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ABSTRACT

Incomplete Information in the Samaritan's Dilemma: The Dilemma (Almost)
Vanishes

by Johan Lagerlof™

Suppose an altruistic person, 4, is willing to transfer resources to a second person, B, if
B comes upon hard times. If B anticipates that 4 will act in this manner, B will save too
little from both agents' point of view. This is the Samaritan's dilemma. The mechanism
in the dilemma has been employed in an extensive literature, addressing a wide range of
both normative and positive issues. However, this paper shows that the undersaving
result is not robust to the assumption that information is complete: by adding a slight
amount of uncertainty one can sustain an equilibrium outcome that is arbitrarily close to
ex post incentive efficiency. One may also sustain outcomes with oversaving.

ZUSAMMENFASSUNG

Unvolistindige Information im Fall des Samariter-Dilemmas: Das Dilemma
verschwindet (meist)

Angenommen eine altruistische Person 4 ist bereit, Ressourcen einer zweiten Person B
zu iibertragen, wenn fiir B schwierige Zeiten anbrechen. Wenn B antizipiert, dal 4 in
dieser Weise handeln wird, dann wird B wenig sparen und zwar aus der Sicht beider
Agenten. Dieses Phianomen wird als Samariter-Dilemma bezeichnet. Die Mechanismen,
die dabei wirken, wurden in der Literatur sowohl auf einer normativen als auch
empirischen Ebene ausgiebig diskutiert. In diesem Beitrag wird jedoch gezeigt, dall das
Ergebnis des ,,Untersparens® im Hinblick auf die Annahme unvollstédndiger Information
nicht robust ist. Bei Beriicksichtigung eines geringen Malles an Unsicherheit stellt sich
ein Gleichgewichtsergebnis ein, das nahe der Ex-post-Anreizeffizienz liegt. Man kann
aber auch Ergebnisse mit dem ,,Ubersparen* erhalten.

* I thank J. Bjornerstedt, D. Coen-Pirani, Y. Kang, N.-P. Lagerlof, B. Persson, D. Soskice,
J. Stennek, K. Wirneryd, J. Weibull, and seminar participants at the Stockholm School of
Economics, the WZB, ESEM -98, EEA -98, and the Universities of Rochester (the Wallis
Institute), Copenhagen and Alicante, as well as Free University of Berlin for helpful comments.
Part of this research was conducted while I was visiting the Wallis Institute; I am grateful to them
for their hospitality. Financial support from Jan Wallander and Tom Hedelius' Research
Foundation Svenska Institutet. Finanspolitiska Forskningsinstitutet, and the European Commission
(under the TMR Programme; contract No. ERBFMRXCT980203) is gratefully acknowledged.



1. Introduction

Suppose an altruistic person, hereafter called A, is willing to transfer resources to
a second person, B, if B comes upon hard times. Then, if B today is to decide
how much to save for tomorrow, and if B is well aware of A’s altruistic concern for
him, B will typically save too little as compared to what is socially optimal. This
is what Buchanan (1975) has called the “Samaritan’s dilemma.” The dilemma
arises because A is unable to commit not to help B out. Moreover, A’s willingness
to bail B out if he undersaves serves as an implicit tax on B’s savings. For if B
saves an extra dollar, then A will transfer, say, ten cents less to B than otherwise.
This implicit tax distorts B’s saving incentives. Hence, given the equilibrium
level of A’s support, B would be better off if he consumed less today and more
tomorrow. And, since A has altruistic concerns for the welfare of B, this would
make also A better off.!

The Samaritan’s dilemma effect has been employed in a large number of pa-
pers, addressing a wide range of both normative and positive issues. For instance,
the inefficiency result has been used to justify and /or explain the existence of com-
pulsory social insurance systems (Thompson, 1980; Veall, 1986; Kotlikoff, 1987;
Lindbeck and Weibull, 1988; Hansson and Stuart, 1989). The argument is that a
government can force people to save and insure more than they would do volun-
tarily, thereby making free riding and the Samaritan’s-dilemma-type inefficiency
impossible. As another example, Bruce and Waldman (1991) and Coate (1995)
argue that the Samaritan’s dilemma provides an efficiency rationale for in-kind
govermental transfers.? In those models the government provides a transfer on
two occasions over time. Since a cash transfer would be used in an inefficient
manner, all parties can benefit if the government gives the first transfer in a tied
fashion, such as in the form of an illiquid investment.

Yet another example is from the macroeconomics literature. O’Connell and
Zeldes (1993) study an infinite-horizon OLG-model with altruism from children

'Formal analyses of the Samaritan’s dilemma are found in, e.g., Bernheim and Stark (1988)
and Lindbeck and Weibull (1988). In the latter paper it is shown that the dilemma may also
arise in the case where both agents are altruistic toward each other.

2In the context of intra-family transfers, Becker and Murphy (1988, p. 7) also make this
argument. They do not, however, provide a formal model.



toward their parents. If, as is assumed in the standard literature, parental saving
is non-strategic, this kind of model is characterized by dynamic inefficiency, i.e.,
the growth rate of the population exceeds the (endogenous) real interest rate.
However, O’Connell and Zeldes demonstrate that the strategic undersaving effect
will make the economy dynamically efficient. The reason for this is that less saving
leads to a smaller capital stock, which in turn implies a larger marginal product
of capital and thus a larger interest rate.

The Samaritan’s dilemma also has bearing on the so-called rotten-kid theorem
(Becker, 1974). This result concerns a situation where a selfish child can take an
action that affects the income of the whole family. The theorem states that if
the child’s parent is sufficiently altruistic toward the child to transfer resources to
it, then the child will choose an action that maximizes the income of the whole
family. Hence, the presence of parental altruism induces the child to internalize
the externality, and the resource allocation in the family is efficient. One of the
conditions needed for this result to hold is that the transfer from parent to child

3 However, Bruce and Waldman (1990) consider a two-period

indeed is positive.
setting where the child in the first period takes an action affecting the income
of the whole family and makes a saving decision. They show that if the parent
makes an operative transfer (i.e., if the constraint that the transfer is non-negative
is not binding) in the second period, then the child indeed chooses the action that
maximizes family income; but, because of the Samaritan’s dilemma, in this case
the child also saves an amount that is too low relative to the efficient level. As a
consequence, “rotten kids actually act rotten in at least one dimension, with the
result being that the family unit does not achieve the Pareto frontier” (Bruce and
Waldman, 1990, p. 157).*

Most of the existing literature on the Samaritan’s dilemma assumes a setting
with complete information: the agents know with certainty their own payoffs and
the other agents’ payoffs. This is typically an unrealistic assumption. Indeed, in
many of the real world situations that are meant to be captured by the models

in this literature, there is reason to believe that there is a substantial degree

3There are also other conditions, which are left implicit by Becker. For example, Bergstrom
(1989) shows that utility must be transferable for the result to hold.

4Other papers that discuss and/or apply the Samaritan’s dilemma include Kaufman (1995)
and Lord and Rangazas (1995).



of incomplete information. It is at any rate hard to believe that there is no
incomplete information at all. At the very least, one would therefore like the
inefficiency result of the models in the existing literature to be robust to incomplete
information. That is, it should not be possible to find a model with incomplete
information that is close to the original model but which yields a very different
prediction concerning the presence or the amount of inefficiences.

However, there is a strong a priori reason to believe that the undersaving result
in the standard Samaritan’s-dilemma model might not be robust to incomplete
information. To see this, consider a situation like the one described in the intro-
ductory paragraph. Suppose, however, that B (i.e., the recipient of the transfer)
has private information about some characteristic of himself which is relevant for
his payoff. Moreover, suppose that the characteristic can be represented by a
parameter x and that x is such that the larger its magnitude, the lower is B’s
marginal utility of consumption tomorrow. For example, = could be a measure of
an exogenous income that B will receive tomorrow.

Since A cares about the welfare of B, A would be willing to make a larger
transfer to B if A believed that z were small. The assumptions about = also
imply that the smaller is x, the more B wants to save (everything else being
equal). B thus has an incentive to make A believe that x is small, and B may
try to do so by using his savings as a signaling device (a la Spence, 1973, 1974).
In particular, B has an incentive to save more than in the standard setting with
complete information. One should thus expect this mechanism to counteract the
incentives to undersave in the standard Samaritan’s dilemma model. Moreover,
a standard result from the signaling literature is that even a very small amount
of uncertainty can to a substantial degree distort the behavior in an incomplete
information model as compared to the model with complete information. Hence
it is quite conceivable that by adding a slight amount of uncertainty to a stan-
dard Samaritan’s dilemma model, one can sustain outcomes that do not involve
undersaving and which are not inefficient.

The purpose of this paper is to investigate whether the above intuition holds
true in a formal analysis and, if so, to see how far the counteracting mechanism
can take us. Section 2 of the paper starts out by presenting an example which

in the simplest possible way shows how the mechanism works. In this example,



B can only make the binary choice whether to “save” or to “squander”; A then
chooses one of three different transfer levels. In Sections 3 and 4 a somewhat less
stylized but still simple model is considered where A and B can choose among
a continuum of transfer and saving levels, respectively. Section 3 formulates the
analytical benchmark: a model of the Samaritan’s dilemma characterized by com-
plete information. It turns out that in this model the inefficiency result is obtained
if the degree of altruism is neither too low nor too high.

Subsection 4.1 extends the model in Section 3 by assuming that B has private
information about a parameter in his payoff function. This parameter can take
one of two distinct values; that is, B can be one of two types. In Subsection
4.2 the set of separating and pooling equilibrium outcomes of this incomplete
information model is characterized. The analysis is restricted to values of the
degree of altruism such that, for both types of B, the undersaving result would
obtain if B’s type were common knowledge. Subsection 4.3 then considers the
question whether these equilibrium outcomes are efficient. The focus is on the
special case where A’s uncertainty about B’s type is small. This means that the
incomplete information model is close to the benchmark model of Section 3.

It turns out that one cannot sustain equilibrium outcomes that are on the
Pareto frontier. However, in a subset of the parameter space one can sustain
equilibrium outcomes that are arbitrarily close to the Pareto frontier. A sufficient
condition for this is that the difference between the two types is large enough.
To some extent this result relies on the fact that there are no restrictions on
A’s beliefs off the equilibrium path. In Subsection 4.4 an equilibrium refinement
that eliminates all outcomes of pooling equilibria and all outcomes of separating
equilibria except for one is imposed. Then, similarly to the preceding subsec-
tion, the question whether this unique equilibrium outcome is arbitrarily close
to the Pareto frontier is considered. It turns out that for a subset of the pa-
rameter space this is indeed the case, although this subset is smaller than the
one where the (almost) efficiency result could be sustained if not imposing the
refinement. Interestingly, it can also happen that the unique equilibrium outcome
involves oversaving. Moreover, regardless of whether the outcome that survives
the equilibrium refinement involves undersaving or oversaving or if this outcome

is (almost) efficient, it is qualitatively different from the one of the benchmark



model with complete information. In particular, the saving level is higher than in
the benchmark model.
Section 5 concludes with a discussion of the results. Most of the proofs are

found in the Appendix.

2. An Example

Consider the following simple game played between two individuals, A and B (see
also Figure 1). B can be of two types: either he is “poor” or “rich.” While B
knows his type from the outset of the game, A does not know B’s type. A and
B make one decision each. First B chooses whether to “save” or to “squander.”
Second, A observes whether B has saved or squandered and then chooses whether
to give B a “big support” (abbreviated “bs” in the figure), a “small support” (ss),
or “no support” (ns). The payoffs are such that if B has chosen to save, A wants
to give B no support regardless of whether B is poor or rich. If B has squandered,
then A wants to give B a big support if he is poor and a small support if he is
rich. B, on the other hand, prefers a big support to a small support and a small
support to no support, regardless of his type and regardless of whether he has
saved or squandered.

Before analyzing the game with incomplete information depicted in Figure 1,
let us make the observation that if A knew with certainty whether B is poor or rich
(and if A’s knowing this were common knowledge), then we would have an example
of the Samaritan’s dilemma: B would squander and then get a support from A,
an outcome which is not (Pareto) efficient. To see this, start with the case where
it is common knowledge that B is poor. It is straightforward to verify that then
there is a unique (subgame perfect) equilibrium outcome, namely the one where B
squanders and A gives him a big support. This outcome is dominated, however,
by the outcomes where B saves and then gets either a small or a big support.
Similarly with the case where it is common knowledge that B is rich. Then there
is again a unique equilibrium outcome, namely the one where B squanders and
gets a small support. This outcome is also inefficient, since it is dominated by the
outcomes where B saves and then gets either a small or a big support.

Let us now consider the equilibria of the game where A does not know whether



B is poor or rich. As indicated in Figure 1, A puts the prior probability p on B’s
being poor and the complementary probability (1 — p) on B’s being rich. We will
be particularly interested in the case where A is almost certain that B is poor,
so let us assume that g € (.5,1). The solution concept that I employ is that

of perfect Bayesian equilibrium.’

First notice that in any such equilibrium, if B
has saved, then A will choose “no support.” This is because doing so is A’s best
action regardless of B’s type. Similarly, if B has squandered, A will never choose
“no support” in an equilibrium. This means that, if being rich, B will squander
in any equilibrium. Having established this, let us first look for an equilibrium
where the poor type saves and the rich type squanders; this is the only possible
separating equilibrium.® In this kind of equilibrium, A will be able to infer B’s
true type perfectly. Thus, A’s best response is to give B a small support if B has
squandered and no support if B has saved. Given this behavior of A, it is indeed
optimal for B to save if being poor and squander if being rich. Hence, this is an
equilibrium.

There are a few things we should notice about this equilibrium. First, although
the outcome for the rich type is the same as in the equilibrium of the corresponding
complete information game, this is not true for the poor type. For the poor type
we can in the incomplete information game sustain the outcome where B saves
and A does not give B any support. This outcome is efficient among the outcomes
that are relevant for the poor type. The reason why the poor type chooses to save
is that if he squandered, then he would be perceived as the rich type and get
only a small support; and this outcome would give him a lower payoff than he
gets in the equilibrium. In other words, the possibility that B is rich exerts an
externality on the poor type. This externality is bad for B, since the poor type
now gets only the payoff 2 instead of the payoff 3 as in the complete information
model. However, the externality is good for A, since she gets the payoff 4 instead

of 2 when B is poor.

5This solution concept requires that, after having observed that B has either saved or squan-
dered, A forms some beliefs about B’s type. These beliefs must be consistent with Bayes’ rule
and B’s equilibrium strategy, whenever Bayes’ rule is defined. Whether B has saved or squan-
dered, A makes a decision that, given her beliefs, maximizes her payoff. B is also required to
make a decision that maximizes his payoff given A’s behavior.

6 A separating equilibrium is an equilibrium where the types behave differently.



A second thing that we should notice about the separating equilibrium is that
it can be sustained for any small prior probability that B is rich, as long as
the probability is strictly positive. This might seem counter-intuitive but it is a
standard feature of signaling models. Hence, when the probability that B is poor,
14, is arbitrarily close to unity, the equilibrium outcome is, from an ex ante point of
view, arbitrarily close to efficiency. Moreover, by letting the probability that B is
rich be arbitrarily small, we also get arbitrarily close to the complete information
model. As we concluded above, that model has a unique equilibrium where both
types squander and which is inefficient. Thus, if the players coordinate on the
separating equilibrium, B’s saving behavior will make a discrete jump as we go
from the environment with complete information to an environment where there
is a small probability that B is rich: from having saved too little, B starts saving
an amount that is very close to the efficient amount.

There also exists a pooling equilibrium outcome where both types of B squan-
der, and A gives B a big support if B has squandered and no support in the out-
of-equilibrium event that B has saved. Finally there is a semi-pooling equilibrium
where the poor type squanders with probability (1 — u) /p and saves otherwise,
and the high type always squanders. If B has squandered, A gives B a big or a
small support with equal probability; if B has saved, then A gives no support. The
semi-pooling equilibrium outcome has the same property as the separating one:
as p tends to unity, we get arbirtrarily close to the complete information model
and arbitrarily close to efficiency. However, the pooling equilibrium outcome still
gives rise to the Samaritan’s dilemma for both types and for all values of .

It is not clear which one of the three equilibrium outcomes is the most rea-
sonable prediction of the game. But if we believe in the assumption that A is
a little bit uncertain about B’s type and if we are not certain that the players
will behave according to the pooling equilibrium outcome, then it is tempting to
conclude that the theoretical case for undersaving is weaker than what one might
think if one only looked at the standard formulation of the Samaritan’s dilemma.
However, one might object that the example we have analyzed is rather special.
For instance, it is not clear how restrictive the specification of the players’ pay-
offs is. Moreover, standard equilbrium refinements that put restrictions on the

players’ beliefs about out-of-equilbrium events do not have any bite in this simple



example, wheras one should expect this to be the case in many alternative set-
tings. I will, therefore, in the following two sections further explore the signaling

effect, but in a model that is somewhat less stylized than the above example.

3. The Benchmark: Complete Information

The model in this section is characterized by symmetric and complete information,
and in many respects it is similar to existing models in the literature. Accord-
ingly the results and insights that shall be derived from the model are not novel.
However, the model will serve as a useful a benchmark when, later in Section 4,

a model with incomplete information is considered.

3.1. The Model

There are two individuals, A and B, and two time periods, 1 and 2. A lives only
in period 2 while B lives in both periods. At the beginning of the first period,
B is endowed with exogenous income w > 0. B’s decision concerns how much of
this income to save for period 2, s € [0,w]. The residual amount, ¢;p = w — s,
constitutes B’s first-period consumption. A’s endowment also equals w. In the
second period, after having observed s, A chooses how much of her endowment
to transfer to B, t € [0,w].” A consumes the residual amount, c4 = w — ¢, herself.
B’s second-period consumption consists of his savings plus the transfer from A:
cop = S +t.

B has preferences over his own consumption in period 1 and 2, described by

the following utility function:

Ug (s,t) = log(cip)+ Blog(cap)
= log(w—s)+ flog(s+1), (3.1)

8

where § € (0,1) is a fixed parameter.” A is altruistic in the sense that she

"Hence a non-negativity constraint is imposed on the transfer, t > 0: A cannot take income
from B. This assumption seems natural and it is common in the literature. In Section 4 we will
see that the non-negativity constraint is crucial for some of the results concerning efficiency in
the model with incomplete information.

8The assumption that 3 is smaller than unity will be made also in the model with incomplete
information considered in Section 4. The assumption is not important for my argument but it
simplifies the analysis.



has preferences over both her own consumption and B’s utility level Ug. These

preferences are described by the following utility function:

Ua(s,t) = log(ca)+ aUg(s,t)
= log(w—1t)+alog(w—s)+aflog(s+t). (3.2)

Here a > 0 is a fixed parameter that represents the altruistic concern of A for
the welfare of B. The structure of the model and in particular the individuals’

preferences are common knowledge.

3.2. Analysis

The model described in the preceding subsection constitutes an extensive form
game. Denote this game by I'c (where C' stands for complete information). T will
solve for the subgame perfect equilibria of I'c through backward induction.

Let us thus begin by considering A’s problem in period 2. A then maximizes
U4 (s,t) as given in equation (3.2) with respect to ¢ subject to the constraint

t € [0,w]. Denote the solution to this problem by t. It is easy to verify that

1+ap
0 otherwise.

afw—s
i { abos  for s < affw (3.3)
Note that for any s < «fw, t is decreasing in s. That is, if B increases his
savings, A will make a smaller transfer to him. One may think of this effect as an
implicit tax on savings. In the analysis that follows we shall see that the implicit
tax distorts B’s saving incentives and typically makes him consume too much in
period 1, as compared to what is socially optimal.

Now consider period 1. Anticipating t, B chooses s. B’s indirect utility is

given by

Us (870 log (w— 5) + { Blog (w+s) + flog (ﬁgﬁ) for s < afw (3.4)
Blog (s) otherwise.

There are two cases to investigate: (i) o8 > 1 and (ii) @8 < 1. The analysis of case
(i) is rather cumbersome and is therefore deferred to the Appendix. Case (i)—the

one where A’s concern for B is relatively great—is very straightforward. Since in

10



this case the non-negativity constraint on ¢ is not binding for any s € [0,w], B

solves

max log (w — s) + flog (w + s) + Blog (1zﬁaﬁ> : (3.5)

s€[0,w]

By assumption # < 1; hence this problem has the solution s* = 0. That is, B saves
nothing and relies fully on the anticipated transfer from A. Substituting s* = 0
into equation (3.3) yields the equilibrium outcome of t, t* = afw/ (1 + af3).

Proposition 1 summarizes the results of the analysis above as well as the results
for the case a8 < 1 derived in the Appendix. Before considering the proposition,
however, we must introduce some more notation. Let the function ¢ : (0,1) — R
be defined by

o) = [a+p% —p] . (3.6)

The expression in (3.6) is a critical value of o that will be used when describing
what the equilibrium outcomes are in different subsets of the parameter space. In
the Appendix (Lemma A1), it is proven that the function ¢ is decreasing, ¢ < 0.
One may also show that limg_o ¢ (8) = 1/e (where e™! & 0.37) and it is easy to
see that limg 1 ¢ (5) = 1/3. Thus, for any 3 € (0, 1), ¢ () approximately equals
one third.

Proposition 1. For any « # ¢ () there exists a unique subgame perfect

equilibrium of T'¢, and the outcome of this equilibrium is

%w,()) for a < ¢ (0)

0, ligﬁw) for a > ¢ ().

(s%,t") = (3.7)

For a = ¢ (f3) there exists a continuum of subgame perfect equilibria of

Ic. However, the outcome of any such equilibrium is either (s* t*) =

(Bw/ (1+8),0) or (s7,t%) = (0, afw/ (1 + af)).

Figure 2 illustrates the results stated in the proposition. The critical value of
« defined in equation (3.6), ¢, is depicted in the diagram as a function of 3. For
values of a below this critical value, B saves the fraction 8/ (1 + ) of his income
and A does not make a transfer. However, for values of o above the critical value,
the behavior of A and B is quite different: B saves nothing and A transfers the

fraction a3/ (1 + af3) of her income to B. For values of a exactly at the critical

11



value, a = ¢ (), B is indifferent between saving nothing and saving the fraction
B/ (14 () of his income, and any randomization between these two choices may
be sustained as part of an equilibrium. For any outcome of such a randomization,
A will make a transfer to B according to equation (3.3), i.e., either not make any

transfer or transfer the fraction a3/ (1 + «3) of her income.

3.3. Efficiency

In the model, resources can be allocated in two dimensions. First, given a value
of t, one may reallocate resources intertemporally by varying s. Second, given a
value of s, one may reallocate resources inter-individually by varying ¢. In this
subsection I will consider the question whether the resource allocation induced by
a subgame perfect equilibrium of I'c is Pareto efficient. First, however, consider
some formal definitions.

An allocation (ca,c1p,cap) is a specification of a consumption level ¢4 € R,
for A and a consumption vector (¢ip,cop) € %i for B. Since there is a one-to-
one relationship between a consumption vector (ca,c1p, c2p) and a saving-transfer
vector (s,t), one may also refer to the vector (s,t) as an allocation, and I shall do
so throughout this section. An allocation (s,t) is said to be feasible if it belongs

to the set [0,w]’. An allocation (s',t') is said to dominate an allocation (s, t) if
U, (s’,t’) > U (s,t), Vie{A B} (3.8)

with at least one strict inequality. An allocation (s,t) is Pareto efficient if there
exists no other feasible allocation (s',¢') that dominates (s, t).

The following result is proven in the Appendix.

Proposition 2. Suppose that o # ¢ ((3). Then the allocation induced by the
unique subgame perfect equilibrium of I'c is Pareto efficient if and only if
either o < ¢ (3) or a > (1 —3)"". The allocation (s*,t*) induced by a

subgame perfect equilibrium of T'c when a = ¢ (f3) is Pareto efficient if and
ouly if (5%,1%) = (Bw/ (1+ 8),0).

That is, if A’s degree of altruism takes on any value a € (p (), (1 — ﬁ)fl),

then the equilibrium outcome is not Pareto efficient (cf. Figure 2). Recall that
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for these values of o, B saves nothing but receives a transfer t* = afw/ (1 + af3)
from A. However, if B made a ceteris paribus increase in his savings, he would
be better off. Moreover, since A has altruistic concerns for the welfare of B, this
would make also A better off. The reason why B saves too little is the implicit tax
on his savings: if B saved more, A would have an incentive to make the transfer
smaller. Hence, crucial for the inefficiency result is that A can observe how much
B has saved and that she cannot precommit to any transfer level.

If the degree of altruism is either sufficiently low (a < ¢ (3)) or sufficiently high
(> (1 —=)7"), then the equilibrium outcome is Pareto efficient. The intuition
for this is straightforward. For a < ¢ (), B does not receive any transfer and
must rely only on his own savings. Since A’s degree of altruism is so small it is,
given the level of B’s savings, indeed optimal for A not to transfer any income to
B. B anticipates this so his saving choice is not distorted. Similarly for the case
a > (1 —3)"". Here, since A cares so much about the welfare of B, it is in both

A’s and B’s interest that B does not save anything himself.

4. Incomplete Information and Signaling

In this section I will consider an adaptation of the model described and analyzed
in the previous section. Subsection 4.1 describes this model and introduces some
new notation. Subsection 4.2 characterizes the equilibrium outcomes of the model.
In Subsection 4.3 the question is posed whether the allocations induced by the
equilibrium outcomes are efficient. Finally, Subsection 4.4 asks the same question
after having imposed an equilibrium refinement that rules out all equilibrium

outcomes except for one.

4.1. The Model

Relative to the model considered in the previous section, there is only one change:
B is now assumed to have private information about the exact magnitude of

the parameter 3, and he learns about this in the beginning of the game.” The

9Hence, the private information does not concern B’s second-period income, as was suggested
in the Introduction (indeed, in the models described in this section and in Section 3, B does
not have any second-period income). This assumption is made for the sake of tractability: it
simplifies the analysis considerably if having uncertainty about a parameter multiplied with—
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parameter § may be either “low” or “high”: 5 € {#.,8y}, where 0 < 3, < By <
1. If 8 = 3, then B will be referred to as the “low type”; and if 3 = (3, then
B will be referred to as the “high type.” A places the prior probability p € (0,1)
on B’s being the high type and the prior probability (1 — u) on B’s being the low
type. The magnitude of the parameter p is common knowledge.

All other model features are identical to the model described in Subsection 3.1.
In particular there are two time periods. B lives in both of them while A lives only
in period 2. A and B are each endowed with exogenous income w > 0. In period
1, B first learns his type and then chooses how much of his income to save for
period 2, s; € [0,w] where i = L, H; sy, is the amount of savings chosen by the low
type and sg is the amount of savings chosen by the high type. A does not know
B’s type but observes his actual savings, denoted by s. In period 2, A chooses
how much of her income to transfer to B, ¢(s) € [0,w]. Denote A’s posterior
beliefs that B is the high type, on having observed s, by 71 (s). Also, denote A’s
and B’s utility functions, given B’s type, by U4 (s,t | §;) and Ug (s,t | 3,):

Uyg (s, t | B;) =log (w—1t) +alog(w—s)+af;log(s+1), i=L,H, (4.1)

Ug(s,t]3;) =log(w—s)+ 0;log(s+1t), i=1L,H. (4.2)
Again, a > 0 is a fixed parameter.

Let us denote this game by I'; (where I stands for incomplete information).
The equilibrium concept that will be employed in the analysis of I'; is that of
perfect Bayesian equilibrium. A perfect Bayesian equilibrium in this game is a
list of saving and transfer levels (s}, s%,t* (s)) and beliefs i (s) such that (i) s}
and s}, maximize B’s utility, given A’s equilibrium transfer t* (s):

st eargmax Ug (s;,t" (s:) | 3,), Vie{L,H}; (4.3)

s;€[0,w]

(ii) for any s, t* (s) maximizes A’s expected utility, given beliefs 1 (s):

t"(s) € arg max (L= () Ua(s,t(s) | ) + 1 () Ua(s,t(s) | Br), Vs €[0,0];

(4.4)

and not in the argument of—the utility function. However, one should expect the qualitative
results of the analysis to be similar if one instead assumed that B has private information about
an exogenous second-period income. Section 5 contains a discussion of what results one should
expect if one assumed private information about other parameters than (.
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and (iii) A’s beliefs are consistent with B’s observed behavior in the sense that
Bayes’ rule determines fi (s) whenever the probability that B saves s in equilibrium

is positive, which implies that

fi(sy) =1and fi(sy) = 0if sy # 57, (4.5)
Ji(sy) = i (s3) = o if 3 = s}, (4.6)
For any s # sf, i = L,H, perfect Bayesian equilibrium only requires that

i (s) € [0, 1]. Henceforth I will write “equilibrium” when I mean perfect Bayesian
equilibrium. As my notation indicates I will only consider pure-strategy equi-
libria. For notational convenience, let us write ¢ (s;) = t;, and let us denote an

outcome of a pure-strategy equilibrium by (s}, t3, s, t3).

4.2. Equilibrium Behavior

I shall restrict the analysis to the subset of the parameter space satisfying the

following assumption.

Assumption 1.

a€(p(B),1—=8,)7"). (4.7)

Imposing Assumption 1 means that we only consider the subset of the param-
eter space where, for both types, the equilibrium outcome is not Pareto efficient
in the corresponding complete information model (cf. Proposition 2 and Figure
2). Tt is important to note that throughout the remainder of the paper, all the
results that are reported presuppose that Assumption 1 holds, even where this is

not explicitly stated.

4.2.1. Separating Equilibria

To start with, let us characterize the outcomes of separating equilibria. The
following lemma (the proof of which is found in the Appendix) states that when
a > ¢ (6) the low type chooses not to save.

Lemma 1. Suppose that « > ¢ (). Then, in any separating equilibrium,

*
sy =0.
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The intuition for this result is straightforward. If possible, and regardless of his
true type, B would like to be perceived as the high type in the eyes of A. However,
in any separating equilbrium B’s type will, by definition, be revealed. Hence, the
best thing the low type can do in such an equilibrium is to behave optimally
taking into account that A will know B’s type when making her transfer decision.
We know from the analysis of the benchmark model that, under Assumption 1,
this optimal behavior is to save nothing.

We are thus looking for an equilibrium where s; = 0 and where s}, is positive.
The analysis will be facilitated by Figure 3a, which shows the saving-transfer
space. The two straight lines in the figure represent A’s optimal transfers, as
given by equation (3.3); the lower straight line corresponds to A’s believing that
B = B, and the upper one corresponds to A’s believing that 5 = 3. At values
of s larger than af3;w respectively oy w, the non-negativity constraint on A’s
transfer is binding, and the optimal transfer is zero. The figure also depicts
two indifference curves through the point (s,t) = (0,a8w/ (14 af})), one for
the low type and one for the high type. Hence, these are the levels of utility
associated with the types’ choosing the low type’s equilibrium amount of savings
and receiving the low type’s equilibrium transfer.!® Notice that each type is made
better off if moving northward in the diagram, i.e., if getting a higher ¢ for any
given s. A move in the northwest direction is not necessarily making B better
off. However, it turns out that if moving northwest along the upper straight line,
both types are made better off.

As indicated in the figure, the value of s for which the low type’s indifference
curve intersects the upper straight line is denoted by s'; and the value of s for
which the high type’s indifference curve intersects the same line is denoted by s .

These points of intersection, s and s”, are defined implicitly by the following two

100One may show that the two types’ indifference curves through the point (s, t) = (0, %ﬁ)

must, as drawn in Figure 3a, be strictly concave functions of s, which tend to infinity as s tends
to w. Moreover, at s = 0, the slopes of these functions are negative but still larger than the
slope of the lower straight line; and, as s approaches w, the slopes approach infinity. Finally,
for any given s, the low type’s indifference curve has a larger slope than the high type’s (the
single-crossing property).
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identities:!!

log (1 — 8—/> + 3, log (1 + %) = [, log (M> (4.8)

w By (1+afp)
respectively
s" s\ _ B (1+afy)

As the figure is drawn, both s' and s” are located to the left of afy w. In the
Appendix (Lemma A2 and A3, respectively) it is shown that we always have
s’ < affyw, and that s" < afyw if and only if either (i) afy > 1 or (i) afy < 1
and 8, > f (By,a), where

-1

F(Bura) = |~ (1~ ) 7 —a| (1.10)
Bu

To start with, suppose that either condition (i) or (ii) holds so that indeed s~ <
affyw, and refer again to Figure 3a. In order to sustain a separating equilibrium
there are two necessary conditions. First, the low type must not have an incentive
to choose the high type’s amount of savings. Second, the high type must not have
an incentive to choose the low type’s amount of savings. Since A will learn B’s
type perfectly in any separating equilibrium, A will (after having observed s} or
s%;) make a transfer according to either one of the two straight lines in the figure.
Hence, by mimicking the high type, the low type can get a transfer according to
the upper straight line. For the low type not to have an incentive to do this we
must have s¥ > s'; otherwise the low type could, by saving s%;, obtain a saving-
transfer pair that gives him a higher utility than he will get if saving only s7 = 0.
Similarly, for the high type not to have an incentive to mimic the low type, we

must have sj; < s”.
If A’s out-of-equilibrium beliefs are chosen appropriately, the two necessary

. . / . .
conditions sj; > s and s} < s are also sufficient for having s; = 0 and any

" The left-hand side of (4.8) is strictly decreasing in s . Also, the left-hand side of (4.8) tends
to —oo as s tends to w; and as s tends to 0 the left-hand side tends to zero, while the right-hand
side of (4.8) is strictly negative. Hence the identity in (4.8) uniquely defines s . Similarly, the
identity in (4.9) uniquely defines s
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Sy € [s', s”} as part of a separating equilibrium. For instance, one may let

~, v [0 forsel0sy)
ils) = { 1 for s € [s},w]. (4.11)

These posterior beliefs are consistent with the equilibrium requirements and they
guarantee that the types do not have an incentive to deviate from s} respectively
S

Essentially, what is needed for sustaining this kind of equilibrium is that the
difference between 3; and (3 is sufficiently small. This can be seen from Figure
4. This figure depicts the («, 5 )-space for some given 3. Recall that we have
restricted the analysis to the subset of the parameter space satisfying Assumption
1; in the figure, this is the area below the graph of @ = (1 — 8,)”" and above the
graph of a = ¢ (3,). The type of equilibrium outcome that we have just derived
can be sustained in the region labeled (3.1); that is, this is the region where either
condition (i) or (ii) above holds and where Assumption 1 is met.'?

It remains to consider the case where s > afyw (or, equivalently, the subset
of the parameter space where afy < 1 and 8, < f(8y,«)). This case is illus-
trated in Figure 3b. Again, in order to sustain a separating equilibrium it must
be that the two types do not have an incentive to mimic each other: sj; must be
between s and s°, where s° is the value of s at which the high type’s indifference
point crosses the s-axis from below. It turns out, however, that we cannot sus-
tain all saving levels between s and s° as part of a separating equilibrium. To
see this, notice that regardless of A’s beliefs, for saving levels larger than o/ w
A’s transfer will be the same (zero) for both types. This means that if the high
type saves some amount greater than afyw, then this amount must be equal to
Byw/ (1+ By): the high type’s optimal saving level if not expecting any transfer.

We now get two subcases. The first one is obtained for Bhw/ (1 + 8y) <
afyw. If this inequality holds we cannot sustain any saving level in the interval
[afyw, s°] as part of a separating equilibrium. However, by choosing the out-of-
equilibrium beliefs appropriately, one can sustain any s}; € [s', af Hw) as part of
a separating equilibrium. For example, one may again let the beliefs be given by

equation (4.11). This kind of equilibrium can be sustained in the region in Figure

12Some properties of the (inverse of the) function f that are helpful when drawing the figure
are proven in the Appendix (Lemma A10).
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4 labeled (3.2). That is, & must be large enough and the difference between [,
and (5 must also be sufficiently large.

The other subcase is obtained when fyw/ (1 + 8y) > afyw. If this inequal-
ity holds we can indeed sustain some saving level in the interval [afyw, s°] as

13 We cannot,

part of a separating equilibrium, namely s = Gpw/(1+ By).
however, sustain any other saving level in this interval as part of a separating
equilibrium, since the high type would then have an incentive to deviate to the
saving level Byw/ (1 + By). Moreover, in order to sustain a saving level in the
interval [s', af Hw) as part of a separating equilibrium, the high type must not
have an incentive to deviate to the saving level §,w/ (1 + 8y). For this condition
to be met, the high type’s saving level must not be too high; more precisely, it

must be lower than or equal to s, where s7 is defined implicitly by

log (1 - %) + By log (1 + %) = [y log (%) — (14 Gy)log (1 + By).
(4.12)
Hence, if s# < s', then only s3; = Byw/ (1 + () can be sustained as part of
a separating equilibrium; otherwise, if s# > s, we can in addition sustain any
saving level in the interval [3', s#} as part of a separating equilibrium. (We may
again let the out-of-equilibrium beliefs be given by equation (4.11).) The first
kind of equilibrium can be sustained if « is lower than a threshold ¢ (3, , 35) (the
region labeled (3.4) in Figure 4);'* the latter kind of equilibrium can be sustained
if the difference between 3; and 3y is sufficiently large and if o takes on some
intermediate value (the region labeled (3.3) in Figure 4). Notice that in the region
labeled (3.4), there is a unique separating equilibrium outcome.
The results of the analysis carried out in the previous pharagraphs are sum-

marized in Proposition 3.

Proposition 3. (Separating equilibria) Separating equilibria exist. (s} ,t5, S%,t5;)

131n the Appendix (Lemma A4) it is shown that Sgw/ (1 + Bj) cannot be greater than (or
equal to) s°.

"In the Appendix (Lemma Ab5), it is shown that the threshold v (8., 8y) is well de-
fined and that ¢ (3.,8y) > ¢ (By) for all 3, € (0,8y) and that limg, .ot (B, By) =

limg, g, ¥ (Br,By) = ¢ (By). Moreover, I strongly conjecture that ¢ (8, Bg) < (1 + By)
for all 8, € (0, By ), although I have not shown this analytically.
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can be sustained as the outcome of a separating equilibrium if and only if
afpw afgw — Sy }}
s, tr, 85, ty) € {0 x { ——=— 5 X Q*P x {max { ————=.,0 ,
(i) € {0 x {22 i { 22 =

where

(3.1) Q** = [s',s"] if either (a) afy > 1 or (b) if afy < 1 and B, >
f(ﬁH?a);

(3.2) 0 = [s, afpw) if afy <1, a> (14 6y) ", and B < f (B, a);

(3.3) v = [, s*] U {L2 L if a €[4 (B, By), (1+ By) '] and B, <
f(ﬁH?a);

(3:4) o = [ d it o < §(5,,8,),0 < (14+6,)7", and 5, <
f(ﬁH?a)'

4.2.2. Pooling Equilibria

Let us now consider the existence of pooling equilibria—that is, equilibria where
both types make the same saving decision, say s; = s}, = s*. After having
observed this saving level, A will make a transfer to B according to equation
(3.3) where the parameter § has been substituted for the expected value of 3,
E (8) = nB8y + (1 — ) B,. The graph of this optimal transfer function is depicted
as the intermediate straight line in Figure 5. Similarly to the case with separating
equilibria, there are two conditions that are necessary in order to sustain s* as
part of a pooling equilibrium. First, if s* > 0, then the low type must not

have an incentive to deviate to s = 0. Second, the high type must not have an

Buw
14+8g"

level for the high type if not expecting any transfer. In the figure, these two

incentive to deviate to the saving level s = This is the optimal saving

conditions are illustrated by indifference curves for the two types through the
points (s,t) = (0, %L%) and (s,t) = (1—’?6%, 0), respectively. The two conditions
are met for all s smaller than or equal to 5 respectively s##. These critical values

of s are defined implicitly by

log (1 . g) + 8, log (1 + g) = 3, log [%(g) EiEa(gm (4.13)
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and

log (1 - #) + 3, log (1 + #) =, log {g%?ﬁ;ﬁ ;@;] —log (1 + By).
(4.14)

It turns out that we can sustain any s* € [0, min {, s*#}] as part of a pooling

equilibrium. However, it may be that s#*# < 0, in which case pooling equilibria
do not exist. These results are summarized in Proposition 4, a formal proof of

which is found in the Appendix.

Proposition 4. (Pooling equilibria) Pooling equilibria exist if and only if « >
By (By) /E (B). If this inequality is met, then any

* gk ko gk DOO akb (ﬁ)w—s* DOO ak (ﬁ)w—s*
(s7,t7,85,ty) € Q lx{—l—i—aE(ﬁ) }XQ lx{—l—i—aE(ﬁ) },
(4.15)

where s} = s} = s* and QP = [0, min {3, s*#}], can be sustained as the

outcome of a pooling equilibrium.

When we in the next subsection pose the question whether the allocations
induced by the equilibria are efficient, we shall be particularly interested in the
case where y is close to unity. Hence, it will be useful to note a couple of things
concerning the set of pooling equilibrium outcomes in this special case. Let us first
make the observation that for values of i close to unity, pooling equilibria exist.
This is true since for g = 1, the condition for existence in Proposition 4 simplifies
to a > ¢ (Bg), a condition which is guaranteed by Assumption 1. Moreover, as
v approaches unity, 5 approaches s and s## approaches s#. These things taken
together mean that by choosing p sufficiently close to unity, we can sustain any
s* € [0,min {s",s*}) = [0,5) as part of a pooling equilibrium.'® In particular,
we can always sustain the outcome where none of the types saves anything and
they both get a transfer that is arbitrarily close to 84w/ (1 + afy), i.e., the high
type’s transfer in the complete information model in Section 3. In other words,
if p is close to unity, there is at least one equilibrium outcome of the incomplete
information model that is close to the outcome of the complete information model

in Section 3.

15We have min {s,, s#} =5 ifa>v(B;,8y); see Lemma A5 in the Appendix.
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4.3. Efficiency

Let us now investigate whether allocations induced by the equilibria of the game
I'; are efficient and, if not, whether B saves too little or too much in these equi-
libria. Similarly to the usage in Section 3, I will refer to a saving-transfer vector
(sp,tr,Sm,ty) as an allocation.

In a game with incomplete information the concept of efficiency is not straight-
forward. In this section of the paper the following definitions will be used. Fol-
lowing Holmstrém and Myerson (1983) I say that an allocation (s, tr, sy, tm) is

incentive feasible if
Ug (si,ti | B;) > Us (s t; | B;),  Vi,j € {L,H} withi #j (4.16)

and (sp,tr,sm,tm) € [0,w]*. An allocation (L.t Sy, ty) ez post dominates an

allocation (s, tr, sy, ty) if
U, (s;,t;. | ﬁj) > Ui (st 1 8;),  Vje{L H} andVie {4, B}, (4.17)

with at least one strict inequality. And an allocation (sp,tr,sg,ty) is ex post
incentive efficient if there is no other incentive feasible allocation that ex post
dominates this allocation.!

It turns out that if the parameters are such that the equilibrium outcome
of the corresponding complete information model is not Pareto efficient (i.e., if
Assumption 1 holds), then neither an outcome of a separating equilibrium nor an
outcome of a pooling equilibrium can be ex post incentive efficient. This is because
in a pooling equilibrium the types behave identically, which is not consistent with
condition (4.17),!” and in a separating equilibrium the signaling mechanism does

not affect the low type’s saving choice (cf. Lemma 1).

16Two other possibilities are to make the welfare evaluation ex ante or interim, that is, to
evaluate the outcomes when the agents do not know their own types nor the others’ types,
respectively when the agents do know their own types but not the others’ types. This gives rise
to the alternative notions of ex ante respectively interim incentive efficiency. An allocation that
is ex post incentive efficient must be both ex ante and interim incentive efficient; see Holmstrom
and Myerson (1983).

"Condition (4.17) requires that if s* = 0, then ¢} € argmax,c(o.)Ua (0,¢] ;) for both
t = L and ¢« = H. This in turn requires that ¢ # t};, which is not possible in a pool-
ing equilibrium. Condition (4.17) also requires that if s* > 0, then s* is a solution to both
maxeow) Us (5,1 | Br) and max,ep.) Up (s,t* | Bg). This is not possible since 3, # (g
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However, in a separating equilibrium the high type’s choice is distorted up-
wards: sy > 0; thus, it is conceivable that sj; is part of an outcome that is
“efficient for the high type.” If so, by letting the prior probability that B is the
high type, u, tend to unity we may, from an ex ante point of view, get arbitrarily
close to ex post incentive efficiency. Another possibility is that as y tends to unity,
the outcome of a pooling equilibrium approaches an outcome that is “efficient for
the high type.” If so, we may again get arbitrarily close to ex post incentive
efficiency from an ex ante point of view—mow in the (slightly weaker) sense that
an equlibrium outcome can be sustained that is arbitrarily close to one that is
“efficient for the high type,” and the probability that we have the high type is
arbitrarily close to unity.

By considering the special case where i tends to unity, we also get arbitrarily
close to the benchmark case with complete information. We may hence think of
such an analysis as a robustness test of the complete information model. In the
following I will carry out this kind of robustness test. That is, I will investigate
if and when the high type’s saving level in a separating equilibrium is “efficient
for the high type,” and if and when the saving level in a pooling equilibrium
approaches one that is “efficient for the high type” as u approaches unity.

First consider some formal definitions. An allocation (3 L, tr, s'H,t'H) ex post

dominates an allocation (sp,tr, sy, ty) for the high type if

Us (Siots | B ) = Ui (smstu | By), Vi€ {A,BY, (4.18)

with at least one strict inequality. And an allocation (sp,tr,sm,ty) is ex post
incentive efficient for the high type if there is no other incentive feasible allocation
that ex post dominates this allocation for the high type.

There are two conditions that are necessary for (s5,t%,s%,t%) to be ex post

incentive efficient for the high type as well as the outcome of a separating equi-

librium:
sy €argmax Ug (st} | By) (4.19)
s€[0,w]
and
ty €argmax Uga (s3,t | By) - (4.20)
te|0,w]

The first condition guarantees that the intertemporal allocation is efficient, and

the second condition is necessary for (s},t},s5,t3;) to indeed be the outcome of
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a separating equilibrium. If an outcome of a pooling equilibrium approaches an
outcome that is efficient for the high type as p approaches unity, then this limit
outcome must also meet the two conditions.

It turns out that when a > (1+ )", conditions (4.19) and (4.20) are met

only for'®
L=a(l=0y) , 5 (4.21)
1+a(l+By)

Sy =

and (14+08y) —1
« O H) — _7
ty = 1+a(1+ﬁH)w_tl' (4.22)

When a < (1+ )", conditions (4.19) and (4.20) are met only for s% =
B

1+gH -
(sz,tz,gl,tl) is indeed ex post incentive efficient for the high type; and when

w = 377 and t5;, = 0 = t;;. One may verify that when o > (1+ 35)",

o< (148", (sz, tz,fsvn,%vn) is indeed ex post incentive efficient for the high
type.

In order to tell if and when the high type’s saving level in a separating equi-
librium is efficient for the high type, we need to know, among other things, for
what subset of the parameter space s; € [s', s”}. By using the definition of s",

one may show that 57 < s” is equivalent to 3, < g (B, ), where

9(Bu a) = (4.23)

28y 2a

1+a(1+48y) (1+a(1+ﬁH)>ﬁ_a]

One may also show (see the proof of Proposition 5) that 5; > s if and only if

a < a(B;,By), where the function & is defined implicitly by

1+a(l+8y) Brl+a(l+8y)]] _
104 2% 26, (1+aBy) }:0‘

We are now ready to state Proposition 5, which is proven in the Appendix.

} + 8, log { (4.24)

Proposition 5. Suppose that a < (14 8;) . Then an allocation that is ex
post incentive efficient for the high type can be sustained as the outcome of
a separating equilibrium if and only if 8, < f (By, ). If a> (14 8y) ",

18The assumption o < (1—3;)"" (i.e., Assumtion 1) guarantees that 3; > 0, and the as-
sumption a > (1 4+ ,BH)f1 guarantees that t; > 0.
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then an allocation that is ex post incentive efficient for the high type can

be sustained as the outcome of a separating equilibrium if and only if 3; <
9(By,a) and a < a (B, By).

Figure 6 illustrates the results stated in the proposition. This figure is similar
to Figure 4, but it also shows the graph of the functions a = g~ (8,; 3y) and
o = a(f,,By)."? To start with, consider the case where o < (1+ 8,) . For
these values of @ we want to sustain the saving level s;; as part of the outcome
of a separating equilibrium. We know from Proposition 5 that we can do this if
and only if 5, < f (8, a). That is, we need to be in the region labeled (5.1) in
Figure 6.

Now turn to the case where a > (1 + ) . For these values of o we want to
sustain the saving level s; as part of the outcome of a separating equilibrium. This
is possible in the region labeled (5.2) in Figure 6. However, in the subset of the
parameter set satisfying Assumption 1, there are two regions in which we cannot
sustain an outcome that is ex post incentive efficient for the high type. The first
one of these, region (5.3), is obtained when (3, is sufficiently close to 3. In this
region all outcomes that can be sustained as outcomes of a separating equilibrium
involve undersaving. The second region, labeled (5.4) in the figure, is obtained
when o > a (8, ). In this region all separating equilibria involve oversaving
for the high type. However, it turns out that if « > & (3;, 3y ), then there is an
outcome of a pooling equilibrium that, as p tends to unity, gets arbitrarily close
to the one that is efficient for the high type.

To see the implications of these results, think of the Samaritan’s-dilemma
model with complete information considered in Section 3. Suppose that the pa-
rameter [ in that model equals some 3 = By € (0,1). We know that if « is
neither too small nor too large, then the outcome of the unique subgame perfect
equilibrium of this model is inefficient. Now suppose that we add to this model a
slight amount of uncertainty, and we do this in the following particular way: with
some small probability, the parameter 3 does not equal 35 but 3;. Furthermore,
B, is sufficiently much smaller than ;. Since the probability that 3 equals G,

and not 3, can be made arbitrarily small, this model is very close to the model

198ome properties of these functions that are helpful when drawing the figure are proven in
the Appendix (Lemma A1l resp. A12).
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with complete information. Still, in the new model with incomplete information
one can sustain an outcome that is (almost) ex post incentive efficient.

One should bear in mind, however, that the almost efficient outcome is only
one of many possible equilibrium outcomes. When an equilibrium outcome is
not efficient, it may involve either undersaving or oversaving on the part of B. In
particular, as noted in Subsection 4.2, for values of p close to unity there always
exists a pooling equilibrium outcome that is arbitrarily close to the equilibrium
outcome of the complete information model. In the next subsection I will consider
the question what can be said about efficiency and undersaving when we impose

some equilibrium refinements that are often used in signaling models.

4.4. Equilibrium Refinements

In Subsection 4.3 it was shown that if (3, is sufficiently small, then an “almost
efficient” level of B’s savings can be sustained as part of an equilibrium. However,
to some extent this possibility relies on our choosing beliefs off the equilibrium
path in a particular manner. To see this, consider Figure 3a and some saving
level s3; € (s', s”]. In order to sustain this as the high type’s saving level in a
separating equilibrium, A must assign positive probablity to B’s being the low
type when observing any saving level s € [s', sj‘q); otherwise the high type would
have an incentive to deviate to any such saving level s. However, it is clear from
the figure that regardless of which posterior beliefs i (s) € [0,1] A holds, the low
type is always strictly better off choosing s = 0 than choosing any saving level
5 € (s', s”]. Hence one may argue that any beliefs assigning positive probability
to the low type’s saving s € (s', s”} are unreasonable. But if we do not allow such
beliefs the high type will deviate, and we cannot sustain sj; as the high type’s
saving level in an equilibrium. The same reasoning applies for all s}, € (s', s”].
In Figure 3a, the only saving level of the high type that survives this refinement
is s =5

Concerning the set of separating equilibrium outcomes that we derived using
Figure 3b, the kind of reasoning described in the previous paragraph works in
the same way. Again there is only one surviving outcome. Here this outcome
involves the high type saving s3 = s if a > ¢ (8,,0y) and otherwise s¥ =
Ly However, this kind of refinement does not have the same bite on the set

1+8g
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of pooling equilibria. In order to rule out all pooling equilibria we must invoke
some stronger equilibrium refinement. One refinement that will do the job is the
so-called intuitive criterion (Cho and Kreps, 1987). Concerning the particular
model considered here, this criterion says the following. Fix some equilibrium of
the game I';. Suppose that, for any possible best response by A, the equilibrium
utility of B when being the low type is strictly greater than the utility the low
type would receive if he saved some out-of-equilibrium amount s, regardless of A’s
beliefs. Moreover, suppose that this is not true for the high type; that is, there
are some beliefs 1 (s) such that, if A makes a best response given these beliefs,
the high type would get a higher payoff if choosing s instead of sj;. Then, if A
observes the saving level s, A should place zero probability on the possibility that
B is the low type, 1t (s) = 1. This requirement must hold for all out-of-equilibrium
saving levels s. If it does, we say that the equilibrium is intuitive. The following

proposition is proven in the Appendix.

Proposition 6. There is a unique intuitive equilibrium outcome of I';. If a >

v (B, By), then this outcome is (s},t%,s%,t) = (0, loﬁfg;,s', aff:ﬁj );

afpw  Bpw 0
P 14+af? 148y’

otherwise this outcome is (s3,t5, 8%, th) = (0

By imposing the intuitive criterion we thus get a unique prediction of the
model with incomplete information. This prediction says that, depending on how
a relates to the critical level v (3,, 8y), the high type saves either st = s or
Sy = 1—’?@% Figure 7 illustrates the results. In the region where Assumption 1
holds and a < ¥ (8, 3y) (labeled (6.1) in the figure), the high type saves s}, =
ﬁ’g‘; This amount of savings is efficient for the high type, since o < ¢ (6, By)
implies o < (14 8y) "2 For a > v (B;, B5), the high type saves s% = s". This

amount of savings is efficient for the high type only if @« = a. For a below this

critical value, the high type saves too little (the region labeled (6.2)); and for «
above this critical value, the high type saves too much (the region labeled (6.3)).

This means that for a subset of the parameter space we can still sustain an
(almost) efficient outcome, although this subset is smaller than the corresponding

subset without imposing the refinement. Moreover, even where we cannot sustain

20However, this argument relies on the presumption that ¢ (8,,8y) < (1 —l—,BH)*l for all
Br € (0,8y), a result which I have not proven analytically. Cf. note 14.
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an almost efficient outcome (i.e., in the regions (6.2) and (6.3)), we now have a
unique prediction which is qualitatively different from the one of the complete
information model. Interestingly, it can also happen (in region (6.3)) that the

high type oversaves.

5. Concluding Discussion

The Samaritan’s dilemma—i.e., the idea that, in the presence of altruism, people
may choose to save (or work or insure) to a too small extent—is certainly very
intuitive. In the alternative formulation of the Samaritan’s dilemma considered in
this paper there is an additional effect present, which counteracts the undersaving
effect. The mechanics of this new force should also—once we have become aware
of them—be very intuitive. For the new force to indeed work in the “right”
direction (i.e., to counteract the undersaving effect), the following condition must
hold. Suppose that B has private information about some parameter x and that
he, everything else being equal, has an incentive to save more when knowing that
x is high (low). Then, believing that z is high (low) will induce A to make the
transfer to B larger. Since B wants the transfer to be large, he would like A to
believe that x is high (low); and he can try to make A believe this by saving more.

The condition is met if, as was suggested in the Introduction, x is a measure
of B’s second-period income or if, as was assumed in the formal model of Section
4, z is a discount factor or a weight on B’s second-period utility. One may wonder
whether the presence of the counteracting effect is hinging on the assumption that
the incomplete information concerns one of these two particular characteristics of
B.2! What if B had private information about the return on his savings or about
his first-period income?

If the parameter z is interpreted as the return on B’s savings and if we stick to
the log-utility specification in the present paper, then it is clear that there would
not be any counteracting force present. This is because with log-utility and with

A’s transfer ¢t being equal to zero, the optimal saving level is independent of the

2l However, one should remember that, since this paper is mainly concerned with the robustness
of the Samaritan’s dilemma, it suffices, in principle, to find one example of a parameter having
the property that the model’s prediction makes a discrete jump when we add a small amount
of uncertainty about the parameter.
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return; and if ¢ is positive, then the optimal saving level is increasing with the
return. However, if the intertemporal elasticity of substitution is constant but
sufficiently less than one (or, equivalently, if the degree of relative risk aversion is
sufficiently greater than one), then B will have an incentive to save more when
knowing that the return is low; and A will also have an incentive to make her
transfer larger when believing that the return is low. Hence, under this assump-
tion, one would again get counteracting signaling. The assumption about the
intertemporal elasticity of substitution seems reasonable: the log-utility assump-
tion in the present paper was made for tractability reasons, and there is empirical
evidence that this elasticity is indeed less than one.

Private information about B’s first-period income does of course not give rise
to any opportunity to signal as long as B’s utility function is additively separable
over time, since then the size of B’s income in the first period does not affect
A’s incentive to transfer income to him in the second period. However, if B’s
marginal utility of second-period consumption is increasing with B’s first-period
consumption, then the condition above is again satisfied. This requirement on
the sign of the cross derivative of the utility function is, for instance, met for the
following preferences: Ug (¢1p,cop) = (c15)” (023)b for some a,b > 0.

Yet another parameter in the model which there could conceivably be uncer-
tainty about is the altruism parameter, o.?? In the model analyzed in this paper,
A’s having private information about a would not give rise to any signaling, since
A is acting last in the game. However, this is not true for the formulation of
the Samaritan’s dilemma considered in Lindbeck and Weibull (1988). In that
model there are two individuals who are altruistic toward each other. They both,
simultaneously, make a saving decision in period one. In period two they ob-
serve the other one’s saving decision and then, simultaneously, decide how much
(if anything) to transfer to each other. If they both are equally wealthy, then,
in equilibrium, only the individual who is more altruistic will make a positive
transfer. Anticipating this, the less altruistic individual will undersave in the first
period. If one to this setting added the assumption that one or both of the in-

dividuals have incomplete information about the other one’s degree of altruism,

22Uncertainty about the degree of altruism has been modeled by Chakrabarti, Lord, and
Rangazas (1993) and Lord and Rangazas (1995).
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then one should expect the undersaving to be exacerbated, the reason being that
both individuals would like to signal that they are less altrusitic than the other
one, and a person who indeed has a low altruism parameter does not expect a
transfer and should therefore save a lot on his own.

Returning to the setting of Section 4 of the present paper, we saw that the pres-
ence of an arbitrarily small amount of incomplete information makes it possible
to sustain a large number of different outcomes as an equilibrium, and these out-
comes typically involve both undersaving and oversaving. Although full efficiency
cannot be obtained, one may in a subset of the parameter space get arbitrarily
close to ex post incentive efficiency. Moreover, if the difference between the two
types is big enough, this is possible for all values of the altrusim parameter for
which we get ineffficiency in the complete information model. There is of course
no guarantee that the (almost) efficient outcome will be played. Indeed, among
the equilibrium outcomes there is also a pooling one which is close to the unique
outcome of the complete information model and which involves undersaving. How-
ever, as noted in connection to the example in Section 2, the results show that the
theoretical case for undersaving is much weaker than what one might think if only
looking at the standard formulation of the Samaritan’s dilemma. In this context
it is also interesting to recall the school of thought that is usually associated with
the University of Chicago and especially with Gary Becker, which suggests that
there are strong forces in action making resource allocations efficient, in particular
within the family.

Of course there are some caveats. One of them is the fact that we carried out
the analyis of the signaling game under the assumption that the magnitude of the
altruism parameter is such that we get inefficiency in the corresponding complete
information model (Assumption 1). Doing this actually gives rise to a bias in favor
of smaller inefficiencies since, if we have a first-best outcome without signaling,
incomplete information can only make things worse. Hence, had we investigated
also the subset of the parameter space not satisfying Assumption 1, we would
have found more of oversaving. Another caveat is the fact that, to some extent,
the (almost) efficient equilibrium outcome is sensitive to equilibrium refinements

such as the intuitive criterion. Although the choice of a refinement is always
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1,2 it is interesting to see what the intuitive criterion implies for the

controversia
present model. What we found in Subsection 4.4 was that the intuitive criterion
indeed gives us a unique equilibrium outcome, and this outcome is never close to
the outcome of the complete information model. This means that if we increase
the amount of uncertainty about the recipient’s type, we will get a discontinuity
at zero. That is, the unique equilibrium outcome always involves more saving
than in the complete information model. Depending on parameter values, we can
either get undersaving, (almost) efficiency, or oversaving. The (almost) efficiency
result is obtained when the altruism parameter is sufficiently low, but still large
enough to give rise to undersaving in the complete information model. The subset
of the parameter space where we get this result is the same as for which we get
a unique separating equilibrium outcome of the model without any refinement.?*
In Section 4 we saw that the reason why we get this uniqueness is closely related
to the fact that there is a non-negativity constraint on the transfer.

As noted in the Introduction, the mechanism in the standard Samaritan’s
dilemma model and in particular the undersaving result has been employed in
an extensive literature, addressing various issues. Although these models are not
identical to the benchmark model of the present paper, the basic mechanism is the
same. Hence, one should expect the undersaving result also in those other models
to be sensitive to the assumption that information is complete. One may object
that the literature cited in the Introduction in many cases concerns an efficiency
argument; the arguments go through even if the undersaving is mitigated as long
as it is not exactly efficient. Still this is not always the case. For example, the
argument in O’Connell and Zeldes (1993) (see the Introduction) concerns the
actual level of savings and the question how it relates to the real interest rate in
the economy. An interesting topic for future research would be to investigate the
signaling mechanism in the present paper in a setting that is closer to the one in

the existing literature, in order to find out to what extent those results indeed

230ne reason for this is that the intuitive criterion and other refinements that are based on
equilibrium domination are sensitive to the so-called Stiglitz critique. See e.g. Cho and Kreps
(1987) or Kreps and Sobel (1994).

24¥et another caveat is that I have not proven analytically that the subset of the parameter
space where the almost efficiency result is obtained (region 6.1 in Figure 7) never is empty.
However, I have not been able find any counter-example when plotting the relevant functions
on a computer.
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are sensitive to the complete information assumption. Another interesting topic
for future research would be to investigate whether the mechanism in this paper

might help resolving other problems of time inconsistency.

6. Appendix

Lemma Al. ¢ (8) <0 for all 3 € (0,1).

Proof of Lemma A1l: In order to prove Lemma A1l I will first prove two
other claims. The first claim will be used when proving the second claim, and the
second claim will be used when proving the lemma. Let the function x : (0,1) — R
be defined by # (3) = log (1 + 8) — B (1 + 8) 2. I claim that  (3) < 0. To prove
this, first note that limg .o (3) = 0. It thus suffices to show that x (8) < 0.
Differentiating « () yields

/

K@) =0+8)"—1+8) 7%+

[\DQ

—(1+p) 2. (6.1)

Rewriting this expression for &' (3) yields

(o = faemvaro [ [aem vt R
X[<1+ﬁ) (1+5) fi@”
= {<1+ﬁ>1+<1+ﬂ>%{ (2”;)” (1+ﬂ)2—(1+ﬁ)1{2(2+f;)
- - [(1+ﬁ)1+(1+ﬁ)% [%H mff_jﬁ)g.

This expression is strictly negative, which proves the claim that « (3) < 0.

Now let the function £ : (0,1) — R be defined by £ (8) = (1 + ﬁ)l_gé I claim

that £ (8) > 1. In order to prove this, first differentiate ¢:

£ (0) = % 16— log (1+ 8)]. (6.3)
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Note that lims_; £ (8) = 4—log (16) > 1. It thus suffices to show that ¢ (3) < 0.

Differentiating £ once more yields

v B =288 3
Substituting the expression for £ in (6.3) into (6.4) and then rewriting yield
€ (9) =5 [l 1+ 9) + —2= | [log(1-+5) -2 (6.5)
7 Vith v ©

Hence, by the first claim that x (8) < 0, & (8) < 0. We have thus proven the
claim that & (8) > 1.
We are now ready to prove Lemma Al. Differentiating the expression in (3.6)
yields
oL (6.6)
i £(5) - F |

Thus, by the claim that £ (3) > 1, ¢ () < 0. O

Proof of Proposition 1: In order to prove Proposition 1 we must inves-
tigate the case where a3 < 1, since this was not done in Subsection 3.2. When
aff < 1, B’s indirect utility is given by either one of the two lines in equation
(3.4), and which one it is depends on the choice of s itself. Let ©' be defined by

o! — max log (w — s) + Blog (w + s) + [log (1 iiﬁ) . (6.7)

That is, ©! is the highest utility B can obtain if he is constrained to choose some
s € [0, afw). Denote the solution to the maximization problem in (6.7) (it does

exist) by s'. Since 3 < 1, we have s = 0. Hence

1_ af
© —(1+ﬂ)logw+ﬁlog(1+aﬁ) (6.8)
Similarly define ©2:
0% = ﬁngx ]log (w—s)+ Blog(s). (6.9)
sc|lafw,w
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Thus, ©2 is the highest utility B can obtain if he is constrained to choose some

s € [afw,w]. Denote the solution to this problem by s*. We have

Lw fora <L
2 [ 7w fora e
N { afw  otherwise. (6.10)
Thus
o (1+08)log (25) + Blog (9) fora<sl; o
(14 3)log (w) +log (1 — af) + Blog (af) otherwise.

In order to find out what B’s optimal choice of s will be, we must compare
the magnitudes of ©! and ©2. There are two cases: (a) a < (1+3)"" and (b)
a > (14 3)"". Consider case (a). Carrying out some algebra yields

0'Z0°waZp(l). (6.12)
Hence, if a > ¢ (0), then s* = 0; and if a < ¢ (), then s* = Tﬁﬁw If a=¢(P),
then there are two solutions two B’s optimization problem, s* = 0 and s* = %
From equation (3.3) one obtains the result that when s* = 0, t* = 11’6;/8, and when
§* = mw then t* = 0.
Now consider case (b), a > (1+ )~'. Here we get
0! > ©*<log(l—apf)+Blog(l+aB) <0
& (1-pB)log(1—ap)+Blog[1 —(af)’] <0 (6.13)

Inequality (6.13) always holds since § < 1 and a8 < 1. Hence, we have s* = 0
and t* = lof “’B Together with the analysis in Subsection 3.2, this completes the
proof of Proposition 1. []

Proof of Proposition 2: First assume that a < ¢ (). One may then verify
that (s,t) = (1 5w, 0) is the unique solution to the following problem:

max Uy (s,t). (6.14)

(t,s)€[0,w]?

(This is the solution as long as a < (1+ )", which is implied by a < ¢ (8).)
That is, this allocation is A’s first-best choice. But for a < ¢ (8), (s,t) =
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(%w, 0) is also the outcome of the unique subgame-perfect equilibrium; hence,

1+
is one of two possible equilibrium outcomes and it is Pareto efficient. Now as-

sume that o > (1—()"". One may then verify that (s,t) = (0, ligﬁw) is the

unique solution to the problem in (6.14). Again, this is also the outcome of the

this outcome is Pareto efficient. Similarly, for « = ¢ (§), (s,t) = (iw,())

unique subgame perfect equilibrium, so the outcome is Pareto efficient. It re-

mains to show that the allocation (s,t) = (0, ligﬁw) is not Pareto efficient for

any a € [p(8),(1 —ﬁ)fl). Suppose that a < (1 — 3)"". Differentiate Up with

respect to s and evaluate at (s,t) = (0 o w)‘

) Trap? )
6UB_(87t)| _L[l_ (1-8)] >0 (6.15)
0s (s:)=(07855%) " o “ o= 0. '
Moreover, since 8Uggs’t) = aaUggs’t), also A can be made better off if B saved more

given the level of A’s transfer. Hence the allocation (s,t) = (0, ﬁ%w) is not
Pareto efficient for any a € [p (3), (1 — ﬁ)fl). O

Proof of Lemma 1: Suppose that a > ¢ () and that s} > 0 in a sepa-
rating equilibrium. I will show that this leads to a contradiction. To start with,
consider the case where s} € (0,af,w]. Then the low type receives a transfer
from A according to the first line in equation (3.3) but with 3, substituted for .
The low type’s utility is accordingly given by (cf. the first line of equation (3.4)):

V' =log(w—s%) + B, log (w+ s%) + 5, log (%) : (6.16)

However, if the low type instead chose s = 0, he would receive a transfer of at
least %Lg’?, which would give him the following utility (cf. again the first line of
equation (3.4)):

V =(1+p,)log(w)+ 5, log (%) )

V is strictly greater than V' for all st € (0, a3, w], since V' is strictly decreasing
in s3. Now consider the case where s} € (af w,w]. Then the low type receives

a transfer from A according to the second line in equation (3.3) but with 5,
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substituted for 3. However, as long as o > ¢ (), the low type is strictly better
off from choosing s = 0 than from choosing any s} € (af;w,w]. This follows
from the proof of Proposition 1. We thus have a contradiction, which proves the

lemma. O

Lemma A2. s < afjw.

Proof of Lemma A2: It is obvious that the lemma is true for ag, > 1.
Suppose that af; < 1. Then s* < afyw if and only if the left-hand side of (4.8)

evaluated at ' = afyw is smaller than the righ-hand side:

By (1+ aﬁH))
By (1+apy)

or equivalently Y (o, 3,,08y) < 0, where the function Y : R,, x (0,8y) X
(BL,1) — R is defined by

log (1 — ) + By log (1 + aBy) < B log ( (6.17)

By (1+ap
Y (0 g, ) = Yo (1 — i) + By g (LI o)
L
Note that T is strictly concave in its third argument:
2T 2
O (@ fpfu) . __—0” _ Pu (6.19)
OBy (1 —aBy) H

Also note that as 3 tends to =, T (a, B, f) tends to minus infinity; and as 3y

tends to G, T («, 8L, By) tends to some number that is also strictly negative:

Im Y (o, B, 8y) = log(1—af,)+ B, log(l+ab)

Bu—BrL
= log (1 - (aﬁL)2) —(1—=p;)log(1+aB;) <0.
(6.20)
Hence, if T (o, B, By) < 0 for 3, satisfying
aT (a7ﬁL7ﬁH) _ _ ﬁL
P T (6:21)

then Y («, B, By) < 0 for all 5. Moreover, T is strictly decreasing in «. It thus
suffices to show that evaluated at o = ¢ (8,) and By = 3, [0 (B.) (1+ 3.)] ",
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T (o, B, Bp) < 0. We have:

B _ ) o 1+ ﬁL)(%L> _
(00000 st e (- s S ) -0
(6.22)

This proves Lemma A2. []

Lemma A3. s" < afyw if and only if either (i) afy > 1 or (ii) afy < 1 and
By > f (B, ).

Proof of Lemma A3: If a3, > 1, then it is obvious that s < afjw.
Suppose that a3, < 1. Then s < afyw if and only if the left-hand side of (4.9)
evaluated at s° = aByw is smaller than the righ-hand side of (4.9):

B (1+aﬁH>>_

By (1+apy) (6:23)

log (1 — ) + By log (1 + afy) < By log (
Rewriting (6.23), we get 3, > f (By,a). O

o BHw
Lemma A4. s° > 15,

Proof of Lemma A4: Suppose per contra that s° < 542 Then the high

1+8y
type’s indifference curve through the point (s,t) = (ﬁ’g‘;,()) must be above the
s-axis at s = 222 (cf. Figure 3b). The algebraic expression for this indifference

1+8y
curve is

Ky —log (w — s)
Bu

} — s, where Ky = log (w) + B log (;iﬁé‘; )
L

(6.24)

tw(s) = exp {

Hence we must have

tH( Ou ) >0« By log (M) < Py log (a)+(1+ fy)log (1 + By) -

1+ 0By AL
(6.25)
However, we must also have 5, < f (8, @), which is equivalent to
By (1+aB) 1
By log (— >log | ——— . 6.26
f B 1 —afy ( )
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Hence, the right-hand side of (6.26) must not be greater than the right-hand side
of (6.25), or

P log(a) +log (1 —afy) + (14 By)log (1 + By) > 0. (6.27)

This inequality is not consistent with the requirement that o < (1 + 8,) ", since
for these values of « the left-hand side of (6.27) is strictly increasing in « and the

inequality does not hold for a = (14 f)~". Thus we have a contradiction and

we can conclude that s° > 1—’6#& O
H
Lemma A5. There is a function v such that s* § s as a § (B, By)-
Moreover, 1 (B, By) > ¢ (By) for all 3;, € (0,8y), and
lim ¢ (8, By) = lim ¥ (8., 8y) = (By). (6.28)
/BL‘}O /BL‘UBH

Proof of Lemma A5: By carrying out some straightforward calculations,
one can show that ds*/0a > 0 and that s% = 0 if @ = ¢ (8). Also, ds'/Oa < 0
and that s > 0 for all & > 0. Hence there is exactly one value of a for which
s# = 5. For some given (3, and [, let ¢ (8;, ;) denote this value of a. The
function ¢ is implicitly defined by

log (1 — 5) + 3, log (1 + —) = (3, log (M> (6.29)

s
w B (1+48L)

and
log (1= 2) + By log (1+2) = B log (—1 =

: )—<1+ﬁH>1og<1+ﬁH>.

(6.30)
It also follows that ¥ (8, 3y) > ¢ (By) for all 3, € (0,3y). Moreover, since s
tends to zero as f;, — 0 and as 5, — [y, we get the equalities in (6.28). [J

Proof of Proposition 4: I start with proving the claim about existence.
Let A’s beliefs be given by fi(s) = p for s = s* and u(s) = 0 for all s # s*.
These beliefs are clearly the “strongest” possible in that they will generate all the
equilibrium outcomes that may exist. For the low type not to have an incentive
to deviate from s = s*, we must have

af w ., aFE (f)w —s*
Us (Qm | ﬁL) <Usp (8 Tt aE @) |ﬁL) : (6.31)
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This necessary condition holds for all s* € [0, 5], where § > 0 is defined by identity
(4.13). This identity is obtained by letting inequality (6.31) hold with equality,
setting s* = 5, and using the explicit functional form given in equation (4.2).
Given the stated beliefs, the most profitable deviation for the high type is
to deviate to sP"°/%  where sP°/% maximizes H (s) with respect to s, subject to

s € [0, w] and where

afy, <
H(s) =log(w—s)+ Bulog(w+s) + fy log (HO‘BL) for s < afw (6.32)
By log (s) otherwise.
(Here I implicitly assumed that z (s) = 0 also for s = s*. This is not a problem,
however, since if s?7°/% = s*_ then the high type will definitly not have an incentive

to deviate.) One can verify that if

afy Bu
1 —_— | > 1 —log (1 6.33
then sP7°/% = 0; otherwise sPr°/# = 1—?6% In a pooling equilibrium, the high

type’s payoff is

Us ( . B (Bw—s"

i 71—1—04—E(ﬁ) |ﬁH) - log(w_S*)"‘ﬁHlOg(w‘f—S*)+ﬁHlog(

This payoff obtains its highest value for s* = 0. Hence, pooling eqilibria exist
if and only if an equilibrium with s* = 0 exists. If s?"°/# = 0, then clearly the
high type does not have an incentive to deviate from s* = 0. Thus, a sufficient
condition for existence of pooling equilibria is that (6.33) is met. In case that
sprofit — Bu® then the high type does not have an incentive to deviate from if

14+8g?
and only if

ﬁHlog{ B }—bg(l%@g%log(L@). (6.35)

1+ 6y 1+aE(B)

Hence, pooling equilibria exist if and only if either (i) (6.33) is met or (ii) (6.33)
is not met but (6.35) is. However, (condition (6.35) not met) implies (condition
(6.33) not met). Moreover, if condition (6.35) is met, then either (i) or (ii) is met.
Thus, pooling equilibria exist if and only if condition (6.35) is met. This condition

can be rewritten as o > B¢ (By) /E (5), which proves the existence claim.
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Let us now turn to the characterization claim. It follows from a geometric

argument (see Figure 5) that if sP"°/# = (, then the high type does not have an

Buaw
148
not have an incentive to deviate if and only if s* € [0, 8#}. To verify the latter

incentive to deviate from any s* € [0,3]. If sPro/# = then the high type does

claim, notice that

aFE (B)w—s Byw
Un (5 SR 10 ) 2 Un ({2501 60) (630

holds if and only if s < s*. O

Before proving Proposition 5, I will first state and prove four lemmas.

Lemma A6. Suppose that o < (1+ 3y) " and 3, > f (By,). Thens’ < 3.

Proof of Lemma A6: From Lemma A3 in this Appendix we know that if
a < (14 8;) " and B, > f(By, ), then 5" < afw. It thus suffices to show
that if « < (14 By) ", then 3;; > a3 w. But this follows immediately since, by
definition, 3;; = Bpw (1 + By) " O

Lemma A7. Suppose that o > (1+ ;). Then 3; < afzw.

Proof of Lemma A7: s; < afyw is equivalent to

Note that a > (1 + 3) " is equivalent to 8, > 1 — 1 and that the right-hand
side of (6.37) is strictly increasing in 8. Also, evaluated at 8 = + —1, condition
(6.37) holds with equality; hence it holds for all §;; satisfying a > (1+ ;) ". O

Lemma AS8. Suppose that o < (1 — () ". Then there exists a function
a(-,By) : (0,8y) — R defined by (4.24). Furthermore, we have 5; > s
if and only if a < a (8, 8y)-

Proof of Lemma AS8: By using the definition of s’, one can show that

5> s equivalent to

1+a(l+8y) Bl +a(l+By)
log{ 90 }

26y (1+afBy)

+ 3, log { > 0. (6.38)
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Clearly, inequality (6.38) holds if « is sufficiently close to zero. It thus suffices to
show that (i) the left-hand side of inequality (6.38) is strictly decreasing in « for all
ae (0,(1— ﬁH)fl] and that (ii) the inequality does not hold for a = (1 — 8,) .
To establish (i), differentiate the left-hand side of inequality (6.38) with respect
to «a; the resulting expression has the same sign as (a3, (85 — 3;) —1).> This

expression is strictly negative for all o < (1 — )" if

(ﬁL (B — Br)
1=y

The last inequality is clearly true for all 55 € (6, 1). To establish (ii), substitute
a = (1—3;)"" into the left-hand side of inequality (6.38). This yields

—1)<0<:>1—ﬁH(1—ﬁL)+ﬁ2L>O. (6.39)

8, (1— By) ]
/%”Og[ﬁH<1——ﬁH—+ﬁL> =0 (6:40)

or (B, — By) (1 —By) > BBy, which clearly does not hold. [J

Lemma A9. Suppose that a € (HIBH’ i) Then f (By,a) < g(By,a).

Proof of Lemma A9: Some straightforward algebra shows that f (G5, a) <
g (B, ) is equivalent to 7 (B, a) < 1, where

W@%®=1+“g+ﬁm(D+aﬂ+%§HL%MM)E‘

Evaluating 7 at o = (14 3,) " yields 7 (B, 1+ ﬁH)fl) = 1. Tt thus suffices to
show that 7 is strictly decreasing in o for a@ > (1+ 8,) " or, equivalently, that
log (1) is strictly decreasing in a for o > (1 + B)"". We have

dlog[n (By, )]  aBy(1+By)[1—a(l+08y)—1

Ja afBy (1 —afy)[l+a(l+8y)] "’

which is strictly negative when o > (14 85) . O

25See equation (6.60).
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Proof of Proposition 5: To prove the first part of the proposition we must
show that if a < (1+ ﬁH)fl, then (s’i,t’i,fsvn,?n) can be sustained as part of a
separating equilibrium iff 5, < f (8, @). A separating equilibrium must belong
to one of the four categories (3.1)-(3.4) listed in Propostion 3. If o < (1 + )"
and B, < f(By,a), then the relevant category is either (3.3) or (3.4). In either
case, S;; = 1—’?@% belongs to the set Q%P of saving levels that can be sustained as
part of a separating equilibrium. This shows that the condition 5, < f (8y, )
is sufficient. To see that this condition also is necessary, suppose that it does
not hold, ie., 8, > f(By, ) (but we still have o < (14 3;)""). Then the
only possible category is category (3.1), where Q% = [s', s”}. But from Lemma
A6 it follows that under the stated conditions, $;; > s ; hence, we cannot have
Sy € QP

To prove the second part of the proposition we must show that if & > (1 + 3) ",
then (sz, t’i,’s},ﬂ) can be sustained as part of a separating equilibrium iff 5, <
9(By,a)and a < a (B, By). To start with, suppose that o € ((1+ By) ,Ba')-
From Lemma AT7-AS8, the fact that 5; < s"<3, < g(B8y,a), and Proposition 3
it follows that then (s’i, 7, g[,%v[) can be sustained as part of a separating equi-
librium iff one of the following to (mutually exclusive) sets of inequalities holds:*
B > f(By,a) and B < g(By,a) and a < a (B, By); or B, < f(By, @) and
a < a(fL,0y). But from Lemma A9 we know that in the subset of the pa-
rameter space under consideration, f (8y,a) < g(By,«). This implies that the
latter set of inequalities is equivalent to: (3, < f(fy,«) and G, < g(By,«)
and o < a(8;,0y)- It is now clear that one of the set of inequalities will hold
true iff: B, < g(By,a) and a < a(8;,0y). It remains to consider the case
a € [ﬁ;ll, (1-— ﬁH)fl). One can see that now the only relevant category in Propo-
sition 3 is (3.1). From Lemma A8, the fact that 5; < s" <3, < g(By,a), and
Proposition 3 it follows that (sz, 7,51, %VI) can be sustained as part of a separating
equilibrium iff: 5, < g (By,a) and a« < a(8;,0y). O

Lemma A10. f~!(3,) is well-defined and % < 0. Moreover,

L

,BlLiElo 1 BL) = By BLlii%H F7H(BL) =0and 7 (By (L+ By) e (By)) = (L+By) "
(6.41)

26The first set of inequalities refer to (3.1) in Proposition 3 and the second to (3.2).
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Proof of Lemma A10: The function f~! (3;) is well-defined if f is strictly
decreasing in «, which it turns out to be. To see this, differentiate the denominator

of f (see equation (4.10)) with respect to a:

8[& (1—0451&1)7% —a 1 _ By
=— (1—afy) Pz —1 (6.42)
O By

This expression is strictly greater than zero since it is increasing in « and it is

strictly greater than zero for & = 0. Hence, W < 0. To demonstrate the

claims in (6.41), it suffices to show that lim, -1 f By, ) =0,lim, o f (By,a) =

By, and f((1+ ﬁH)fl) =By (14 By) ¢ (By). However, it can be easily verified
that these three equalities hold true by using the definition of f in (4.10).

Lemma All. a(6,,8y) > 1 and

lim @ (A, 0y) = lim a(Br,By)=1—By) " (6.43)

Br—0 BL—BH

Moreover, for (3, sufficiently close to By, & (81, By) < (1 —3,) "

Proof of Lemma A11: It is first shown that a(8,,0y) > 1. Substitute
a = 1 into the left-hand side of inequality (6.38). This yields

2+ Br2+B8y) ] _
1og{ 5 v M] =2 (B, By)- (6.44)

From Lemma A8 it follows that a (8;,08y) > 1 if 2(8,08y) > 0. In order to

show that the latter inequality indeed holds true, suppose per contra that, for

some (81, By), 2 (By,By) < 0. If 2(8L,By) < 0 for some (81, By), then this
inequality must hold for some [3; at one of the corners with respect to 3 of the

}wuog{

function z or at a value of 3, where the partial derivative of z with respect to
By is zero. That is, at least one of the following three inequalities must hold for
some 3 € (0,1):

(B 00) = log | 25| 4 g tog | 2 =2 gy <0 (o)
2 (B,,1) = log (;) + 6, log [%} —2(8,)<0,  (6.46)
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p (ﬁL,BH) — log {%] + 4, log {%] <0,  (6.47)

where 3, is implicitly defined by 9z (ﬁL, 3;1) /03y = 0. T will show that none of
these three inequalities hold. To start with, consider the first inequality, z (3;) <
0. One can easily verify that 2z (0) = 1 >0, 2/ (1) = £ +1log(3) < 0, and
2 (B,) < 0. Moreover, z (0) = 0 and z (1) = log (2) > 0. Hence, z(3;) > 0 for
all 8, € (0,1).

Next, consider the second inequality, Z (5;) < 0. One can easily verify that
Z(0) = —00, % (1) = 3 +1log(2) > 0, and z' (8,) > 0. Hence, if Z(3,) < 0
for some 3, € (0,1), then, in particular, it must be that Z (ﬁ,) < 0 where 3 is
implicitly defined by

) 30 1
z(ﬁ)—()(:)log A7) 70 (6.48)
Using (6.48), z (ﬁ,) can be rewritten as follows:
(N : 30
g () 4 Fo | =2 | (1 5 1 | 2|
= log(2>+ﬁlog[2(1+ﬁ,)] (1—|—ﬁ)log 2(1+ﬂ,)
1 (1 + ﬁ') 1
= lo y
15
Hence, z (ﬁ,) < 0 is equivalent to:
g >Ee-1)"". (6.49)

However, by (6.49), the convexity of Z, and the definition of A, we must have

Z ((e—1)7") =log (2)—1 < 0, which is not true. Hence, we must have z (3,) > 0
for all g, € (0,1).

Finally consider the inequality z (ﬁ L,ﬁH) < 0. It is readily verified that
ﬁH = 2(3,. Hence

2 (81, Bn) = 2(81,28;) = log (1+8;) = Brlog (2).  (6.50)
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This expression is strictly convex and has a global minimum at 3, = [1 — log (2)] / log (2).
But

Hence, we must have z (ﬁL,ﬁH) > 0 for all 3, € (0,1).

} log (2) = —log (log (2)) — 1 +log (2) > 0.
(6.51)

Let us now show that limg, ., @ (8L,08y) = (1 — By)"". We know from
Lemma A8 that & (B, 85) < (1 — Bg) ' forall 8, € (0, By); hence, limg, 5. @ (B, Bx)
must be finite. Let us use the notation limg, 5, a (8., By) = a. First take the
left-hand limit of both sides of the identity (4.24):

. L+a(l+8y) . Brl+a(l+8y)]] _
B e e R R LR o el
(6.52)

or

log {1+a(1+ﬁH)

1 :|+ﬁHlog{1+a(1+ﬁH):|:0‘

2(1+apfy)
It is easily verified that equality (6.53) is met for @ = (1 — ;)”'. Moreover,

(6.53)

the equality cannot be met for any other value of a, since the left-hand side of
equality (6.53) is strictly decreasing in @ (this is left to the reader to verify).

Let us now show that limg, oa (3., B8y) = (1 — By) . First take the limit
of both sides of the identity (4.24):

, 1+a(l+8y) : Brl+a@+84)]]1 _
BILIIEO {log { 2a - } } - BILHEO {ﬁL e { LZﬁH (1+ OfﬁL;I } } ="
(6.54)

1+ (14 8y)limg, oa (B, By) - limg, 0 O,
o { 2limg, o (B, By) } * (BILHEO ﬁL) e { 20y }

) L+ (1+ By) (limﬁLﬂo a (B, ﬁH))
- (51;510 ﬁL) tog 1+ (limg, o 8;,) (limg, o & (ﬁuﬁH))]
= 0. (6.55)

or

or, since limg, o & (B, B ) is finite,

1+ (14 8y)limg, o (8L, By)]
log { 2Tlimg, o (B, Bp) ] -0
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or limg, 0@ (B, Bp) = (1 = Bu) "
Let us finally show that for 3; sufficiently close to 8, & (6, 85) < (1 —5,) "
Since limg, 5, @ (8L, By) = (1 — By) ", it suffices to show that

A (B, By) . 0(1=py)"
| —_— | —_—
BLE%H 0By, = BLLI%H 9By,

Let us first calculate the derivative on the left-hand side of (6.57):
06 (8,.04) __OILHS (6:38)] /05,

= (1-py4) 7. (6.57)

28, ~  OILHS(638) /0o (6.58)
Straightforward calculations shows that
O[LHS (6.38)] {ﬁL [1+a(1+ﬁH)]}
=1 6.59
93, 2, (1 +aby) |1 (0:59)
and
O[LHS (638) ___ 1-0af,(By—5,) 6.50)
da a(l+af,)[1+al+8y)] '
Taking the limits of (6.59) and (6.60) yields:
. 0[LHS(6.38)] (2—08y) 1+ 8y)
BLILI%H 5, = log { 5 } +1 (6.61)
. O[LHS(6.38)] 2
BLILI%H % =0 (6.62)
Hence,
. oa (ﬁL,ﬁH) _ 210g |:(2*/8H)2(1+/8H):| +92 (6 63)
Br—Br BﬁL (1 - ﬁH)Z ‘ '
This means that
oa _
Jim O‘(gfiﬁf’) <(1-8y) %o 2log {(2 ﬁH)Q(l il ﬁH)] <1, (6.64)

which always holds since the left-hand side of (6.64) obtains its maximum at

By = % and the inequality does not hold for this value of 3. U

Lemma A12. ¢! (8,) is well-defined and 99 _01) - (. Moreover,

By,
Jim g7 (8,) =0, tim g7 (B1) = (1= By) (6.65)
and
9 By (L+Br) e (By)) =1+ 8y) " (6.66)
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Proof of Lemma A12: The function g~ (3;) is well-defined if g is strictly
increasing in «, which it turns out to be. To see this, differentiate the denominator

of g (see equation (4.23)) with respect to a:

5 {1+au+ﬁH> <1+au+ﬁH>)5%'__a]

28y 2a

oo
1 L1458y
 2a0% 2

The expression on the right-hand side of equation (6.67), g (8, ), is clearly

increasing in «. Moreover, evaluated at o = (1 —84)"", §(3y,«) is strictly

)E 1= aBy (L+ i) — 1 = 5By ) . (6.67)

negative:

1— By — By (14 8y)
1— By

T8, (1= By) 7" = _(12_ﬁ§H) {

-1<0& 0y 2+06y) <L

(6.68)
(The last inequality holds for all 3, € (0,1) since By (2 + ) is strictly concave
and reaches its maximum at S5 = 1.) Hence, we must have g (6y,a) < 0 for
all @ < (1—py)"". It follows that g is strictly increasing in a for all a <
(1 —By)"". To demonstrate the claims in (6.65) and (6.66), it suffices to show
that lim, 0 g (B, a) = 0, lim,_ 5 )-19(By,a) = By, and g (1 +5H)*1) =
By (14 By) ¢ (By). However, it can be easily verified that these three equalities
hold true by using the definition of g in (4.23).

Proof of Proposition 6: It remains to show that the intuitive criterion
rules out all pooling equilibria. Consider a pooling equilibrium where s* € QP! =
[0, min {5, s#*#}]. Refer to Figure 5 and imagine an indifference curve for the low
type that crosses the intermediate straight line at s = s*; denote this indifference
curve by I7. By Lemma A2, I} crosses the upper straight line at some s =y <
af yw. Now imagine an indifference curve for the high type that also crosses the
intermediate straight line at s = s*; denote this by I7;. By the results in note
10 (in particular the single-crossing property), I3 lies below I} for all s > s*.
Moreover, I}, crosses the upper straight line at some s = y < afyw; by the
single-crossing property, y > y. Clearly, for any beliefs u (y”), the low type
prefers his equilibrium payoff to the payoff he would get if deviating to some
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s=1y € (y,y'). The high type, on the other hand, would have an incentive to
deviate to y" if he thereby were perceived as the high type. Hence, s* can be part
of an intuitive equilibrium only if it can be supported by beliefs assigning zero
probability to the low type plaing s =y, that is, (y”) = 1. However, for these
beliefs, the high type will not have an incentive to play s = s*. [
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Figure 6. Efficiency.
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