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Much empirical research of consumer behavior has been done using discrete choice mod-
eling. In general, model selection in this area is a decision between complexity of the
model and the simplicity of estimation (Ben-Akiva et al., 1997). The well-known multi-
nomial logit model (MNL) (Guadagni and Little, 1983), which is often used on the basis
of scanner panel data, especially shows this dilemma. It is easy to estimate but has many
restrictive assumptions. Relaxing assumptions however leads to estimation problems.
Much research has been done to improve the parametric MNL model (e.g. Kannan and
Wright, 1991; Chintagunta, 1992; Fader et al., 1992; Chintagunta, 1993; Gupta and
Chintagunta, 1994; Erdem and Keane, 1996; Erdem, 1996; Papatla, 1996). The estimation
of nonparametric and semiparametric variants of the MNL model may offer useful alter-
natives to circumvent its intrinsic constraints. These models encompass a large latitude for
modeling, and are based on statistical theory that allows for relatively simple estimation.

This article starts with a short explanation of the logit model in Section 2, where the
assumptions are also discussed. The theoretical aspects of nonparametric density estima-
tion with respect to discrete choice models are investigated in Section 3. Accordingly the
case of kernel density estimation for binary data is shown. Also, we document the semi-
parametric approach with a typical data structure of mixed binary and continuous ex-
planatory variables. In addition, we will demonstrate the advantages and benefits of pur-
suing nonparametric and semiparametric methods. Section 4 presents an application of a
semiparametric method to a real panel data set, estimated by two different algorithms.
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��� /RJLW�PRGHOV�LQ�PDUNHWLQJ

��� *HQHUDO�GHVFULSWLRQ�RI�D�ORJLW�PRGHO
The multinomial logit model (MNL) captures the individual choice behavior between
several alternatives. Here, the theorem of utility maximization for the consumers is as-
sumed (Ben-Akiva and Lerman, 1985). That means that a consumer Q chooses the alter-
native which maximizes his utility 8Q. The choice set &Q is comprised of the alternatives L
= 1,…, ,. The probability 3UQ(L) for individual Q to choose the alternative L is described by

( ) ( )ML�&M�883UL3U QMQLQQ ≠∈∀≥= , (1)

with 8LQ and 8MQ the utilities of the alternatives L and M, where 8MQ specifies all alternative
utilities to 8LQ. Usually, the utility function can be separated additively into a systematic
part (9LQ) and a random part (LQ) with 8LQ�= 9LQ�+� LQ. In the MNL, the systematic utility
function is assumed to be linear in the parameters (9LQ = 7� [LQ, where  is a parameter
vector to be estimated and [LQ a characteristic of alternatives in the opinion of the individ-
ual Q). With these assumptions, the choice probability has the form
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$�IXUWKHU�VXSSRVLWLRQ�RI�WKH�01/�PRGHO�LV�WKDW�WKH�GLIIHUHQFHV�RI�WKH�HUURUV� MQ��� LQ from
equation (2) are i.i.d. logistic distributed. Following McFadden (1974) and using the
information about the distribution of the errors, equation (2) can also be written as
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A maximum-likelihood estimator can obtain the parameter values contained in . Here,
the sign and also the absolute values of the elements of  are of interest. The sign informs
us of the direction of connection, e.g. if the sign for a specific explanatory variable of a
brand is positive, than a decrease of this variable means also a decrease in the probability
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of choice for that brand and the same holds for negative signs in the other direction. If all
variables are scaled the same, the absolute value of  can be interpreted regarding the
strength of the connection between the explanatory and the dependent variables.

��� $VVXPSWLRQV�RI�WKH�ORJLW�PRGHO

The logit model follows assumptions that restrict the interpretation of the estimation
results, and also the application of the model is limited. The main criticism of the logit
model is related to the IIA assumption (independence of irrelevant alternatives), which
implies that the relative utility of one alternative to a second one is independent of the
existence of a third one.

The second weak point of the logit model is the assumption about the logistic distribution
of the differences of its error terms. It is not obvious, why the differences should follow
this distribution, because there are several possibilities for modeling the error terms.

The third weakness relates to the assumption of linear formulation of the utility function.
Due to this assumption, a lot of possibilities to describe the utility are excluded. Also,
there is no economic justification for the linearity.

To address the first two weak points of the logit model often probit models are used. They
use an i.i.d. normal distribution assumption for the differences of the error terms. But for
specifying a probit model for the multidimensional case it is difficult to estimate because
higher order integrals must be solved. An alternative is to test the appropriateness of the
logit model (Bartels et al., 2000). Another solution to deal with the strong assumptions of
the logit model is a semi- or nonparametric formulation of the model, which will be pre-
sented in the next section.

�� 1RQ��DQG�VHPLSDUDPHWULF�GLVFUHWH�FKRLFH�PRGHOV

A nonparametric or semiparametric discrete choice modeling approach allows a non-
parametric systematic utility component and/or a distribution-free random component.
With this type of modeling one has much more flexibility to specify a choice process. To
classify the different characteristics of model types (parametric, non- and semiparametric),
see Table 1.
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7DEOH��� 'LIIHUHQW�PRGHO�W\SHV�IRU�SDUDPHWULF�DQG�QRQSDUDPHWULF�FKRLFH�PRGHOV�

0RGHO�W\SH 6\VWHPDWLF
XWLOLW\�IXQFWLRQ

5DQGRP
FRPSRQHQW

3RVVLEOH�UHVXOWLQJ
PHWKRG

Parametric parametric parametric MNL, probit, etc.

semiparametric I parametric distribution free various

semiparametric II nonparametric parametric Generalized Additive
Model (GAM)

nonparametric nonparametric distribution free Nonparametric Density
Estimation (NDE)

Parametric models could be e.g. the MNL, or a probit model (Manrai, 1995). The type of
“semiparametric I” is described by a parametric utility function, but a distribution free
random term. These kind of models are discussed by a wide group of researchers, e.g.
Horowitz et al. (1994); Horowitz and Härdle (1996); Matzkin (1991); Chintagunta and
Honore (1996). Because of some disadvantages for practical use (see below) this ap-
proach will not be described here. The “semiparametric II” type includes a nonparametric
utility function, but a parametric random term. The Generalized Additive Models (GAM),
introduced by Hastie and Tibshirani (1986), could be used to specify these models. The
Nonparametric Density Estimation (NDE) is one possibility to model a pure non-
parametric approach. Abe (1995) introduced this approach in the marketing context. The
NDE approach will be discussed in the next section in more detail.

��� 1RQSDUDPHWULF�GHQVLW\�HVWLPDWLRQ
The availability of scanner panel data sets has made the application of the nonparametric
methods in marketing a feasible alternative to the existing parametric models. Non-
parametric methods are based only on very few assumptions, so that they have a lot more
structural freedom than the models in the parametric model class, e.g. the MNL. On the
other hand, they need sufficient large data sets to produce a good fit of the data. One
popular nonparametric method is nonparametric density estimation.

����� *HQHUDO�IRUPXODWLRQ�RI�WKH�GHQVLW\�HVWLPDWLRQ
The choice decision formulated with a nonparametric method is usually described as a
conditional expectation, where the condition is the actual marketing-mix situation at the
purchase time. So the conditional expectation E[\|[] is needed, with [ the marketing-mix
condition and \ the choice decision. Usually, the choice is coded binary, so that the fol-
lowing identity holds [ ] ( )[_\3[_\ ≡E  with the assumption of [ ] 1E0 ≤≤ [_\  (e.g.
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Hosmer and Lemeshow, 1989). Also the restriction that the sum over the choice prob-
abilities is 1 for given covariates [�is needed. Using Bayes’ theorem it follows that

[ ] ( ) ( )
( )[I

\_[I\3U
[_\ =E (6)

under the assumption of \ binary and I(·)�a probability density function. For the estimation
of [ ][_\E  through [ ][_\E , the estimator can be partitioned into several different com-
ponents. One is the estimator ( )\U3Ö  of ( )\3U , which can simply be described as

( )
brands allfor  choices possible all ofnumber 

brand inspected for the made choices ofnumber =\U3Ö .

The components remaining to complete the expectation of equation (6) are the densities
functions I([� and I([_\). A kernel density estimator can estimate them. The density esti-
mation

K
I  at [ for the density function I of the Q continuous multivariate i.i.d. random

variables ;��…��;Q with G dimensions can be described as
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with .(·) a kernel function, which gives the smoothing instruction for the inner distance
from (·) as described in equation (7). The distance measure is usually chosen Euclidic for
continuous variables. The kernel function also has to fulfil the following conditions (e.g.,
Silverman, 1986)

- ∫ =
G

5

G[[. 1 )(

- .(·) is symmetric and positive

- .(·) is O times continuously differentiable

The parameter� K is called the bandwidth of the kernel. It determines with the window
width K, in other words which observations are included in the calculation. It is also a
measure for the balance between the bias and the variance of the estimation. There are
different methods to determine the value for K as well as different expressions for the
kernel function that will not be discussed further here. For a detailed explanation the
reader is referred to Härdle (1991). It is shown in several statistical research projects that
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the choice of the bandwidth K is important, whereas the choice of the kernel .(·) influ-
ences the estimates only slightly (Härdle, 1991; Silverman, 1986; Fan and Marron, 1992).

The conditional expectation can also be seen as a kernel regression on a 0-1 binary re-
sponse variable. Therefore, the conditional expectation with the estimation of the densi-
ties as in equation (7) can be expressed as
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with \ a multivariate binary variable with 
L
\  a vector of - elements with


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=
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\ LM

Up to now a general description of a kernel density estimation has been given. In the
marketing context some particularities exist, e.g. the fact that the explanatory variables
have a discrete or binary character.

����� ([WHQVLRQ�RI�WKH�NHUQHO�GHQVLW\�HVWLPDWLRQ�WR�PDUNHWLQJ�GDWD
Usually kernel density estimation is applied for continuous, and most of the time multi-
variate, data. In the application of this nonparametric method in marketing we have the
special situation of mixed (binary and continuous) explanatory variables. We therefore
need a suitable modification of the estimator for this case. The use of kernel density esti-
mation for binary data has been well known for a long time (e.g., Aitchison and Aitken,
1976; Silverman, 1986). The idea is to build a kernel similar to the spherical normal
kernel. In the N-dimensional binary space %N�= {0,1} N, the needed kernel for binary vari-
ables is defined as

( ) ( ) ( ) ( );[G;[GN EEE;[. ,, 1,, −= −
                     (9)
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where [ is the variable at which the density should be estimated, ; the explanatory vari-

able and E the smoothing parameter with 1
2

1 ≤≤ E . The distance function G([�;) is

defined as a measure of the disagreements between [�and ;�with

( ) ( ) ( );[;[;�[G 7 −−= . (10)

The analyst should determine the value of the smoothing parameter E. It describes the
weight that a binary observation is given that lies not completely at the point where the
estimate is wanted. A value close to 1 gives those not totally equal observations little
importance and a value close to ½ produces a uniform weighting of right and wrong
specified observations. The value close to 1 produces the effect of a small, but existing,
weighting of values “close” to the one wanted. In a classic continuous kernel approach,
the value of E would equal 1, which leads to a very strict separation of “right” and
“wrong”. This is not wanted here for the binary variables.

Now we have a kernel density estimator for strict continuous (equation (7)) or strict bi-
nary (equation (9)) data, and so both expressions must be combined to a mixed non-
parametric density estimator. This model is given in the form of
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where G�([�;)� is the distance function for the binary data as defined before in equation
(10), and G�([�;) is the Euclidic distance of the continuous variables. The value of N�
describes the number of binary components and N� the number of the continuous compo-
nents in the explanatory variables. For the continuous components of the observation the
Quartic kernel was chosen (e.g., Härdle, 1991), which is a common choice for a kernel.
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Now the conditional expectation can be written with respect to the mixed kernel of equa-
tion (11) and due to equation (8) as

[ ]
( )

( )∑

∑
=

L

L

L

K�E�;�[.

K�E�;�[.\
[_\(Ö

to model the brand choice decision. The conditional expectation is modeled for each
brand separately, and from there the choice probabilities dependent on the explanatory
variables can be obtained. No assumption like the “utility maximization” for the MNL is
made. Moreover, it is not necessary to make an assumption about the distribution of the
random component as in the MNL. These two points represent the main differences be-
tween nonparametric density estimation and parametric models (e.g., the MNL). The
nonparametric approach affords a wide field of applications but often some parameters are
wanted to calculate market shares or to make predictions. With a pure nonparametric
model it is not possible to give these parameter values. This leads us to another possible
brand choice model formulation, a semiparametric approach.

��� 7KH�VHPLSDUDPHWULF�DSSURDFK
Brand choice models can also be specified and estimated in a semiparametric way. This
type of model is closer to the MNL model than the purely nonparametric methods. Semi-
parametric models specify one part of the MNL in the common parametric way (in our
approach the error term distribution), but the other component (the utility function) is
formulated by a nonparametric method. The resulting semiparametric model is called the
“Generalized Additive Model” (GAM) (Hastie and Tibshirani, 1986; 1987; 1990). In
modeling brand choice, Abe (1997) introduced the method to the choice modeling re-
search area. He worked with direct additive components in the specification of the utility
function. Our model has a more general formulation with nonparametric modeling of the
explanatory variables.
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����� 7KH�JHQHUDO�IRUPXODWLRQ�RI�D�*$0
The general form of a GAM can be written as

[ ] ( )


 ∑=
=

.

N
NN
[I*[_\(

1
. (12)

Here��*(·) is a logistic link function with

( ) ( )[H[S
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−+
=

1

1
, (13)

which implies a parametric description of the error term. The terms of IN describe one-
dimensional nonparametric functions, which must be estimated, and [N are the explanatory
variables. In this formulation, the GAM is close to the classic MNL approach with an
additive, but nonparametric, utility function�IN and with the same error term distribution as
in the MNL, a logistic i.i.d. one for the error term differences. There exist many alterna-
tives to model the influence of the explanatory variables in a nonparametric way. In the
statistical context, modeling by the GAM approach is often used, because it gives the
benefit of a large model class including a proved theory.

����� $SSOLFDWLRQ�RI�WKH�*$0�WKHRU\�WR�EUDQG�FKRLFH�PRGHOV
The general formulation of the GAM has the limitation of being only formulated for
continuous explanatory variables. But the usual data sets in the choice-modeling context
include discrete, e.g. binary, explanatory variables as well as continuous ones.

For this kind of data structure a new approach is needed that allows binary variables in
the model formulation. This extended approach (e.g., Hastie and Tibshirani, 1990) has the
form of

[ ] ( ) 


 ∑ +=
=

.

N
O

7

NN
[[I*[_\(

1
β . (14)

Here,�  describes the parameter vector of the linear part of the model, which must be
estimated. The terms IN and [N have the same meaning as described before. All binary
explanatory variables must be included in [O. Continuous variables can be modeled para-
metrically by inclusion in [O, or nonparametrically by inclusion in [N. The use of the linear
formulation of some explanatory variables (in [O) has the advantage of using much less
computational time for estimation, because the nonparametric functions IN needs most of
the estimating time. The extended GAM supplies a good starting point to model choice
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behavior in a semiparametric approach. Modeling the nonparametric functions IN and the
parameter  supplies two possibilities to act with the resulting estimates. One way of
using the results is to calculate the conditional expectation E[\|[] as described in equation
(14). The other possibility is to get ideas of a functional form of the underlying explana-
tory variables [N described by nonparametric functions IN. Plotting the explanatory variable
versus its nonparametric representation should provide some clues. This functional form
supplies one possibility of how the explanatory variable could be included in the classic
MNL approach. These two possibilities of using the estimates from the extended GAM
open up a wide field of research opportunities.

����� (VWLPDWLRQ�DOJRULWKP�IRU�WKH�*$0
Estimation of the GAM can be performed by the backfitting algorithm, introduced by
several authors (e.g., Friedman and Stuetzle, 1981; Hastie and Tibshirani, 1986; Buja et
al., 1989; Hastie and Tibshirani, 1990). This method works with variance decomposition
of the additive part of the model as described in equation (14). It can also be described as
a projection from a Hilbert space into a lower dimensional subspace. The backfitting
algorithm deals with the assumption of an additive form of the “true” underlying model
and splits the whole variance into components. But if the underlying model is misspeci-
fied (e.g. by omitting variables or interactions), the estimates for the nonparametric func-
tions IN can only be interpreted with care, because you do not know exactly which other
additional parts are in the estimated IN. Here you deal with a bias which cannot be attached
to the separate explanatory variables. Another problem of this method consists in the lack of
statistical measures, e.g. standard errors or other asymptotic properties. Also the exact
behavior of the algorithm is unknown, even the convergence to the correct nonparametric
functions is not established (Hastie and Tibshirani, 1990, pp. 117-118). The advantage of this
estimation method is that it is an established algorithm, which is implemented in many
common statistical software packages (e.g., S-Plus, R, XploRe etc.). And if the underlying
data structure is specified correctly, the method gives usually quickly correct estimates for IN.

There exists a second method for estimating a GAM, the marginal integration estimator
(Chen et al., 1995; Linton and Nielsen, 1995; Linton and Härdle, 1996; Sperlich et al.,
1997; Nielsen and Linton, 1998). This method estimates the marginal influence of the
additive components specified in equation (14). It works on integration over a product
kernel, usually the Nadaraya-Watson estimator. Because this method belongs to the well-
known field of kernel estimation, all common statistical measures, e.g., bias, variance,
confidence intervals and other asymptotic properties are available. Also, the estimated
functional form of IN is correct, even if the model is to a certain degree misspecified for
the underlying data set. But if strong interaction effects exist in the data, the estimates for
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the IN of the marginal effects are not sufficient for interpreting the results. The method is
not well known and due to this, it is only implemented in one statistical software package,
XploRe (Härdle et al., 2000).

If a GAM is estimated by both methods, and the estimation results for the functional
forms of the explanatory variables differ greatly, then this is usually due to interaction
terms, which are not taken into consideration by the backfitting algorithm. If different
results are observed usually the underlying model structure is misspecified. Here, more
precise analysis is needed. First approaches to estimating interaction terms via the mar-
ginal integration estimator are made by Sperlich et al. (1998).

�� $SSOLFDWLRQ�RI�WKH�PRGHO�WR�SDQHO�GDWD�RI�FRQVXPHU�EUDQG
FKRLFH

In this part of the paper we apply the two estimation algorithms for a GAM to a real data set
in a consumer research setting. GfK, Germany, provided the data. They contain panel
purchase records at one store over a period of 104 weeks. Also included are price and binary
promotion indicator variables (feature and display) for each brand. We create a subset of the
data by extracting purchases of panelists who have bought only one of the three leading
brands. This results in a database with 2651 purchases made by 964 households.

The aim of the analysis is first to discover what kind of shape the response function of the
marketing instrument price has, controlling for other impact variables (loyalty), instru-
ments (promotion) and the activities of the competing brands using backfitting. The
structure of the model is comparable to a model of van Heerde et al. (1998) of the shape
of the price response with store level data. Second, we use marginal integration estimation
to estimate these effects again, but allowing for interaction between the key variables. If
the results are different we are able to conclude that the model based only on direct (order
1) effects may be misspecified.

For the model specification, we use two continuous explanatory variables, 35,&(�and
/2<$/7<, and one binary explanatory variable, 352027,21. /2<$/7< is defined
comparable to Guadagni and Little (1983), a weighted geometric sum over past purchases,
to capture household heterogeneity through the purchase history. 352027,21 is defined
to be 0 if neither feature nor display occurred and 1 otherwise. This is defined this way
due to high correlation between the two promotional activities feature and display.

First, we estimated this semiparametric model with backfitting. As shown in Figures 1a
and 1b, utility increases with /2<$/7< in a slightly nonlinear fashion and decreases
linearly with 35,&(.
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)LJXUH��D� (VWLPDWLRQ�UHVXOWV�RI�WKH�FRQWLQXRXV�YDULDEOHV�PDGH�E\�EDFNILWWLQJ
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The model was also estimated with marginal integration. The estimation of this small
model took a much larger computation time (50x). The results are shown in Figures 2a
and 2b. The functional form of /2<$/7< is again described in a linear increasing way
(the slopes at the right side are due to bandwidth effects). But the estimated functional
form of 35,&( indicates a polynomial form of order 3, which is far from a linear form.
The form could also be interpreted as a “loss and gain” function, which is often assumed
for a price process. This estimation result is different from the one estimated by the back-
fitting algorithm which leads to the assumption that the underlying data structure may
have an interaction effect of 35,&( with other variables in the model. Therefore the
estimation of the model by the backfitting procedure might produce results, which in this
case are not valid and may be misleading if the interaction is ignored.

)LJXUH��D� (VWLPDWLRQ�UHVXOWV�RI�WKH�FRQWLQXRXV�YDULDEOHV�PDGH�E\�PDUJLQDO�LQWHJUDWLRQ

6RXUFH��=80$�GDWD�RI�*I.�&RQVXPHU�3DQHO�������RZQ�FDOFXODWLRQV
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We have to keep in mind that the marginal integration estimation indicated an additional
effect due to the different shapes of the functions of the price. To get a valid model a
search for and integration of an additional effect might be necessary.

�� 6XPPDU\

From the statistical point of view a nonparametric formulation of a brand choice model
(NDE) is a powerful alternative to the logit model. But in the marketing context, re-
searchers in general want to have parameter values to make predictions or to estimate
market shares. This leads to a semiparametric model (GAM) formulation with two possi-
ble ways of using the results. One is to perform estimation of choice probabilities, but
there one is confronted with the same problem as in the nonparametric approach, because
no parameters are estimated for the nonparametric part of the model. The second possi-
bility of a semiparametric model formulation overcomes this problem. In addition, with
the estimation results a modified parametric model formulation can be estimated. This
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also gives the possibility to work with the parameter values to estimate market shares or
make predictions. Especially for this use of modeling, the underlying data structure
should be detected correctly. Therefore, two different estimation algorithms for a GAM
were presented and the application of the semiparametric model to a real data set was
reported. The estimations were made by the two common algorithms, backfitting and
marginal integration, and are compared to each other. An interaction effect in the variable
price in the data set was discovered, which leads to the need of additional studies of the
data set.
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