i = i0, i1, . . . , it, it+1 = j with indices il, l = 1, . . . , t within

w such that each adjacent index pair in the whole sequence corresponds to a free

parameter in ΣNN.r. This applies in particular for the submatrix of interest, i.e. for

Σ−1
SS.C = (conV \M{YS, YC})S,S.

To express the covariance matrix of YS given YC in terms of the parameters of

the generating system (4), i.e. for AY = ε, it is useful to partition the set of all

indices V into the three components H, C, D, with C the conditioning set, D the

ancestors of C outside C, and H offspring of C, and to use

ΣSS.C = (Σ swp C)S,S = (−Σ−1 rswp H, D)S,S.

Now, the conditional concentration matrix of D given C is obtained after marginal-

ising the overall concentration matrix over H and it is also the submatrix of the

concentration matrix of L = C ∪ D, i.e.

Σ−1
DD.C = ΣDD.H = (AT

LL∆−1
LLALL)D,D.

Since Σ−1
DD.C contains only ancestors of C the type of reasoning given before applies

here as well, i.e. there is an (i, j)-edge in its inverse ΣDD.C if and only if there is a

sequence of free parameters between i and j in Σ−1
DD.C .
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After resweeping the overall concentration matrix on H, the submatrix for V \C
is 

 ΣHH.CD ΠH|D.C

. −ΣDD.H


 =


 (AT

HH∆−1
HHAHH)−1 −A−1

HHAHD

. −Σ−1
DD.C


 ,

and resweeping further on D leads to

ΣHD.C = ΠH|D.CΣDD.C , ΣHH.C = BHH∆HHBT
HH + ΠH|D.CΣDD.CΠT

H|D.C .

In the special case when indices in C and D are adjacent, we have in the notation

of Section 3 Σ−1
DD.C = AT

DD∆DD+CADD and ΣHD.C = BHD(∆DD+C)−1BT
DD.

The linear equations obtained after only conditioning in system (4) on an arbi-

trary subset C can be therefore be written in the form of (12) as

AHHYH|(C,D) = AHHYH|C + AHDyD|C = εH , YD|C = ηD, (22)

where the residuals εH have a diagonal covariance matrix and are uncorrelated with

ηD. With these equations the conditional covariance matrix of nodes outside C

given C, Σ(V \C,V \C).C , is expressible as a special case of (21). It contains ΣSS.C as a

submatrix and it can be rewritten as

Σ(V \C,V \C).C =


 A−1

HH ΠH|D.CFDD

. FDD





 ∆HH 0

. ∆+
DD





 A−T

HH 0

F T
DDΠT

H|D.C F T
DD


 ,

where ∆+
DD is a triangular matrix, FDD is upper triangular and (FDD, ∆+

DD) is

a triangular decomposition of ΣDD.C . We denote by F the indicator matrix of

structural zeros in this triangular decomposition (F, ∆+) of Σ(V \C,V \C).C and by F+

the indicator matrix of structural zeros in Σ(V \C,V \C).C itself, i.e. in FF T .

Since the covariance matrix of the ancestors of C outside C is of complete block-

diagonal form, the structural zeros in FDD coincide with those in the outer product

FDDF T
DD, i.e. FDD = F+

DD, and they remain unchanged for any order in which

the triangular decompostion is carried out. Thus, the conditional covariance matrix

of ancestors of a conditioning set as implied by system (4) has always a triangular

decomposition of complete block-diagonal form which reflects all its structural zeros.

But, the inverse of FDD is in general not complete block-diagonal.
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Also, the analogous statement is not true in general for the triangular decompo-

sition of the concentration matrix Σ−1
DD.C as implied by system (4), i.e. the structural

zeros in F−1
DD may differ from those in the inner product F−T

DDF−1
DD. The reason is

as follows. By conditioning on common responses in a univariate recursive system

undirected chordless n-cycles can be generated in the corresponding overall con-

centration graph. In that case there exists no triangular decomposition of Σ−1
DD.C

which has the same zero pattern as the upper triangular part of this concentration

matrix, no matter which ordering of the variables is chosen (Wermuth, 1980; Cox &

Wermuth, 1999).

We use these properties to define a special system of univariate recursive regres-

sions in uncorrelated residuals for every conditional distribution of YV \C given YC .

We introduce a matrix E such that

EY(V \C)|C =

(
AHH AHD

0 EDD

) (
YH|C
YD|C

)
=

(
εH

ε∗D

)
= ε∗,

where EDD = FDD = F+
DD, i.e. the subsystem for the ancestors D of C is block-

diagonal and it has a structural zero whenever ΣDD.C , the conditional covariance

matrix implied by (4) for the ancestors of C has a structural zero. The equations

for the offspring H of C are those of (4), just rewritten for YH in deviation from its

conditional mean given C.

For any recursive system of complete block-diagonal form, such as EDDYD|C =

ε∗D, the indicator matrices of structural zeros coincide for the defining upper trian-

gular matrix (EDD), its inverse, and their inner and outer products. This means

that we have also chosen EDD so that Σ∗
DD.C = E−1

DDcov(ε∗DD)E−1
DD has the same

structural zeros as its inverse. Furthermore, since

E−1 =

(
A−1

HH −A−1
HHAHDE−1

DD

0 E−1
DD

)

and the structural zeros in EDD coincide with those of E−1
DD it follows that the

indicator matrix of structural zeros in E−1 is identical to F and that therefore

the structural zeros in Σ(V \C,V \C).C = F∆+F T agree with those in Σ∗
(V \C,V \C).C =

E−1cov(ε∗)E−T .
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This is a further example of a covering model which is simpler to analyze than

the reduced model embedded in it (Cox & Wermuth, 1990). Here the covering model

is univariate recursive with independent residuals, the reduced model (22) need not

have such a representation which reflects its independence structure fully. The addi-

tional restrictions in the reduced model are independencies for components of YD|C

with a conditioning set larger than C. They correspond to structural zeros in the

inverse of Σ−1
DD.C not present in ΣDD.C as well. We have shown these independencies

are not needed to decide on the missingness of an edge in the conditional covariance

matrix, i.e. on whether the conditional independence Yi ⊥⊥ Yj | YC is implied by the

generating system (4).

Generalizations to other than linear systems are studied in detail next. In par-

ticular we prove in Section 5.9 the equivalence of matrix conditions for constructing

the conditional covariance graph of YS given YC to a simple path criterion and show

their validity for general distributions factorizing as in (1), i.e. as determined by the

parent graph. Finally in Section 5.10 a programmable matrix algorithm is provided

to obtain the edge matrix of a conditional covariance graph directly from the edge

matrix of the generating parent graph.

5. Generalizations to arbitrary distributions generated over graphs

We have seen in Section 4 that a linear recursive system (4) with uncorrelated resid-

uals can be turned after marginalising and conditioning into univariate recursive

regressions having typically some correlated residuals for offspring of the condition-

ing set and, independently, into a covariance selection model for ancestors of the

conditioning set. That is, if we start with S, C, M as any disjoint subsets of the set

of variables V in the generating system and AY = ε, where A is constrained only by

having zeros whenever an edge is missing in the generating graph and ε is any zero

mean vector with diagonal covariance matrix, then every conditional distribution of

YS given YC marginalising over YM is of the form (12) for which we define associated

graphs below.

These results can be generalized to systems in which responses, intermediate
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and explanatory variables may be discrete or continuous and the form of the joint

distribution is arbitrary except that it is generated as described in Section 1 over a

directed acyclic graph with given edge matrix A so that the joint density factorizes

as in (1). Effects of marginalizing and conditioning have been studied from different

perspectives by Koster (1999b), Richardson & Spirtes (2000), Wermuth et al. (2000).

One key used here is to establish the relation of forming inner and outer prod-

ucts of matrices and of sweeping triangular matrices to completing certain 3-node-

configurations in graphs. Therefore we give in this Section first definitions of special

type of V-configurations, paths and graphs. Next we restate the conditions for struc-

tural zeros in matrices of linear systems obtained from (4) in Section 4 together with

equivalent conditions for missing edges in graphs and derive graphs with identical

edge matrices by completing V-configurations, that is without reference to linear

systems.

The conditions on structural zeros in matrices translate into factorizations of

densities present in (1) being preserved after marginalising and conditioning. As

the main result we shall see that if in a linear system generated over a parent graph

of A a structural zero in matrices resulting from A after marginalising and condi-

tioning implies for all Gaussian distributions a conditional independence statement,

then that same conditional independence holds for arbitrary distributions generated

over the same parent graph.

5.1 Types of V-configuration, path and graph

Subgraphs induced by three nodes in a given graph in which two edges are present

and one is absent are called V-configurations. The types of V- configurations in a

directed acyclic graph differ in the configurations of the arrows at the common

neighbour node t. A V-configuration is called collision-oriented, transition-oriented

or source-oriented, respectively, depending on whether the common neighbour t is

i t j i t ji t j

a sink or collision node (left), a transition node (middle), or a source node (right).
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With several paths passing through a node, this node may take on different roles

along the different paths.

It is useful to characterize some further special type of paths in graphs of joint

response models which we define below and study in the following Sections. As

mentioned before, a path is said to be direction-preserving whenever it consists

exclusively of arrows pointing in the same direction. A path is said to be a pure

collision path if for every node along it has one of the following three configurations

where the roles of i and j may also be reversed in the middle one and dashed lines

are edges in covariance graphs (Cox & Wermuth, 1993, Wermuth & Cox, 1998).

Pure collision paths of more than three nodes may differ in the type of the first and

the last edge. Otherwise, they all have dashed lines along the path. If they did not,

a noncollision node would occur along the path, contradicting the definition.

A path is collisionless if it does not contain any one of the above three configura-

tions. In directed acyclic paths a collisionless path is either direction-preserving or

it is a common-source path, i.e it consists of two direction-preserving paths, where

the direction of the arrows changes at the common source node. In the other graphs

to be derived here three further collisionless V-configurations are possible:

where full lines are edges in concentration graphs (Cox & Wermuth, 1993, Wermuth

& Cox, 1998).

The different types of graph that we study here are all induced by a directed

acyclic graph, GV
dag with a given ordering of all nodes. We say they are induced by a

given parent graph, GV
par of A, where node 1 corresponds to row one and node dV to

the last row of A. If each nonzero (i, j)-entry of A implies a nonvanishing dependence

of Yi on Yj given Ypar(i)\j then the joint distribution generated must have the global

factorization property (1), as defining independence structure (2), and no additional

independencies hold except those implied by (1) and (2) unless there are parametric

cancellations, i.e. unless there are special parametric constellations. Conditions for
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the absence of such cancellations have been studied (Wermuth and Cox, 1998) but

are of no relevance for the presence of structural zeros.

The specific types of graph to be derived from GV
par of A are its ancestor graph,

covariance and concentration graphs, graphs of connected univariate dependencies,

and graphs of projecting one vector variable on another. The following list of defini-

tions of graphs are related in the next Sections to structural zeros in transformations

of the matrix A of a corresponding linear system. In graphs of connected depen-

dencies an edge may have two components, in all other graphs each edge is simple,

i.e. has just one component. In all graphs introduced here there are no directed

cycles, i.e. it is impossible to follow the arrows along a direction-preserving path

and return to the node from which one had started. As before we take the distinct

nodes (h, i, j, k) to be in increasing order.

A generating process with independence structure (2) implies that the (i, j)-

arrow is missing in GV
par of A if and only if for i, j ∈ V

i ⊥⊥ j | parents of i.

The q-line ancestor graph, GV
anc(q) of A, is a fully directed graph. It has an (i, j)-

arrow present if and only if in GV
par of A node j is a parent of i or an ancestor of i

with all nodes along the path in q. In general a missing edge in this ancestor graph

need not correspond to an independence statement. But in the overall ancestor

graph an (i, j)-arrow is missing if and only if for i, j ∈ V

i ⊥⊥ j | potential ancestors of j.

The covariance graph of YS given YC , GS.C
cov of A, is an undirected graph of

dashed lines. The (i, j)-dashed-line is missing in it if and only if the generating

process implies for i, j ∈ S

i ⊥⊥ j | C.

The concentration graph of YS given YC , GS.C
con of A, is an undirected graph of full

lines. The (i, j)-full-line is missing in it if and only if the generating process implies

for i, j ∈ S

i ⊥⊥ j | C ∪ S \ {i, j}.
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In GS.C
cud of A, the graph of connected univariate dependencies of YS given YC , there

can be three types of edge, full lines, dashed lines or arrows. The selected nodes S

are partitioned into u containing offspring of C and into v containing ancestors of

C outside C. The subgraph of GS.C
cud induced by nodes v has only full lines and a

missing (i, j)-full-line if and only if the generating process implies for i, j ∈ v

i ⊥⊥ j | C ∪ v \ {i, j},

i.e. it is the conditional concentration graph of Yv given YC .

Node pairs of offspring u may no longer have a simple edge, but may have a

composite edge consisting of two components, namely of an arrow and of a dashed

line. Whenever an edge is composite, its components are to be thought of as different

paths. There is an (i, j)-dashed line missing in the subgraph of GS.C
cud induced by

nodes u if and only if the joint conditional distributions of Yi and Yj which factorized

in (1) still factorizes after marginalising over M and conditioning on C.

In the part of GS.C
cud not involving ancestors v there is an (i, j)-arrow missing if

and only if j is not a M -line ancestor of i in the generating graph and no ancestor-

like relation is generated for them by conditioning on C and marginalising over M .

As we shall see no conditional independence statement for pair (i, j) needs to hold

even when (i, j)-edge components of both type are missing in GS.C
cud .

Finally, the graph of projecting each component of YS on YC is a fully directed

graph without edges for nodes within S and within C. The (i, j)-arrow is missing

in it if and only if the generating process implies for i ∈ S and j ∈ C

i ⊥⊥ j | C \ j.

As discussed in Sections 3 and 4 in the special case when S consists of offspring

H and ancestors D of C outside C, i.e.if S = V \ C, the linear system (4) implies

ΠH|D.C = −A−1
HHAHD, so that there is a structural zero in the graph of projecting

YH|C on YD|C if and only if j is a not a H-line ancestor of i.

This example is well suited to illustrate the type of reasoning needed for proving

that structural zeros in matrices for linear Gaussian systems imply missing edges

in corresponding graphs of arbitrary distributions generated over the same parent
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graph of A. Thus, for the graph of projecting YH|C on YD|C it is to be proven that

the factorization (1) implies i ⊥⊥ j | D∪C \ j if node j is not an H-line ancestor of i.

More precisely, for i ∈ H, the offspring set of C, and j ∈ D, the ancestor set of

C outside C, we have

fi|C,D =
∫

fi|C,D,PfP|C,DdP ,

where P denotes the parents of node i not in L = C ∪ D, but in {i + 1, . . . , dH}.
The first factor on the right-hand side cannot depend on j, for otherwise node j

would be a parent of i. To deal with the second factor we integrate in the order of

the generating process, i.e. we start with l = dH . The density of each component

l ∈ {i + 1, . . . , dH} depends only on par(l), the parents of this component, taken

conditionally on {l+1, . . . , dH} and C ∪D. Now none of these densities can depend

on j, for otherwise j would be an H-line ancestor of i in the parent graph. Thus,

fi|C,D does not depend on j, as was to be proved.

Thus, a matrix condition assures for all Gaussian distribution that i ⊥⊥ j | D∪C\j
is implied by the generating process. The condition reformulated for graphs implies

the same independency for general distributions, provided they are generated over

the same parent graph. This is set out in detail for various other graphs in the

following Sections.

5.2 Missing edges in the overall ancestor graph, GV
anc

The following statements are equivalent:

(i) There is a structural (i, j)-zero in the inverse B of the triangular matrix A.

(ii) The (i, j)-arrow is missing in the ancestor graph of A.

(iii) In the parent graph of A there is no direction-preserving path pointing to node

i from node j.

This implies that if there is an (i, j)-structural zero in the matrix B then for

arbitrary distributions generated over the graph i ⊥⊥ j | {j + 1, . . . , dV }.
The joint conditional density of all variables of interest here is

fij|j+1,...,dV
= fi|j,j+1,...,dV

fj|j+1,...dV
. (23)
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Now in general not all the parents of i are in the conditioning set for the first factor.

Therefore we partition the parents of i into those in P = {i + 1, . . . , j − 1} and the

remainder in {j, j + 1, . . . , dV }. Then the first factor is

fi|j,j+1,...,dV
=

∫
fi|P,j,...,dV

fP|j,...,dV
dP . (24)

Now neither factor on the right-hand side of (24) can involve j. For otherwise by

(iii) j would be either a parent or an ancestor of i. That is (24) is a function of

i alone and, because the second term on the right-hand side of (23) does not not

involve i, the expression (23) factorizes into a function of i times a function of j

proving the required independency.

For the claimed equivalences (i) to (iii) note that in Section 2 the inverse of a r×r

triangular matrix A was obtained by sweeping A on all its rows and columns and

the necessary and sufficient condition for having a structural zero in B = A−1 was

illustrated for pair (1,4). More generally, the condition is that there is no ordered

sequence (i = i0, i1, . . . , it, it+1 = j) such that each adjacent pair is a free parameter

in A. Statements (ii) and (iii) are equivalent by definition for linear systems.

For general systems they are also equivalent since B, the edge matrix of the

ancestor graph GV
anc, can be obtained directly from A, the edge matrix of the parent

graph GV
par as follows. Every transition-oriented V-configuration in the parent graph

is completed by an arrow, until no such V-configuration remains. The arrow is

inserted so that it shortens the path via the transition-node, i.e. so that it keeps

the same direction as the two arrows in the V-configuration that is completed.

The matrices in (6) illustrate the result. To see the connection of inverting A to

completing transition-oriented V-configurations note that the edge matrix B can be

obtained from the edge matrix A completing off-diagonal submatrices (i, j, k) by

inserting (i, k)-ones as long as an (i, k)-zero coincides with ones in positions (i, j)

and (j, k).

As is set out in the next two Sections both graphs GV
anc and GV

par determine in

a dual way which edges are missing in the overall covariance graph GV
cov and in the

overall concentration graph GV
con, respectively.
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5.3 Missing edges in the overall concentration graph, GV
con

The following statements are equivalent:

(i) There is a structural (i, j)-zero in the inner product of the triangular matrix

A, i.e. in AT A.

(ii) The (i, j)-full-line is missing in the overall concentration graph GV
con of A.

(iii) In the parent graph of A the node pair (i, j) has no edge and no common

collision node.

This implies that if for all possible Gaussian distributions generated over the

parent graph of A the (i, j)-element of the concentration matrix vanishes, then for

all distributions generated over the same graph i ⊥⊥ j | {1, . . . , dV }\{i, j}.
The generating process uses fi|i+1,...,dV

= fi|par(i) so that the (i, j)-edge missing by

(iii) in the parent graph means i ⊥⊥ j | c with c = {i + 1, . . . , dV }\j and fi|j,c = fi|c.

Now also by (iii), for all h < i at most one of i and j is in the parent set of h.

For otherwise (iii) would be contradicted. Hence h ⊥⊥ i | (j, c) or h ⊥⊥ j | (i, c) and

fh|i,j,c = fh|j,c or fh|i,j,c = fh|i,c.

We now argue one step at a time to extend the conditioning set c for i by adding

in sequence h of (i − 1, . . . , 1). For example with i ⊥⊥ j | c and h ⊥⊥ i | (j, c) we have

that

fh,i,j|c = fh|i,j,cfi|j,cfj|c = fh|j,cfi|cfj|c = fh,j|cfi|c,

i.e. (h, j) ⊥⊥ i | c. Therefore,

fi,j|h,c = fh,i,j|c/fh|c = fh,j|cfi|c/fh|c = fj|h,cfi|c,

so that i ⊥⊥ j | (h, c). By the same type of reasoning, we have from i ⊥⊥ j | c and h ⊥⊥ j |
(i, c) that (h, i) ⊥⊥ j | c and hence also i ⊥⊥ j | (h, c). After all i − 1 steps of enlarging

the conditioning set of i the required independency i ⊥⊥ j | {1, . . . , dV }\{i, j} follows.

A slightly more general result is given in Appendix 2 to illustrate the appealing

reasoning in terms of graphs instead of densities.

For the claimed equivalences (i) to (iii) note that the triangular decomposition

(5) of the concentration matrix in a linear system (4) gives conV (Y ) = Σ−1 =

35



AT ∆−1A. Since ∆ is a diagonal matrix its inverse does not affect structural zeros

in this matrix product.

The explicit form of the matrix product AT A shows that a structural (i, j)-zero

in A remains a structural zero in AT A if and only if there is no index h < i such that

ahi and ahj are both free parameters in A. This necessary and sufficient condition

for obtaining an (i, j)-structural zero in the inner product of A is for linear systems

equivalent to statements (ii), (iii) by definition.

For general systems they are also equivalent since the overall concentration graph

can be obtained directly from GV
par with edge matrix A by first completing every

collision-oriented V-configuration by an edge and then replacing all edges by full

lines.

Since a concentration matrix is symmetric, its indicator matrix for structural

zeros can again be stored in an upper triangular matrix. The edge matrix of GV
con,

is defined here as an upper triangular matrix of zeros and ones with an (i, j)-zero

if and only if the (i, j)-edge is missing in GV
con. It coincides by definition with the

upper triangular part of the indicator matrix of structural zeros in AT A. To see

the connection to completing collision-oriented V-configurations, note that the edge

matrix of the concentration graph can be obtained from the edge matrix A complet-

ing off-diagonal submatrices (h, i, j) by inserting (i, j)-ones as long as an (i, j)-zero

coincides with ones in positions (h, i) and (h, j).

5.4 Missing edges in the overall covariance graph, GV
cov

The following statements are equivalent:

(i) There is a structural (i, j)-zero in the outer product of the triangular matrix

B = A−1, i.e. in BBT .

(ii) The (i, j)-dashed line is missing in the overall covariance graph GV
cov of A.

(iii) In the ancestor graph of A the node pair (i, j) has no edge and no common

source node.

(iv) In the parent graph of A there is no collisionless path between nodes i and j.

36



This implies that if for all possible Gaussian distributions generated over the

parent graph of A the (i, j)-element in the overall covariance matrix vanishes, then

for all distributions generated over the same graph i ⊥⊥ j.

To see this note first that the absence of a collisionless path between nodes i and

j in (iv) is equivalent to the sets (i∪ ancestors of i) and (j ∪ ancestors of j) being

disjoint. Assume first that there is no collisionless path between i and j. Now, the

distribution of i is recursively formed via (1) by contributions of ancestors of i. If j

or one of its ancestors were an ancestor of i then there would be a collisionless path

between i and j contradicting the assumption. Similarly, the distribution of j is

generated from its ancestors. Since j is a potential ancestor of i, the node i cannot

be in the ancestor set of j. If one of the ancestors of i were also an ancestor of j or

of one of the ancestors of j then there would at the same time be a common-source

path between i and j contradicting again the assumption. Conversely if the two sets

formed by each node with its ancestors are disjoint then every possible collisonless

path would generate an overlapping set of ancestors for i and j, again a contradiction

to the assumption.

The disjointness implies with (1) that the joint marginal density of the two

sets of variables factorizes so that (i∪ ancestors of i) ⊥⊥ (j ∪ ancestors of j). After

marginalising over the ancestors of i and j we have the required marginal indepen-

dence i ⊥⊥ j.

For the claimed equivalences (i) to (iv) note that the triangular decomposition (5)

of the covariance matrix of a linear recursive system (4) gives cov(Y ) = Σ = B∆BT .

Since ∆ is a diagonal matrix it does not affect structural zeros in this matrix product.

The explicit form of the matrix product BBT shows that a structural (i, j)-zero

in B remains a structural zero in BBT if and only if there is no index k > j such that

bik and bjk are both free parameters in B. This necessary and sufficient condition

for obtaining an (i, j)-structural zero in the outer product of B is for linear systems

equivalent to statements (ii), (iii) by definition. The equivalence to statement (iv)

follows from a combination of results here with those of Section 5.1.

For general systems statements (i) to (iv) are also equivalent since the overall
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covariance graph can be obtained directly from GV
anc with edge matrix B by first com-

pleting every source-oriented V-configuration by an edge, then replacing all edges

by dashed lines.

Since a covariance matrix is symmetric, its indicator matrix for structural zeros

can again be stored in an upper triangular matrix. The edge matrix of GV
cov, is

defined here as an upper triangular matrix of zeros and ones with an (i, j)-zero if

and only if the (i, j)-edge is missing in GV
cov. By definition it coincides with the

upper triangular part of the indicator matrix of structural zeros in BBT . To see

the connection to completing source-oriented V-configurations note that the edge

matrix of the covariance graph can be obtained from the edge matrix B completing

off-diagonal submatrices (i, j, k) by inserting (i, j)-ones as long as an (i, j)-zero co-

incides with ones in positions (i, k) and (j, k).

5.5 Missing edges in q-line ancestor graphs

The following statements are equivalent:

(i) There is a structural (i, j)-zero in a triangular matrix A∗ obtained with the

swt-operator (1) by sweeping A on rows and columns q.

(ii) The (i, j)-edge is missing in the q-line ancestor graph of A.

(iii) In the parent graph of A there is no (i, j)-edge and no direction-preserving

path between nodes i and j having all nodes along it in q.

This implies that if for all possible Gaussian distributions generated over the

parent graph of A the (i, j)-element of the matrix A after sweeping on rows and

columns of M is no longer a structural zero, then for all distributions generated over

the same graph the conditional independence of a potential ancestor j of i present

in the generating process is no longer necessarily preserved after having reduced the

conditioning set by marginalising over i, . . . , j − 1.

For the claimed equivalences note that in Section 4.2 details were given for ALL

swept on an arbitrary subset q = L \K, where ALLYL = εL is a subsystem of linear

equations (4) with uncorrelated residuals obtained by marginalising over offspring
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H of L, i.e. over adjacent nodes H in V = (H, L). Equations (15) to (18) contain

the explicit forms of

(ALL swt q) =

(
(ALL swt q)K,K (ALL swt q)K,q

(ALL swt q)q,K (ALL swt q)q,q

)
=

(
AKK.q AKqA

−1
qq

−A−1
qq AqK A−1

qq

)
.

These components look quite different, since they are a sum of matrices, matrix

products, and an inverse. However, regarding their interpretation in terms of the

edge matrix, A, of the parent graph they only differ with respect to the location of

an (i, j)-element. As mentioned before node j is said to be a q-line ancestor of i

if there is an (i, j)-edge in the parent graph or a direction-preserving path with all

nodes along it in q. Thus there is a structural (i, j)-zero in AKK.q if and only if for

j ∈ K is not a q-line ancestor of i ∈ K. Similarly, there is is a structural (i, j)-zero

in ΘK|q = AKqA
−1
qq if and only if j ∈ q is not a q-line ancestor of i ∈ K, and so on.

For general systems statements (i) to (iii) are also equivalent since the q-line

ancestor graph, GL
anc(q), can be obtained directly from the parent graph with edge

matrix A by completing every transition-oriented V-configuration with common

neighbour within q until none is left. Since GL
anc(q) is a directed acyclic graph its

edge matrix is just as defined previously for directed acyclic graphs. It coincides by

definition with the indicator matrix of structural zeros in the upper triangular ma-

trix (A swt q). The q-line ancestor graph can be regarded as an intermediate step

for deriving conditional independence statements, in the same way as the following

graphs of connected univariate dependences.

5.6 Missing edges in the graph of connected univariate dependencies

GK
cud for the marginal distribution of YK

The general definition in Section 5.1 of edges in a graph of connected univariate

dependencies contains the graph for a marginal distribution as a special case, i.e. if

C = ∅. In particular it implies for i and j both in K that an (i, j)-arrow is missing

in the graph of connected univariate dependencies, GK
cud of A, if and only if it is

missing in the subgraph induced by nodes K in the q-line ancestor graph of A.

The following statements are also equivalent for i and j both in K:
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(i) There is a structural (i, j)-zero in the outer product of ΘK|q = (A swt q)K,q.

(ii) An (i, j)-dashed-line is missing in the graph of connected univariate depen-

dencies GK
cud of A.

(iii) In the q-line ancestor graph of A the node pair (i, j) has no common source

node in q.

(iv) In the parent graph of A node pair i, j has no common source path with all

nodes along it in q.

For the claimed equivalences of (i) to (iv) note that the marginal joint distribu-

tion for variables of an arbitrary subset K of L is for linear systems given by the

second equation in (13). The parameters in the system are AKK.q and ∆KK−q, since

AKK.qYK = εK−q = εK − ΘK|qεq, cov(εK−q) = ∆KK−q = ∆KK + ΘK|q∆qqΘ
T
K|q.

The interpretation of a swept matrix given in the previous section shows that

AKK.q keeps track of edges present in the parent graph and of direction-preserving

paths with all nodes along it in q while ∆KK−q keeps tracks of common-source paths

with all nodes along it in q.

The equivalence of the statements follows for linear and for general systems by

the same type of reasoning given in the previous sections.

5.7 Missing edges in the covariance and concentration graph of YK

To complete the discussion of the marginal distribution of YK we note that, as for

any subset of nodes, the covariance graph, GK
cov, is the subgraph induced by nodes

K in the overall covariance graph.

For the marginal concentration graph, GK
con, the equivalence of the following

statements is helpful, where as before L = K ∪ q = V \ offspring of L.

(i) There is a structural (i, j)-zero in the matrix product AT
KK.q∆

−1
KK−qAKK.q.

(ii) An (i, j)-full-line is missing in the marginal concentration graph of YK , in

GK
con.

(iii) In GK
cud node pair (i, j) is not connected by a pure collision path.
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(iv) In GL
con there is no (i, j)-edge and there is no path between nodes i and j with

all nodes along it in q.

(v) In the subgraph induced by L in the parent graph of A the pair (i, j) has no

edge, no common collision node, and no path connecting i and j with every

transition node and every source node in q. (Hence, every collision node along

the path is in L.)

Statement (i) is a necessary and sufficient condition that i ⊥⊥ j | K \ (i, j) for all

Gaussian distributions generated over the parent graph of A. Marginalising over the

offspring H of L = K ∪ q does not affect the remaining recursive system in nodes

L. Thus, we need to show that the equivalence with the path conditions implies

i ⊥⊥ j | L\{i, j, q} for arbitrary distributions genererated over the same parent graph.

To see this we have first by condition (v) and the results of Section 5.3 that the

absence of an edge and a common collision node in L for pair (i, j) implies i ⊥⊥ j |
L \ {i, j} for arbitrary distributions. This is a property of the overall concentration

graph to the subgraph induced by nodes L in the parent graph which is directed

acyclic.

To verify the required independency we have to remove the nodes in q from the

conditioning set, i.e. to obtain the concentration graph of nodes L \ q. To examine

marginalising over q we argue by mathematical induction on the number dq, say, of

the nodes in q. From (v) we consider only paths in the subgraph induced by nodes

L in the parent graph and we call a path between any two nodes i and j active if

every transition node and every source node along it is in q and every collision node

is in L. We take as the induction hypothesis that the absence of an active path

between i and j is a sufficient condition for the required independence.

If dq = 1 so that q consists of a single node γ then by the result in Appendix 2

absence of an active path is a sufficient condition for retaining the conditional inde-

pendence after removing γ from the conditioning set. The reasoning by induction

proceeds by considering first active paths within the dq − 1 nodes to the union of

i, j, then if none of the resulting paths is active between i and j, the three node

configuration between i and j and the last node of q is considered to complete the
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argument.

For the claimed equivalences of (i) to (v) note that in Section 4.2 it was shown

that there is a free parameter in ∆−1
KK−q if and only if there is a sequence of indices

connecting i and j which corresponds to free parameters in ∆KK−q. In the graph

GK
cud this corresponds to the presence of a path of only dashed lines between i and

j. By conditioning on nodes K, i.e by inverting ∆KK−q, every V-configuration of

dashed lines in GK
cud is closed until none are left. Since the concentration graph of

YK is Σ−1
KK = AT

KK.q∆
−1
KK−qAKK.q it has a structural zero if and only if i and j are

not connected by a path in ∆KK−q and not by an arrow pointing from i or from j

or from both to a path in ∆KK−q. This enumerates the four possible types of pure

collision path in GK
cud.

Similarly, it was explained in Section 4.2 why by marginalising in Σ−1
LL over q a

structural (i, j)-zero is preserved if and only if there is no sequence of indices in q

connecting i and j which corresponds to free parameters in Σ−1
LL. In the graph GL

con

this corresponds to the absence of an edge and of a path with all nodes along it

in q. By marginalising over nodes q the V-configurations of full lines in GL
con with

common neighbour in q are closed until none are left. This provides two different

routes of constructing the concentration graph of YK .

The conditions in (v) are just a reformulation for the parent graph to assure that

after marginalising over q no pure collision path is generated in GK
cud and that after

conditioning on C there is no collisionless path between i and j in L wholly outside

C. Finally we note that by the definitions of graphs given in Section 5.1 a missing

(i, j)-edge in the concentration graph of YK is equivalent to a missing (i, j)-edge in

the conditional covariance graph of H ∪ {i, j} given C
′
= K \ {i, j}, i.e. as aspecial

case of the more general conditional independence statement discussed in Section

5.9 below.

5.8 Missing edges in the graph of connected univariate dependencies

G
u|K
cud for the conditional distribution of Yu given YK

The general definition in Section 5.1 of edges in a graph of connected univariate
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dependencies implies for i and j both in u that there is a structural (i, j)-zero in the

triangular matrix Auu.p = (A swt M)u,u and an (i, j)-arrow is missing in the graph

of connected univariate dependencies, G
u|K
cud of A if and only if it is missing in the

subgraph induced by nodes u in the M -line ancestor graph of A.

The following statements are equivalent for i in u and for j in K:

(i) There is a structural (i, j)-zero in the matrix product -Auu.pΠu|K = AuK.M −
∆uK−M∆−1

KK−MAKK.M .

(ii) An (i, j)-arrow is missing in the graph of connected univariate dependencies,

G
u|K
cud of A.

(iii) In the graph of marginal connected univariate dependences, G
V \M
cud of A there

is no (i, j)-edge-component and no node i
′

in K having an (i
′
, j)-arrow and

connecting to i via a path of dashed-lines with all nodes along it in K.

For both nodes i and j in u the following statements are equivalent:

(i) There is a structural (i, j)-zero in the matrix product Auu.pΣuu.KAT
uu.p =

∆uu−M − ∆uK−M∆−1
KK−M∆T

uK−M .

(ii) An (i, j)-dashed-line is missing in the graph of connected univariate depen-

dencies G
u|K
cud of A.

(iv) In the graph of marginal connected univariate dependences, G
V \M
cud of A there

is no (i, j)-dashed-line and no path of dashed-lines connecting i and j with all

nodes along it in K.

For the claimed equivalences some key results in Sections 4.4 and 4.5 are that

marginalising over M is for offspring of C the same as marginalising just over Moff =

p and for ancestors of C the same as marginalising just over Manc = q.

The explicit expressions for components of the matrix A swept on rows and

columns M and of cov(εV \M−M) permit the following interpretation of edges present

in G
u|K
cud .

Every (i, j)-dashed line is in linear systems a covariance of residuals. In general

systems it corresponds to a connection between the two univariate conditional distri-

butions of Yi and Yj induced by marginalising over all nodes along a common-source
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path between i and j present in the parent graph of A or over a common-source

like path generated by conditioning nodes of K, i.e. over a new collisionless path

between arrows pointing to i and j in the parent graph of A.

Every additional (i, j)-arrow corresponds in general systems to a connection be-

tween the two univariate conditional distributions of Yi and Yj which is induced by

marginalising over all nodes along a descendant-ancestor paths present between i

and j in the parent graph of A or over all nodes along a descendant-ancestor like

path generated by conditioning on K, i.e. a new collisionless path between an arrow

pointing at i in the parent graph of A and starting from j in K.

5.9 Missing edges in graphs for the conditional distribution of YS given YC

The connected univariate dependence graph of Yu|C given Yv|C and the condi-

tional concentration graph of Yv|C is the subgraph induced by nodes S = u∪v in the

graph G
u|K
cud combined with the marginal concentration graph GK

con. Keeping Auu.p

and taking submatrices of Πu|K and of Σ−1
KK for v = K \C in linear systems (Section

4.4) corresponds in general systems to keeping subgraphs induced by nodes within

S in the graph of G
u|K
cud combined with GK

con. Keeping Auu.p and taking submatrices

of. For example for u = {1, 3, 4} and v = {7, 10} in Figure 1, it is the subgraph

induced by S = u ∪ v in Figure 4.

For the conditional concentration graph, GS.C
con , and the covariance graph, GS.C

cov ,

matrix results for linear systems in Section 4.6 are again translated into modifying

graphs and edge matrices. No new type of reasoning is needed. We give here just

a general summary of important aspects and an algorithmic matrix formulation for

deriving the edge matrix of GS.C
cov directly from the edge matrix A of the parent

graph.

The graph GS.C
con is the subgraph induced by nodes S in the marginal concentra-

tion matrix of GV \M
con . The graph GS.C

cov is the subgraph induced by nodes S in the

conditional covariance matrix of G(V \C).C
cov . Their construction from the parent graph

requires a different treatment of certain nodes: for GS.C
con offspring and ancestors of

S ∪ C are needed while for GS.C
con nodes which are offspring and which are ancestors
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of C are to be distinguished.

When the conditional covariance graph of ancestors outside the conditioning set

is constructed from their concentration graph every path present in the conditional

concentration graph gets closed, i.e. every V-configuration is completed, and no

edges are removed since the conditioning is not undone. The resulting conditional

covariance graph of the ancestors consists exclusively of complete, nonoverlapping

subgraphs. In the matrices of linear systems this corresponds to complete block-

diagonal structure. In general it is not possible to reverse this construction step,

since the possible additional missing edges in a conditional concentration graph of

ancestors cannot be recovered from their conditional covariance graph.

Residuals obtained after marginalising alone, like εu−M , get correlated by marginal-

ising over all ancestor nodes along a common source path unless there is parametric

cancellation. Residuals like ηu, obtained by marginalising and conditioning, are in-

dependent of residuals of potential ancestors of u. They may not yet get correlated

after marginalising alone but only after there is in addition conditioning on nodes

which are common descendants of ancestors of u. But nodes of this conditioning set

are not in u and they are not descendants of any components of u, otherwise there

would be a path from u into the conditioning set contradicting the definition of u

as offspring of the conditioning set C. Therefore, by conditioning on u such corre-

lations cannot be undone and no new correlations can get induced among potential

ancestors of u. Thus, the concentration graph of the residuals can be constructed

from their covariance graph by completing every V-configuration until none is left.

The resulting concentration graph of the residuals consists exclusively of complete,

nonoverlapping subgraphs. Which additional edges are missing in the covariance

graph of the residuals cannot be recovered from their concentration graph, i.e. the

construction step cannot be reversed.

From the graphs of connected univariate dependences for the conditional distri-

bution of Yu given YC the concentration graph of YS given YC and the covariance

graph of YS given YC , can both be obtained directly. For this the matrix formula-

tions for linear systems, given in Section 4.6, just need to be reformulated in terms of
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graphs. But in general it is not possible to construct the concentration graph of YS

given YC directly from its covariance graph or the covariance graph of YS given YC

directly from its concentration graph, since edges may get added as well as removed.

To prove the equivalence of a path condition on the parent graph for a structural

zero in the conditional covariance graph of YS given YC to matrix conditions for a

structural zero in Σ(V \C,V \C).C the overall node set is partitioned into H, C, D, where

H are offspring of the conditioning set C and D are ancestors of C outside C.

The path condition given by Wermuth and Cox (1998) says that there is an edge

missing in GS.C
cov if and only if in the parent graph GV

par modified by conditioning on

C there is no collisionless path wholly outside C. To modify by conditioning on C

means that in the subgraph induced by the ancestors D of C in the parent graph

every missing (i, j)-edge is joined by a full line provided it has a common collision

node in D or in C, i.e. outside the offspring H of C. To modify by conditioning

and then changing all resulting edges within D to full lines is the step of deriving

GD
con of A, the concentration graph of YD from the parent graph of A to GV

par. In

the linear case this is the modification of the generating system (4) to obtain (22).

Starting from system (22) we give first conditions for structural zeros for a multi-

variate regression chain of YH|C regressed on YD|C and derive next from it structural

zeros in the covariance matrix of YV \C given YC .

From (22) we get

YH|C + A−1
HHAHDyD|C = A−1

HHεH , YD|C = ηD. (25)

and the following statements as equivalent for i ∈ H and j ∈ D.

(i) There is a structural (i, j)-zero in the matrix product ΠH|D.C = −A−1
HHAHD.

(ii) An (i, j)-arrow is missing in the graph of projecting YH|C on YD|C as implied

by the parent graph of A.

(iii) In the parent graph of A node j is not a parent of node i nor a H-line ancestor

of i.

The following statements are equivalent for i, j ∈ H.
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(i) There is a structural (i, j)-zero in the matrix product A−1
HHA−T

HH .

(ii) An (i, j)-dashed line is missing in GH.D,C
cov of A.

(iii) In the H-line ancestor graph, GV
anc(H) of A, node pair (i, j) has no (i, j)-edge

and no common source node.

Together with the concentration graph of YD|C this gives the graphical representation

of structural zeros in

(Σ swp C, D)L,L =

(
ΣHH.DC ΠH|D.C

. −Σ−1
DD.C

)
,

with dashed lines for the covariance graph within H, with arrows for the matrix of

regression coefficients between H and D and with full lines within D, i.e. a joint

response chain graph as in Figure 2 of only simple edges. It consists of three parts,

of GH.C,D
cov of A, of GD.C

con of A, and of the graph of projecting YH|C on YD|C as implied

by system (1). The proofs in Section 5.4 for an overall covariance graph, in Section

5.3 for an overall concentration graph, and at the end of Section 5.1 for projecting

apply with small modifications to show that each structural zero in matrices of the

joint distribution in (25) mean corresponding conditional independence statements

for arbitrary distributions generated over the same parent graph.

Now, the covariance matrix of YV \C given YC is obtained from (Σ swp C, D)L,L

by resweeping on rows and columns D so that a structural zero is implied and a

corresponding (i, j)-dashed line is missing in G(V \C).C
cov of A if and only if in the joint

response chain graph of (25) there is for any pair (i, j) no path between i and j with

all nodes along it in D and there is

(i) for i, j ∈ D no (i, j)-full-line;

(ii) for i ∈ H and j ∈ D ∪ H no (i, j)-arrow;

(iii) for i, j ∈ H no (i, j)-dashed-line.

Every path with all nodes along it in D is a collisionless path since every edge in

a concentration graph is a full line and since edges between D and H are arrows

pointing into H. Every single edge in (i) to (iii) is defined to be a collisonless path

since it is a path of length one, irrespective of the type. And, finding the H-line
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ancestors to get from the system of univariate connected dependencies (22) to the

multivariate regression in (25) means to shorten direction-preserving paths with all

nodes along it in H into an arrow and to close every common source path with

all nodes along it in H by a dashed line. Thus, every edge present in G(V \C).C
cov is

generated by a collisionless path in G
(V \C).C
cud of A, i.e. by a collisionless path present

in the parent graph before conditioning or generated after having conditioned on

C. Every remaining path between i and j in the parent graph is a collision path

via offspring of C. This proves the equivalence of the path criterion to constructing

Σ(V \C,V \C).C by matrix transformations.

As shown at the end of Section 4.6 the structural zeros in Σ(V \C,V \C).C are those

in the outer product of the upper triangular matrix

F =

(
A−1

HH −A−1
HHAHDFDD

0 FDD

)
=

(
A−1

HH −A−1
HHAHD

0 IDD

) (
IHH 0

0 FDD

)
,

since Σ(V \C,V \C).C = F∆+F T and ∆+ is diagonal. And, because the indicator ma-

trix F of structural zeros in F is also the edge matrix of the overall ancestor graph

in the relevant coverering system EY(V \C).C = ε∗ our results in Section 5.4 can be

applied to the overall covariance graph of this this system which has identical edge

matrix as the covariance graph G(V \C).C
cov of A. Thus, Yi ⊥⊥ Yj | YC is implied for

general distributions if and only if there is a zero in F+, the indicator matrix of

structural zeros in FF T , and, equivalently, when the above path criterion for the

generating directed acyclic graph in Y is not satisfied.

5.10 Obtaining the edge matrix of G(V \C).C
cov directly from the one of GV

par

The edge-matrix F+ of the conditional covariance graph of YS given YC can be

constructed directly from the edge-matrix A of the parent graph by using these

results. The modifications of the edge matrix A involve nothing but completing

different types of V-configuration, i.e. replacing a zero by a one in off-diagonal

submatrices of three nodes with two ones and one zero. The construction steps are

as follows, where as before V = H ∪ C ∪ D, L = C ∪ D, V \ C = H ∪ D and nodes

(h, i, j, k) are taken to be in increasing order.
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(i) Remove within the (D, D)-submatrix of ALL every (i, j)-zero which has for h

in L a one in positions (h, i) and (h, j).

(ii) Remove in the matrix obtained in step (i), every V-configuration until none

is left. Call the resulting matrix FDD.

(iii) Remove in AHH every transition-oriented V-configuration until none is left.

Call the resulting matrix FHH .

(iv) Remove in AHD every transition-oriented V-configuration with FHH and FDD

until none is left. Call the resulting matrix FHD and call F the upper trian-

gular matrix consisting of FHH , FHD and FDD.

(v) Remove in F every source-oriented V-configuration.

The indicator matrix F gives the structural zeros in the overall ancestor graph

for Y(V \C)|C . The modified indicator matrix F is the edge matrix F+ of G(V \C).C
cov ,

and the edge matrix of GS.C
cov is the submatrix F+

SS .

To understand the construction note that with (i) the edge matrix of GD.C
con

is obtained or, equivalently, the indicator matrix of structural zeros in Σ−1
DD.C =

(AT
LL∆LLALL)D,D is formed. With (ii) the edge matrix FDD of GD.C

cov results. Because

in this step every path present in GD.C
con is closed the resulting covariance graph con-

sists of nonoverlapping complete subgraphs. Therefore FDD represents at the same

time the structural zeros in the triangular decomposition ΣDD.C = FDD∆∗
DDF T

DD.

With (iii) the edge matrix FHH of the overall ancestor graph of YH|L is obtained,

or, equivalently, the structural zeros in FHH = A−1
HH . With (iv) the indicator matrix

FHD of structural zeros in FHD = FHHAHDFDD results, or equivalently, the remain-

ing missing edges in the overall ancestor graph of the univariate recursive system

with independent residuals introduced at the end of Section 4.6 as a covering model

to system (22). With (v) the indicator matrix F+ of structural zeros in FFT is

obtained, which is at the same time the indicator matrix of structural zeros in FF T

and in Σ(V \C,V \C).C as implied by (25) and hence by the parent graph of A.

To illustrate the modifications directly on the edge matrix of the parent graph

we add in Figure an arrow starting from node 1 and pointing to node 0, and two

incoming arrows, one from node 11 pointing to node 10 and one from node 12 to
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node 9. We then take as conditioning set C = {2, 4, 5, 9} and observe that its set

of offspring nodes is H = {0, 1, 3, 6} and its set of ancestor nodes outside C is

D = {7, 8, 10, 11, 12}. With steps (i) and (ii) the edge matrix ADD is modified into

FDD:

ADD =




1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 0
0 0 0 0 1




, FDD =




1 0 0 0 0
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




,

where by step (i) a one is inserted in ADD for pair (10,12). With step (iii) the edge

matrix AHH is modified into FHH :

AHH =




1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1


 , FHH =




1 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1


 .

With step (iv) the edge matrix AHD is modified into FHD the structural zeros in

the product FHHAHDFDD:

AHD =




0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0


 , FHD =




1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1


 .

By the final step (v) the upper triangular matrix edge matrix F of the ancestor

graph in the relevant covering model of (22) is changed into F+, the edge matrix of

the conditional covariance graph of YV \C given YC :

F+
HH =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


F+

HD =




1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 1 1


 F+

DD =




1 0 0 0 0
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 1




.

Especially for large graphs such an algorithmic matrix formulation may provide

a much faster way of constructing the graph than using a condition involving paths.

Though tracing individual paths is conceptually attractive it may be computation-

ally somewhat tedious even in small problems.
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6. Separation criteria for directed acyclic graphs

Separation criteria permit us to read directly off graphs whether the defining inde-

pendence structure of the graph implies a given conditional independence statement.

The problem relates for directed acyclic graphs closely to the results in the previous

Sections since with S = a ∪ b and V partitioned into S, C, M the question to be

decided is: does a ∪ b | C hold for all distributions generated over the parent graph

GV
par of A, that is if (2) is the defining independence structure.

Equivalence of several separation criteria: Let a, b, C, M be four nonover-

lapping subsets of nodes which exhaust V and of which C or M may be empty. Then

the following separation criteria for the directed acyclic graph GV
dag are equivalent.

Sets a and b are d-separated by C

(i) if there is no path in GV
dag between a node in a and a node in b along which

the following conditions hold: (1) every node with converging arrows is in C

or has a descendant in C and (2) every other node is outside C (Pearl, 1988,

p.117; Pearl & Verma, 1988).

(ii) if in the moral graph formed from the smallest ancestral set containing a∪b∪C

every path from a to b has a node in C (Lauritzen et al., 1990).

(This moral graph is constructed in three steps: (1) from GV
dag the subgraph

induced by nodes of the union of a ∪ b ∪ C and their ancestors is obtained,

(2) in it a full line is inserted for every missing (i, j)-edge having a common

collision node and (3) every arrow in the resulting graph is replaced by a full

line.)

(iii) if in in the parent graph GV
par modified by conditioning on C there is no

collisionless path from a to b wholly outside C.

(Within the subgraph of ancestors of C every missing (i, j)-edge is joined by

a full line provided it has a common collision node in C∪ ancestors of C.)

For a Gaussian distribution Ya ⊥⊥ Yb | YC if the (a, b)-submatrix in the conditional

covariance matrix of YS given YC is a matrix of zeros or, equivalently, if the (a, b)-

submatrix in the conditional concentration matrix of YS given YC is a matrix of
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zeros. That is if the (a, b)-submatrices in

ΣSS.C =


 Σaa.C 0

. Σbb.C


 , Σ−1

SS.C =


 Σaa.M 0

. Σbb.M




have structural zeros for all entries, then there is no edge between a and b in the

conditional covariance graph GS.C
cov and there is no such edge in the conditional

concentration graph GS.C
con . By the same type of reasoning as in the previous Sections

the independency, written again in node notation as a ⊥⊥ b | C, holds then not only

for Gaussian dirstributions but also for general distributions generated over the same

parent graph.

Therefore the three criteria are equivalent if each specifies conditions for edges

between a and b to be missing in the concentration graph of YS given YC or in

the covariance graph of YS given YC . Now, condition (iii) is an application of the

path criterion of the previous Section for constructing edges in the covariance graph

GS.C
cov . The moral graph in condition (ii) is the concentration graph of nodes of S, C

and the ancestors of S ∪ C, i.e. it is GV \r
con , discussed in Sections 4.6 and 5.9 as an

intermediate step to constructing the concentration graph GS.C
con . Hence, criterion

(ii) and (iii) are equivalent.

For the equivalence of the first criterion to the last we treat collisionless path

and collision path separately. For collisionless paths present in the parent graph,

i.e. present before conditioning on C, conditions (i) and (iii) coincide. By the last

criterion a collision path between ancestors of the conditioning set is turned into

a collisionless path by inserting full lines for missing (i, j)-edges provided they all

have a common collision node within L = C∪ ancestors of C. Since every ancestor

of C has by definition a descendant in C, the relevant collision nodes are either

themselves in C or they have a descendant in C. Therefore conditions (i) and (iii)

coincide for collision paths as well. This completes the proof.

Further separation criteria have been studied for special types of graph by Dar-

roch et al. (1980), Lauritzen & Wermuth (1989), Frydenberg (1990), Kauermann

(1993), Spirtes (1995), Andersson et al. (1996), Koster (1996, 1999a), Studený &

Bouckaert (1998), Richardson (1999) and for the more genral graphoids by Paz et
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al. (1999). It is conceivable that proofs can get simplified when it is tried to exploit

the close connections to covariance and concentration matrices in these contexts as

well.

7. Discussion

We have given a new sweep algorithm for triangular matrices and studied its relations

to modifications of joint distributions generated over directed acyclic graphs. The

conditions for structural zeros in matrices of linear systems turn out to be equivalent

to conditions for missing edges in graphs, the main consequence being that conditions

for independence statements in all Gaussian distributions generated over a given

directed acyclic graph coincide with conditions for general distributions generated

over the same graph.

The swt-operator is applied to a matrix of regression coefficients in an upper

triangular matrix which defines together with residual variances the overall concen-

tration matrix. However, residual variances are not used for the swt-operator nor

for forming inner and outer products of relevant matrices. We therefore believe

that the results apply also to semi-definite covariance structures, i.e. to degenerate

joint Gaussian distributions and, more generally, to distributions without positive

probability everywhere. But, we have not studied this in detail.

A number of characterizations of model subclasses can be derived as a byproduct

of our results. Decomposable models are known to have a directed acyclic generating

graph without a collision-oriented V-configuration (Wermuth 1980; Lauritzen and

Wermuth, 1989). A further characterization is now that structural zeros in the edge

matrix A of the parent graph coincide with structural zero in the inner product of

this edge matrix, in ATA, and hence with the edge matrix of the overall concen-

tration graph. A conditional independence lattice model (Anderson et al. 1993)

has no transition-oriented V-configuration. This is equivalent to having identical

edge matrices of the parent graph and of the overall ancestor graph, i.e. to A = B.

Whenever the edge matrix of the overall ancestor graph coincides with the edge

matrix of the overall covariance graph, then, equivalently, the structural zeros in B
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coincide with structural zeros in its outer product BBT and the covariance graph is

made up by nonoverlapping complete subgraphs. Finally, we have coinciding struc-

tural zeros in A, ATA, B, and BBT if and only if all corresponding graphs consist

of nonoverlapping complete subgraphs in the same components.

We believe that these types of characterization will be fruitful in studying inde-

pendence equivalence of graphical Markov models in general. Many graph formula-

tions have been given following earlier matrix results for linear systems (Wermuth,

1980; Stelzl, 1989), but a unifying result for graphs is still missing.

Appendix 1: The sweep and the resweep operator for symmetric matrices

For completeness we repeat here the definition of the original sweep and resweep

operator (Beaton, 1964; Dempster, 1969)

Let M and N be a r × r symmetric matrices with elements mij and nij then

with k �= i, k �= j the operations (M swp k) and (N rswp k) are, respectively,

nkk = −1/mkk

nik = mik/mkk

nkj = mkj/mkk

nij = mij − mikmkj/mkk,

mkk = −1/nkk

mik = −nik/nkk

mkj = −nkj/nkk

mij = nij − niknkj/nkk.

Sweeping on all rows and columns of a set of indices a is denoted by (M swp a).

The sweep operator applied to a covariance matrix Σ partitioned into three compo-

nents (a, b, c) gives for instance

Σ swp b =




Σaa.b Πa|b Σac.b

. −Σ−1
bb ΠT

c|b
. . Σcc.b


 , Σ swp (b, c) =




Σaa.bc Πa|b.c Πa|c.b

. −Σ−1
bb.c ΠT

c|bΣ
−1
cc.b

. . −Σ−1
cc.b


 .

By sweeping Σ on all r rows and columns −Σ−1 is obtained. Resweeping −Σ−1

on all r rows and columns returns Σ. The order of the sweeping operations can be

interchanged without affecting the final result.

Examples of useful matrix equalities that can be directly deduced with the help of

the sweep operator are Πa|c.b = Σac.bΣ
−1
cc.b, Πa|b.c = Πa|b−Πa|c.bΠc|b and, after sweeping

in the order c, b, by symmetry Πa|c.b = Πa|c − Πa|b.cΠb|c and ΠT
c|bΣ

−1
cc.b = Σ−1

bb.cΠb|c.
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Appendix 2: An equivalence of independence statements

Suppose a trivariate distribution is generated for Yi, Yj and Yγ given YC which may

be a vector variable. Suppose there is a univariate recursive generating process

just as for (1) but conditionally given C, where Yγ may be the final response, the

intermediate variable or the purely explanatory corresponding to the node orderings

(γ, i, j), (i, γ, j) and (i, j, γ), respectively.

Then the following independence statements are equivalent

(i) i ⊥⊥ j | (γ, C) and i ⊥⊥ j | C,

(ii) (i, γ) ⊥⊥ j | C or (j, γ) ⊥⊥ i | C.

We do not give the argurments involving densities but just illustrate interpresta-

tions in terms of concentration graphs implied by the generating process.

Suppose first that (i) holds so that in the overall concentration graph the (i, j)-

edge is missing, and in the concentration graph of i, j, C alone the (i, j)-edge is also

missing, i.e. when both independencies hold at the same time we may say that the

independence for pair (i, j) in graph (a) is preserved after marginalising over node

γ or that the independence present in graph (b) is preserved after the conditioning

set is enlarged by node γ.

The left hand graph (a) alone does not imply i ⊥⊥ j | C since there is path between

i and j outside C via γ. This path via node γ vanishes if and only if either the (γ, i)-

edge or the (γ, j)-edge is missing in addition, so that one of the two graphs (c) or

(d) results. In graph (c) the only path from i to (γ, j) is via C, i.e. i is separated

from j by C so that (j, γ) ⊥⊥ i | C. In graph (d) the only path from j to (γ, i) is via

C so that (i, γ) ⊥⊥ j | C. Thus, (i) implies (ii).

Suppose next that (ii) holds, i.e. the concentration graph in the overall joint

distribution is either graph (c) or graph (d). In each of these graphs every path from
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i to j has a node in (γ, C) so that i ⊥⊥ j | (γ, C). But, i is also separated from j by

C alone, i.e. i ⊥⊥ j | C holds as well. Thus, (ii) implies also (i).
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