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Abstract 

From a methodological and sociological perspective, analyzing social change is best done by using 
repeated cross-sectional data and by including individual level variables, time, and time-dependent 
macro variables. Furthermore, interest often focuses on whether the effects of explanatory variables 
change over time, e.g. the impact of education on one’s social position. We argue that multilevel 
models with time as context best meet these requirements. However, the methods for applying a 
multilevel approach to study time-dependent social processes are relatively poorly developed and 
therefore rarely used. Instead, most social change related analyses of repeated cross-sectional data, 
such as APC models or changing effect models, include time as an individual level variable and 
thereby neglect the contextual characteristics of time and changes at the macro level. In contrast, 
pooled time series analysis does not take account of individuals and micro level effects. Thus, the aim 
of this paper is to overcome these shortcomings by adopting a new approach to social change studies. 
We describe the application of multilevel analysis with years as contextual units on a step-by-step 
basis and emphasize the substantive advantages of each model for the study of social change. 
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1 Introduction∗

As sociologists, we aim to analyze, understand, and explain issues related to social change. To 

achieve this objective, we require theories on our subject, appropriate methods to transform 

our theoretical models into statistical models, and repeated cross-sectional data to test our 

hypotheses. 

 

Following the theory of Boudon (1986, 1983) and the general logic of sociological 

explanation of Coleman (1994, 1987), explanations of macro level phenomena, such as the 

expansion of educational opportunities, can be generated only by taking into account the 

actions and characteristics of individuals at the micro level. Simultaneously we have to 

consider the socio-historical context or, respectively, the changing structural parameters 

which, at a given point in time, restrict or facilitate certain courses of individual action. We 

argue that multilevel models with time as context are best suited to fulfilling these theoretical 

requirements. 

However, the methods for applying a multilevel approach to study time-dependent 

social processes are relatively poorly developed and therefore rarely applied. For example, the 

repeated cross-section case to analyze social change is discussed in none of the textbooks on 

multilevel analysis (Goldstein 2011; Hox 2010; Raudenbush and Bryk 2002; Snijders and 

Bosker 1999; Kreft and De Leeuw 1998). On the other hand, the standard approaches to the 

study of social change do not recognize the inherent multilevel structure. They focus on 

changes at either the micro level or at the macro level. Further, these methods only allow 

rather descriptive analysis. Accordingly, the objective of this paper is to overcome these 

shortcomings and propose an approach that closes the gap between social change theory and 

statistical modeling, thereby increasing our knowledge of social change processes. 

In this methodological-conceptual paper, we discuss how to study social change 

properly and argue that multilevel techniques are particularly well suited for this purpose. 

Given that multilevel models are more complex than standard single level methods, we 

introduce and discuss different ways to set up these models. Therefore, our focus is on model 

specification. Though many of the points will not be new to experts in multilevel modeling, 

our aim is to provide an opportunity for reflection on the kinds of social change-related 

questions we might ask and on the potential of multilevel models to provide answers to them. 

The paper is structured as follows: First, we show that the standard approaches to 

studying social change have several shortcomings (Chapter 2). Second, we give an overview 

                                                 
∗ The research reported in this paper was funded by the German Research Foundation (DFG) through the grant 

WO 739/11-1. 
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of the multilevel approach to the repeated cross-section case (Chapter 3). In the course of this 

presentation, we introduce the step-by-step application of multilevel analysis with years as 

contextual units. For each model specification we illustrate its substantive potential, using the 

rising levels of poverty among families in Germany as an example. We close the third chapter 

with a discussion of the problems connected with multilevel methods in social change studies. 

 

2 Standard approaches to the study of social change 

Social change, that is the change of aggregates (e.g., percentage below the poverty threshold), 

can best be studied with repeated cross-sectional surveys representing a given population at a 

given time and a constant set of indicators (Firebaugh 1997, 2008: 172 et seq.). Typical cases 

of such a design are the so-called general social surveys, including the General Social Survey 

(GSS) in the United States, British Social Attitudes in the United Kingdom or the German 

General Social Survey (ALLBUS) (cf. Smith et al. 2005). Each new cross-section is 

representative of the entire population at the time of data collection, so a comparison of these 

samples over time reveals social changes. By selecting a fresh sample each year, repeated 

cross-sections cannot follow specific individuals over time. Therefore, individual level change 

cannot be analyzed with repeated cross-sections. That is what panel data are designed to do.1

However, we have to be aware that the analysis of social change with survey data is 

only possible when measures of the phenomenon under study do not change, or as Tom W. 

Smith (2010: 1) has put it in his first law to study societal change: “The way to measure 

change is not to change the measure.” This principle means that the specific item or question 

of interest in our repeated cross-sectional survey should remain unchanged over time. In 

addition, the entire instrument and procedure (surveying, coding, etc.) should stay the same 

over time. However, changes in sampling, field work procedures, questions, and 

questionnaires occur commonly in even the most stable repeated survey programs.

 

In contrast to panel designs, repeated cross-sections do not suffer from attrition. Additionally, 

repeated cross-sections often span much longer time periods than panel studies could.  

2

Even if we had data collected in exactly the same way over several decades, the 

comparability for every item in the survey might not persist over time. Language is not static 

but evolves; therefore, words change their meanings, and new terms come into fashion. For 

example, in the U.S., the term “negro” was replaced first by “black” and then by “African-

 

                                                 
1 Unlike repeated surveys, panel surveys follow the same individuals over time. 
2 These changes can be driven by the desire to improve data quality, they can be necessitated by social or 

technological innovations (e.g., new population registers or the introduction of computer-assisted 
interviewing), or they can result from sloppiness and mistakes (see Smith 2010 for a more detailed discussion). 
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American”. In Germany, the term “Gastarbeiter” was replaced first by “Ausländer” and now 

by “Migrant”.3

Taken together, the points we have raised make it clear that studying social change on 

the basis of survey data is a difficult endeavour. Researchers need to test the data they analyze 

critically, keeping in mind the changing meaning of indicators, and must understand the 

procedures employed in data collection and data preparation. This degree of difficulty is 

precisely why comprehensive data documentation is of the utmost importance for repeated 

surveys. Of course, carefully studying this documentation before drawing and interpreting 

results from trend analysis is of equal importance. Finally, researchers need a good 

(measurement and substantive) theory to draw valid conclusion from the data. However, these 

problems should not prevent us from exploring social change with the help of survey data. We 

are certain that using these data properly and critically will yield a wealth of valid findings 

and the potential to increase knowledge. 

 Surveys also have to reflect changes in institutions: In Germany, due to the 

introduction of a legal partnership status for homosexual couples, the typical categories for 

questions about marital status had to be changed, and when the voting age was lowered from 

21 to 18, the sample frames had to be adopted accordingly. Thus, institutional and cultural 

changes can make it necessary to change survey measures in order to reflect social change. 

Smith (2010: 1) states this principle in his second law for studying societal change: “When 

constant measures produce non-constant measurement, change the measure to measure 

change.” 

In the following parts of this chapter, we briefly present three traditional models used to 

analyze social change with repeated cross-sections: age-period-cohort analysis, changing 

parameter models, and time-series cross-section models. These approaches differ primarily in 

their unit of analysis (micro vs. macro level) and in their treatment of time. 

 

2.1 Analysis of age, cohort, and period 

What are the mechanisms leading to social change, i.e., changes in the population or the 

population’s characteristics? One possibility is that individuals might change their worldviews 

as they grow older. This intra-individual process, however, only leads to change on the 

aggregate level if the age distribution of the population changes, for example, through 

changing fertility rates. An alternative mechanism consists of a process called cohort 

replacement. For this mechanism to take effect, older birth cohorts have to be replaced by 

younger birth cohorts with different characteristics. Cohort replacement then leads to social 
                                                 
3 These terms can be translated as immigrant workers, foreigners and migrants, respectively. 
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change. Another mechanism leading to changes on the level of populations consists of events 

affecting the entire population. For example, the catastrophe in Fukushima has probably 

altered the attitudes of the German population toward nuclear energy. Because these three 

mechanisms can all operate at the same time, researchers have to find ways to disentangle 

their relative impact. As can be seen in the following equations, this is not a simple task. 

Let us assume we are interested in the effects of age, cohort, and period on a 

characteristic, Y. This can be expressed in a linear model, the famous APC model: 

 

εββββ ++++= CohortPeriodAgeY 3210       (1) 

 

The study of the three effects of age, cohort, and period has fascinated and plagued students 

of social change for a long time. This longstanding interest most likely stems from the 

identification problem and attempts to overcome it. The problem arises because age, period, 

and birth cohort are not linearly independent as the following equation shows: 

 

CohortPeriodAge −= or AgePeriodCohort −= or AgeCohortPeriod +=  (2) 

 

Thus, equation (1) is not solvable, i.e., it is impossible to estimate the relative effects of one of 

these three quantities while controlling for the effects of the other two. More precisely, it is 

impossible to study the relative importance of age, period, and cohort within the framework of 

equations (1) and (2), and much research has been conducted to find alternative models to 

overcome this situation. It is neither possible nor necessary to present all these different 

approaches here; interested readers are referred to the excellent overviews by Mason and 

Fienberg (1985), Hagenaars (1990), and Glenn (2005). 

Research based on the APC approach frequently suffers from two problems. First, 

scholars often focus on age, period, and cohort and neglect other variables in their models. In 

principle, however, there is no limitation to the regression models used, and thus, the models 

could easily be extended. A second, more important issue concerns the effects of age, 

calendar year (period), and year of birth (cohort). From a theoretical point of view, these 

effects are not of particular interest. These variables do not explain why the phenomenon 

under study changes. Therefore, some authors have suggested replacing age, period, and 

cohort with more substantive variables such as education and cognitive ability. In effect, these 

approaches avoid the identification problem and might produce substantively richer 

explanations (for example, see O'Brien 2000). 
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2.2 The changing parameter model 

In some instances, we might not be interested in disentangling age, period, and cohort effects 

but, instead, only want to know if the effect of a certain factor has changed over time. For 

example, it is often claimed that through the educational expansion, the effect of education on 

occupation has weakened, that is, the value of education has decreased – a phenomenon 

known as the inflation of education. Hypotheses of this nature can easily be studied by a so-

called changing parameter model (Firebaugh 1997: 42-63). Assume that you have 

observational data for two points in time, t0 and t1. Then this model with one explanatory 

variable can be expressed as:4

 

 

eDXDXY ++++= 3210 ββββ        (3) 

 

Y is the dependent variable in which we are interested. D denotes a dummy variable coded 0 if 

the observation comes from t0 and 1 if the observation comes from t1. X is the independent 

variable we want to test, and DX is an interaction term coded 0 for all observations from t0 

and X for all observations from t1. Given this parameterization, the coefficients of the model 

have the following meaning: As usually ß1 is the effect of X on Y at t0, ß0 is the expectation of 

Y at t0, ß2 is the difference between the expectation of Y at t1 and t0, and finally ß3 reflects the 

difference between the effect of X on Y at t1 compared to t0

Within the context of our paper, this short sketch suffices to show that the changing 

parameter model allows us to test for changing effects from one or more variables between 

two points in time. However, the model has several limitations: First, it is not suited to study 

change between more than a few points in time. A longer time series, say 30 waves of data, 

requires comparing 29 regression coefficients (Firebaugh 2008: 182). Second, the approach 

includes time as an individual level variable and neglects changes at the macro level. Another 

limiting feature is that “this model is intended to document change, not to explain it” 

(Firebaugh 1997: 62). As we will see, multilevel models with years as contextual units and 

changing macro level conditions as contextual variables can be a promising additional step or 

supplement to determine the causes of the identified, changing effects (Chapter 3.3). 

. If this coefficient is significant, 

we can assume that the effect of X on Y has changed. 

 

                                                 
4 The extension of this model to multiple independent variables is straightforward. 
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2.3 Time-series cross-section models 

An alternative approach to model social change over a longer time period is provided by time-

series cross-section models. As the term indicates, time-series cross-section models (TSCS) 

combine two different types of data models: First, time-series, or data describing the 

development of one unit over time, and second, cross-sectional linear models, e.g., regular 

OLS regression with data for several units observed at one point in time. If these two types of 

data, longitudinal and cross-sectional, are combined, the result is a special form of data called 

TSCS data. In the words of one of its major proponents, “time-series cross-section (TSCS) 

data consist of comparable time-series data observed on a variety of units“ (Beck 2008: 475). 

This type of data resembles panel data but has two crucial differences. On a substantial level, 

the major difference pertains to the unit of analysis. While panel data are usually related to 

micro units (individuals), TSCS data are usually derived from macro units (such as countries). 

The second difference is more technical. Panel data usually consist of many units and only a 

few points in time (say, a panel of 5,000 respondents observed over 5 waves), while TSCS 

data typically are comprised of only a few units observed for a comparatively large number of 

points in time, e.g., EU-15 countries observed annually from 1980 to 2010.  

TSCS models are applied to data with comparatively few (spatial or macro) units 

observed over a relatively large number of points in time. These observations are pooled 

across time and units into a single equation (Beck and Katz 1995: 636): 

 

itkitkititit eXXXY +++++= ββββ ...22110       (4) 

 

As in a regular linear regression model, the dependent variable Y is modeled on a set of 

independent variables Xj

The basic question is how to estimate this model if one cannot assume that units are 

independent over time and/or in space, i.e., if one is dealing with correlated measurement 

error and possibly heteroscedasticity. In other words, TSCS data often violate the Gauss-

Markov assumptions (Beck 2008: 478). While the estimates of the regression coefficients will 

be unbiased their standard errors will be inaccurate. 

. In contrast to OLS models, however, there are multiple observations 

of the dependent and independent variables for each unit (i), one for each point in time (t). As 

can be seen in the equation above, it is assumed that the model holds for each unit and each 

point in time.  

A common solution to these problems is to estimate the coefficients of the model 

using standard OLS; even with heteroscedasticity and correlated error the estimation of 
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coefficients will be unbiased. The standard errors, though, will normally still be considerably 

underestimated. As a remedy, Beck and Katz (1995) originally proposed using panel 

corrected standard errors. Meanwhile, a number of alternative approaches to correct standard 

errors in the case of serial correlation and heteroscedasticity have been developed 

(Wooldridge 2009: 428-437; Beck 2008; Engelhardt 2004).  

The TSCS design is especially well suited to looking at social change when there are 

many observations through time. It also enables explicitly modeling changes through time. 

However, this design is restricted to macro level variables and does not allow the underlying 

processes at the individual level to be modeled, which runs contrary to Boudon and 

Coleman’s logic of the sociological explanation of social change (Boudon 1986, 1983; 

Coleman 1994, 1987). Therefore, these models cannot tell us anything about the relative 

importance of individual change, aggregate change, and their interaction.  

 

2.4 Shortcomings of the standard approaches 

The three standard approaches we have presented here have been used in innumerable studies 

of social change. They are powerful tools and easy to use (with the possible exception of 

TSCS). However, as we have attempted to show in this brief review, none of these approaches 

is fully satisfactory. APC analysis and changing parameter models focus exclusively on 

individual level data and are oblivious to macro level processes. In addition, time is treated as 

variable in these models but not as unit of analysis and, thus, is not causally interpretable. 

TSCS models operate differently. Here, time is treated as one dimension of the units 

analyzed, such as the unemployment rate in the year 1995. However, TSCS does not allow 

individual level characteristics to be included or dependencies of macro and micro 

characteristics to be modeled. To overcome these problems, we propose combining these 

approaches by integrating individual level and macro level models in which time is treated as 

a unit or a context of analysis. In the remainder of this paper, we will demonstrate that this 

can best be done in the framework of multilevel models.  

 

3 Analyzing social change within the framework of multilevel analysis 

Having reviewed some major limitations of classical approaches to the study of social change, 

we propose an approach which involves modeling time as a socio-historical context of 

individuals. This approach focuses on strategies for analyzing social change by applying 

multilevel techniques enhancing the substantive advantages of this approach. 
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3.1 Adopting the idea of multilevel analysis to the study of social change 

Multilevel analysis is an analytical approach that involves micro units (e.g., individuals) 

nested within macro units (e.g., schools or countries). We have variables describing 

individuals and variables describing contexts. This approach allows us to estimate 

simultaneously the effects of both micro and macro level variables on an individual level 

outcome. Thus, the aim is to predict values of a dependent variable based on a function of 

predictor variables at more than one level. In addition, the effects of micro level variables can 

be expressed as a function of macro level characteristics. The general multilevel model was 

initially developed in the context of educational studies on the effects of school classes on 

students’ performance (e.g., Willms and Raudenbush 1989; Goldstein 1987). 

Our objective is to transfer the school example of hierarchical data structure to our 

repeated survey case. Though the most important textbooks on multilevel analysis cover a 

wide range of data types (Goldstein 2011; Hox 2010; Raudenbush and Bryk 2002; Snijders 

and Bosker 1999; Kreft and De Leeuw 1998), none discusses the repeated cross-section case 

for studying social change.5

The criteria for determining the reasonableness of every statistical regression model is 

provided by theory. Thus, before elaborating how the statistical multilevel models for 

repeated surveys could look like, we should focus on our underlying theoretical multilevel 

assumptions. To do so, we turn to an example from the field of social inequality research. Our 

research question is: Why has the poverty risk of individuals living in families in Germany 

increased in the past forty years? Since the 1970s, the inequality of income distribution and, 

consequently also the relative income poverty in West Germany has increased almost 

continuously. At 14 percent in 2010, the proportion of the relative income poor has increased 

enormously compared to forty years ago (Grabka and Frick 2010; Groh-Samberg 2010). Over 

this entire period, families have been one of the main risk groups. In the following sections, 

we will keep referring to this example. 

 Hence, multilevel models for repeated surveys are relatively 

poorly developed and therefore rarely applied. 

To explain this increase in family poverty, we refer to Boudon’s theory of social 

change (Boudon 1986, 1983). Contrary to traditional social change theories which stay on the 

macro level of social structure, Boudon argues that effects of one macro variable on another 

can be understood only by taking into account the actions of individuals. However, 

                                                 
5 Time-related nested models are only developed for panel designs (e.g., growth curve modeling), enabling the 

study of individual, not social change (e.g., Rabe-Hesketh and Skrondal 2008). Unlike repeated surveys, panel 
surveys follow the same individuals over time. Thus, using panel data for multilevel analysis usually gives us 
points in time (t) nested within individuals (i). 
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phenomena on the macro level are not seen only as a pure addition of individual actions but as 

emergent properties. Boudon accounts for this relationship in the multilevel model of 

sociological explanation (also see Coleman 1994, 1987). Hence, the macro level constitutes a 

social or socio-historical context in terms of changing material, institutional and cultural 

conditions. These conditions are linked to the micro level of individuals because each period 

constitutes a specific social framework for individuals, such as relatively low fertility, low 

female employment, and comparatively high unemployment. For individuals living in this 

specific context, these circumstances restrict or facilitate certain courses of action. Therefore, 

the poverty risk of individuals living in these circumstances should be different than the 

poverty risk of individuals living in a different year marked by other social conditions.  

To incorporate this theoretical multilevel idea into a statistical model, we propose 

treating individuals of repeated cross-sectional surveys as micro level units and each survey 

year as a contextual unit, with time-varying macro level conditions as the contextual 

variables. This enables us to test how the poverty risk of individuals is influenced both by 

characteristics of individuals themselves (e.g., educational attainment) as well as by 

characteristics of time interpreted as social context (e.g., changing unemployment rate, 

changing fertility rate, or changing child benefits). In addition, we want to know if micro level 

effects have changed over time and, if so, why. But how can we achieve this? 

 

3.2 Recent developments in using multilevel techniques in social change studies 

Although the established textbooks on multilevel analysis do not contain specific approaches 

to analyzing social change, some efforts have been made to apply multilevel models to the 

analysis of social processes using repeated cross-sectional data. 

To our knowledge, the first proposal for such a model stems from DiPrete and Grusky 

(1990). They focus on estimation problems that arise in cases in which the contextual units 

are years, not schools or countries. They stress that the likely serial correlation of the error 

terms at the year level results in biased estimates of standard errors. To deal with this 

problem, they develop a mixed estimator or, more precisely, a generalized least-squares 

(GLS) estimator. DiPrete and Grusky model the change in the effects of race and gender on 

socioeconomic status as a function of change in macro level variables, applying it to (only) 14 

surveys of the GSS. 

Firebaugh and Haynie (1997) take up this point, emphasizing the increasing 

importance of this approach given that repeated surveys (such as the GSS) continue to 

cumulate data over ever longer periods. The authors also highlight the problem of serial 
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correlation and criticize the fact that methods are still not well developed for cases with points 

in time as the macro level units. Firebaugh and Haynie replicate the analysis of DiPrete and 

Grusky (1990) with the same GSS data using the HLM2 program without adjusting for serial 

correlation at the year level. Overall, they obtain similar results.6

Yang and Land (Yang 2008; Yang and Land 2008, 2006) also use multilevel models 

to study social change. They aim to circumvent the identification problem in APC analysis 

(Chapter 2.1), so they focus on more technical reasons for applying multilevel models. In a 

series of papers, Yang and Land demonstrate that multilevel modeling can be used to obtain 

estimates of age, period, and cohort differences in happiness, also using repeated cross-

sectional data. In this approach, age is entered at level one, and cohort and year as cross-

classified variables at level two (also see O'Brien, Hudson, and Stockard 2008). The cross 

classified random effect model (CCREM) of Yang and Land has recently been applied in 

other social change related studies with the aim to disentangle cohort and period effects (e.g., 

Wilkes and Corrigall-Brown 2011; Lois 2011). 

 Although Firebaugh (2008, 

1997) encourages researchers to apply multilevel analysis to the study of social change, he 

does not elaborate on the models in any detail. We will do so in the next section of this paper. 

This brief literature review shows that a number of authors have suggested using 

multilevel models to study social change. However, these models have not been fully 

developed and are still not included in the standard repertoire of data analysis in social change 

research.  

 

3.3 Multilevel models with time as context – step by step 

In this section, we show how a social change-related model in which time is interpreted as 

socio-historical context can be specified. Given the complexity of multilevel models, we do 

this on a step-by-step basis. First, we state the aim of each model, and then we present its 

statistical equation. Finally, we illustrate how these models can answer substantive research 

questions related to social change, which are based on our example of changes in family 

poverty (Chapter 3.1). 

 

Detecting changes at the micro level: Changing parameter model (fixed effect approach) 

As a first step, before estimating multilevel models, it is useful to detect whether the 

association of X and Y has changed or remained constant over time. In our case, an interesting 

                                                 
6 This might be an indicator that serial correlation, in this particular case, is not as severe as assumed. However, 

in general, serial correlation requires further examination (see Chapter 3.4). 
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question is: Has the effect of education on individuals’ poverty risk changed from the 1970s 

to the present? This question can be examined by applying the changing parameter model to 

our repeated cross-sectional data (Chapter 2.2). As we have seen, we include dummy 

variables for the different points in time and interact them with the individual level 

explanatory variables of interest (fixed effect approach). This method proves to be rather 

inelegant if we have a survey with, say, 30 waves, because we have to include main and 

interaction effects for 29 dummy variables (30 minus the reference year) to the individual 

level equations. If we had to test three predictors for varying effects, we would have 87 

regression coefficients to examine. However, this is a good strategy for obtaining an initial 

answer to the question of whether or not effects have remained constant over time (Firebaugh 

2008; Firebaugh and Haynie 1997). Depending on the nature of the response, the interaction 

models can be estimated using simple OLS or maximum likelihood estimation. Nevertheless, 

this approach remains descriptive. 

 

Explaining changes of parameters: Multilevel models with time as context 

(random effect approach) 

To test hypotheses about the possible causes of the observed change, we propose treating 

individuals as micro level units and each survey year as a contextual unit with time-varying 

macro level conditions as the contextual variables. Our focus here will be on the question: 

What are the macro changes over time that affect the X-Y relationship? 

However, this approach is only applicable if we have a specific number of macro level 

units, in our case, years. Otherwise, we are faced with the so-called “small N bias”: If the 

number of context units is small but the number of individual units is large, the context effects 

will likely be overestimated and the standard errors underestimated. Thus, estimates of 

variance components are biased. To be on the safe side, a rule of thumb among scholars is to 

use a figure of at least 30 units, given that different authors give different recommendations 

(e.g., Hox 2010: 234, 235). 

In the past, this feature limited the utility of a multilevel strategy for analyzing 

repeated cross-sectional data, because most survey series did not have enough waves to 

support reliable estimation of macro level effects (Firebaugh and Haynie 1997: 153). 

However, the multilevel approach should become increasingly appropriate as repeated 

surveys continue to cumulate (e.g., there are currently 28 waves of the GSS and more waves 

are being added every year). 
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Step 1: Null model without predictors: Does time matter? 

Compared to OLS regression in multilevel analysis, it is very useful, even necessary, to fit a 

model with no predictors, the so-called null model or empty model. The key function of this 

model is to provide information on whether the phenomenon under study varies between the 

macro level units. The empty model also serves as a benchmark with which other models are 

compared. Since this model without predictors is equivalent to a one-way analysis of variance 

with random effects, it is also called ANOVA model (e.g., Raudenbush and Bryk 2002: 69). 

Because we assume that we have clustered data − e.g., individuals in 30 years − we 

would actually have to fit 30 intercepts, one for each year (fixed effects model). Instead, 

multilevel analysis uses only two parameters:  

β0

u

 is an average intercept – the mean of the intercepts, the “grand mean”, and 

0t

plus an error term for the individual level (e

 its residual variance across years – the variation of the intercepts, 

it

 

), as in OLS regression. Thus, the equation for 

the null model without predictors is: 

it0tit euY ++= 0β          (5) 

 

where “i” indexes individual and “t” indexes year. 

In all following equations, residuals at both levels are assumed to follow normal distributions 

with zero means: ite  ~ ),0( 2
eN σ and tu0  ~ ),0( 2

0uN σ . The two random terms and their 

variance include substantive information: u0t is the ‘between year variation’ and eit the 

‘between individual within year variation’. The variance estimates of the random terms from 

this model are also used to calculate the intraclass correlation ρ.7

 

 In our case, ρ is the 

proportion of the total variance that is at the year level. It varies between 0 and 1: 

22

2

0

0

eu

u

σσ
σ

ρ
+

=           (6) 

 

                                                 
7 There is a difference in how the measure intraclass correlation ρ in simple null models is labelled. In most 

multilevel books, the measure is called the “intraclass correlation coefficient” (ICC) (e.g., Raudenbush and 
Bryk 2002: 24), but some speak of the “variance partitioning coefficient” (VPC) (primarily the Centre for 
Multilevel Modelling at the University of Bristol in its training manuals, e.g., Steele 2008: 8). In a simple null 
model like this, the VPC is equal to the ICC. However, the calculation of the ICC in more complex models 
means the degree of dependence among observations within the same group or, in other words, the correlation 
between the Y-values of randomly selected individuals from the same group (Raudenbush and Bryk 2002: 75; 
see also Snijders and Bosker 1999: 16 f., Kreft and De Leeuw 1998). 
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It is necessary to calculate ρ before performing a multilevel analysis with predictors; from a 

statistical point of view, we use multilevel models only if we have clustered data. It is likely 

that individuals within a year share the same socio-structural environment and, thus, are 

similar (compared to individuals from other years). Hence, we assume dependencies in our 

data. If we were to analyze dependent data with single level models (e.g., OLS regression) 

and ignore the clustered data structure, we would obtain biased standard errors and 

consequently biased inference tests. Thus, we would have an increased risk of finding 

relationships and differences where none exist (e.g., Hox 2010: 4f.; Duncan, Jones, and Moon 

1998). In multilevel analysis, we explicitly model these dependencies between the cases and 

can even estimate the degree of clustering by the intraclass correlation. ρ is a measure for 

showing us if we do, in fact, have dependencies in our data and, thus, whether multilevel 

analysis is indeed the appropriate method. For example, if ρ=0.01, i.e., only 1 percent of the 

total variance is at the year level, a multilevel approach is certainly not worth the effort, and 

fitting a single level model is more useful. However, there is no rule of thumb for the 

minimum value of ρ.  

Besides this statistical measure, we also get substantive information with ρ, namely: 

How much of the variance of Y (e.g., poverty) is at the year level? For our specific repeated 

cross-section case, this means that the more the poverty risk of individuals living in families 

within a year is alike (as compared to individuals from other years), the more likely it is that 

the causes of poverty are related to time or, respectively, to changing macro processes. 

 

Research questions related to social change that this model can answer: 

a) Are individuals within the same year statistically related? Does time matter?  

b) What proportion of the total variation in Y can be attributed to time? (cf. ICC) 

Example: Explaining trends in family poverty in Germany, 1970-2010 

a) Does time matter with respect to the individual poverty risk? 

b) To what extent is family poverty determined by time-varying macro processes and to what 

extent by individual characteristics?  

 

Step 2: Random intercept model: Which individual variables and which time-varying 

contextual variables explain Y? 

If time does matter, it is useful to continue with a random intercept model. Now we are 

interested in the question: What determines Y? Aside from studying the effects of individual 

level characteristics, we want to know which changing macro characteristics influence our 

http://www.dict.cc/englisch-deutsch/explicitly.html�
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response variable. This model is called the ‘random intercept model’, because only the 

intercept is allowed to vary between the years. The central assumption is that the effect of the 

explanatory variables is the same every year.  

(1) It is useful and common to start with a random intercept model that includes only 

individual level explanatory variables Xit

In order to attain a clearer understanding, we first explicate separate equations for each level 

and then combine them into a single equation model. In the micro model, we have a separate 

regression equation for each year t. In other words, we specify the ‘within year’ part of the 

model:

, e.g., educational attainment (e.g., Hox 2010: 56, 

57). In multilevel analysis, it is useful to center the metric explanatory variables X for both 

interpretation and statistical reasons (Algina and Swaminathan 2011; Hox 2010:59f.). The 

interpretation is the same as in simple regression. However, we take account of the 

hierarchical data structure, i.e., the fact that individuals in the same year are related.  

8

 

 

it1ittit eXY ++= 10 ββ          (7) 

 

In the macro model, we specify the ‘between year’ part of the model. The parameter of the 

‘within year’ model becomes the response. Thus, the time-specific intercept is elaborated as: 

 

t0t u00 += ββ           (8) 

 

If equation (8) is inserted into equation (7), we obtain the single equation form of the random 

intercept model: 

 

it0titit euXY +++= 110 ββ         (9) 

 

In the random part of the combined model (8), we have the two random terms, as in the null 

model, i.e., u0t (‘between year variation’) and eit 

2
0uσ

(‘within year variation’). Again, as in the 

previous ANOVA model, we are primarily interested in estimating their variances:  

 the ‘between year variance’ after controlling for the explanatory variables, and  

                                                 
8 To keep the models simple, we introduce only one predictor variable at each level. Extending the model to 

include more variables is straightforward. 
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2
eσ  the ‘between individual within year variance’ after controlling for the explanatory 

variables. 

On the basis of the two variances, we again estimate the intraclass correlation ρ and ask: How 

much variance of Y is at the year level when we control for differences in the composition of 

the population with respect to X at each point in time? It is important to note that, in contrast 

to simple regression models, in multilevel models, the error terms and their variance (random 

part) are equally informative and, thus, interpreted as the parameters in the fixed part.  

In the fixed part of the equation, we estimate the coefficients β0 and β1

0β

: 

 is once again the grand mean, the average intercept of the year level, and 

1β  is, as in simple regression, the slope of X. 

 

(2) Then, as a conceptual extension of the standard approaches to studying social change (see 

Chapter 2), we add time-varying macro level variables Zt to the model, e.g., the 

unemployment rate.9

Again, let us first specify the ‘within year’ part of the model: It is the same equation as in the 

random intercept micro model with only individual level variables (see equation 7):  

 As we will see, the addition of Z-variables allows us to explain the 

intercept differences between the years.  

 

it1ittit eXY ++= 10 ββ          (10) 

 

Again, in the macro model, the intercept of the micro model becomes the response variable. 

Now we explain intercept differences between years with our time-varying macro variable Zt

 

: 

0ttt uZ ++= 1100 αββ          (11) 

 

Residuals at both levels are again assumed to follow normal distributions with zero means: ite  

~ ),0( 2
eN σ and tu0  ~ ),0( 2

0uN σ , and years and individuals are assumed to be independent 

[ ] 0,0 =itt euCov . If we substitute (11) into (10), we get the combined model: 

 

it0ttitit euZXY ++++= 11110 αββ        (12) 

                                                 
9 The macro data can either be aggregated from the micro level data (e.g., median income, unemployment rate) 

or global indicators from external data sources can be included (e.g., GDP per capita). 
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This step is a crucial substantive advantage of using multilevel models to understand and 

explain social change. As we have seen, this was not possible with the standard models (see 

Chapter 2). Further, we can define which proportion of the initial level 1 and level 2 variance 

is explained by X resp. Z.  

 

Research questions related to social change that this model can answer: 

a) What proportion of ‘between year variation’ is due to different population compositions 

with respect to the individual level variables? 

b) How does the time-varying macro variable Z influence Y, and to what extent can we 

explain the ‘between year variation’ of Y? 

Example: Explaining trends in family poverty in Germany, 1970-2010 

a) What proportion of the variation in poverty over time can be accounted for by differences 

in individual characteristics, e.g., different educational levels? 

b) How do different child benefit packages affect the poverty risk of individuals living in 

families? And what proportion of the total ‘between year variation’ in poverty can be 

attributed to child benefits? 

 

Step 3: Random slope model: Does the effect of X on Y change over time? 

The central assumption of the random intercept model just presented is that, in every year, the 

effect of the explanatory variable (e.g., educational attainment) is the same, and thus, when 

visualizing it, each year line has the same slope. However, in some cases, our theory might 

lead us to assume that the effect of the explanatory variable differs over time, e.g., the effect 

of educational attainment on poverty risk could have become stronger from the 1970s to 2010 

because individual attainment has become an increasingly important prerequisite for the 

individual welfare position throughout the years.10 But how can we translate this theoretical 

assumption into a multilevel model? Looking at the combined model equation (15), we can 

achieve this by adding a random term to the slope of X. The regression equation at the micro 

level is almost identical to the one in the previous model; note, however, that now the slope of 

X (β1t

 

) has the subscript t, indicating that the slope can vary over time:  

ititttit eXY ++= 110 ββ         (13) 

                                                 
10 Theoretically, it is possible to put a random slope on one, several or even all the explanatory variables. 

However, depending on the number of years in our data set, in practice, we often might not have enough 
power to put a random slope on more than one explanatory variable.  
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Again, in the macro model, the parameters of the micro level become the response variables. 

But in contrast to the fixed effect model, we now assume that not only the intercept (β0t) but 

also the slope (β1t

 

) varies over time: 

0ttt uZ ++= 1100 αββ          (14) 

tt u111 += ββ  

 

Substituting the equations, we arrive at the combined random slope model: 

 

ititt0ttitit eXuuZXY +++++= 1111110 αββ       (15) 

 

In the fixed part of the single equation, we have the parameter β0, β1, and α1. In the random 

part, we have − besides the error term for the intercept of level 2 (u0t) − an additional error 

term for the variation of the coefficients of X between years (u1t), and the error term of the 

individual level (eit

u

). Again, it is important to note that, in multilevel models, the residual 

variation (random part) is as informative as the parameters in the fixed part of the model:  

0t

u

 is again the variation between years; 

1t

e

 is the variation between years of the slopes of X; 

it

Residuals at both levels are again assumed to follow normal distributions with zero means: 

 is as before the variation between individuals within years. 

ite  ~ ),0( 2
eN σ and tu0  ~ ),0( 2

0uN σ  and tu1  ~ ( )2
1

,0 uN σ . However, now intercepts and slopes 

at the year level are not independent, i.e., we have a covariance between intercepts and slopes 

(
10uuσ ) that also has to be interpreted. 

Thus, we have two more random parameters in the random part of the model than we did in 

the random intercept model. In addition, we estimate 2
1uσ  and 

10uuσ : 

2
eσ  is the ‘between individual within year variance’ after controlling for the explanatory 

variables resp. conditional on educational achievement; 
2
0uσ  is the variance in intercepts between the years; 

2
1uσ  is the variance in slopes between years; 

10uuσ  is the covariance between intercepts (u0t) and slopes (u1t

The covariance between intercepts and slopes may have 3 possibilities or patterns: 

). 
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(a) A positive value of 
10uuσ  implies a pattern of positive correlation of slopes and 

intercepts. In years with higher (expected) levels of Y, the effect of X on Y tends to be 

stronger. If we plot the micro model for each year, this would result in a pattern of 

regression lines fanning out for each year. In relation to our example, this result could 

mean that the effect of education on poverty would tend to be stronger in years with 

higher poverty risks (larger intercepts). 

(b) If 
10uuσ  is negative, this implies that there is an inverse (negative) relationship between 

intercepts and slopes (e.g., higher intercepts tend to go together with shallower slopes). 

If we again imagine plotting the different micro level models, we find a pattern of 

converging regression lines per year. In the context of our example, a negative 

covariance of random intercept and random slope leads us to the conclusion that the 

protective effect of education is weaker when poverty levels are high. 

(c) 
10uuσ = 0 indicates that there is no (monotone) relationship between the random 

intercept and random slope.  

If we consider the residual variance at the year level, we are faced with a slightly more 

complicated situation: 

 

Var(u0t + u1t x1it) = Var(u0t) + 2Cov(u0t, u1t x1it) + Var(u1t x1it

    = 

)  (16) 
2
0uσ  + 2

10uuσ itx1  + 2
1uσ

2
1itx  

 

The total residual variance in a random slopes model is 2
0uσ  + 2

10uuσ itx1  + 2
1uσ

2
1itx  + 2

eσ . 

On this basis, the intraclass correlation ρ is again estimated in order to obtain information on 

the explained variance at both levels. It is still calculated by year level variance divided by 

total variance. 

In random slope models, it is useful, and even necessary, to center the metric explanatory 

variables X both for interpretation and for statistical reasons: β0, and also u0t

2
0uσ

 depend on where 

we place X=0. Thus, the variance  is also affected, as well as the covariance 
10uuσ  (Algina 

and Swaminathan 2011; Hox 2010: 59f.). 
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Research questions related to social change that this model can answer: 

a) Does the effect of X on Y change over time? 

b) Are changes in the effects of X on Y related to the time-specific average value of Y 

(covariance between intercept and slope)? 

Example: Explaining trends in family poverty in Germany, 1970-2010 

a) Does the effect of education on poverty increase or decrease over time? 

b) Is the effect size of education related to the poverty level in each year? 

 

Step 4: Random slope model with cross-level interaction: How can we explain the changing 

effects of X on

As in simple regression, we can include interaction effects in our models and thereby model 

the idea that the effect of one explanatory variable on Y depends on the value of another 

explanatory variable. In multilevel models, an interaction between an individual level variable 

and a context level variable is called a cross-level interaction. Now, in our final model, we 

add a cross-level interaction between an explanatory individual level variable that had a 

random slope in the previous model and a time-dependent contextual variable (Hox 2010: 58). 

This random slope model including cross-level interactions is also called the full model, 

because it includes all possible effects and, thus, is the most informative model. In this final 

model, the micro level coefficients are themselves expressed as a function of macro 

characteristics that change over time. Hence, as Boudon and Coleman recommend, we model 

individual action against the background of the changing social context (Chapter 3.1). This is 

a considerable increase in information we can obtain to understand social change compared to 

our standard approaches (Chapter 2). With the changing parameter model, we could only 

detect, but not explain, time-varying effects (Chapter 2.2). With the full model, it is possible 

to explain why X-variables change their effects on Y over time. 

The regression equation at the micro level is identical to the one in the previous 

random slope model (see equation 13). Note that again, the slope for X (β1t

 

) has the subscript t 

indicating that the slope can vary over time: 

ititttit eXY ++= 110 ββ         (17) 

 

As before, in the macro model, the parameters of the micro level become the response 

variables. Again we assume that both the intercept (β0t) and the slope (β1t) vary over time. 

However, now, in contrast to the random slope model (see equation 14), the time-varying 
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slope of X (β1t

 

) is also a function of the explanatory macro variable Z. Thus, we explain a 

change in the X parameter by the social context defined by time: 

0ttt uZ ++= 1100 αββ          (18) 

ttt uZ 11211 ++= αββ  

 

Substituting (18) into (17) the equation results in a cross-level interaction: 

 

ititt0ttittitit eXuuZXZXY ++++++= 1111211110 ααββ     (19) 

 

In the fixed part of the full model, we have the parameters β0, β1, and α1 plus an additional 

parameter α2 for the cross-level interaction of X and Z. In the random part, as in the combined 

random slope model (see equation 15), we have the error term for the intercept of level 2 

(u0t), the error term for the variation of the coefficients of X between the years (u1t), and the 

error term of the individual level (eit

 

).  

Research questions related to social change that this model can answer: 

a) How can the slope difference of X between years be explained? Which time-varying macro 

indicators explain the changing effects? 

b) What are the macro changes over time that affect the X-Y relationship? 

c) Compared to the null model, what proportion of the variance at the micro and the macro 

level can we explain with the full model? 

Example: Explaining trends in family poverty in Germany, 1970-2010 

a) Which contextual variables explain ‘between year’ differences in the effect of education on 

poverty risk? For instance, can a high unemployment rate explain the differences in the 

effect size of education on poverty? 

b) Which time specific contextual factors moderate the effect of education on one’s poverty 

risk? 

c) Compared to the null model, what proportion of the variation in poverty over time can be 

accounted for by differences in individual characteristics, e.g., different educational levels? 
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3.4 Problems of the approach 

We have shown that studying social change with multilevel techniques presents substantial 

and methodological advantages compared to standard approaches. First, it allows us to 

interpret individual action against the background of a socio-historical context. Second, 

multilevel analysis takes into account the fact that individuals living in the same year tend to 

be more similar to each other than individuals living in different years. If we were to analyze 

dependent data with single level models and thus ignore the clustered data structure, we 

would obtain biased standard errors and incorrect estimates of precision. Additionally, in 

contrast to all standard approaches, micro and macro explanatory variables are analyzed 

simultaneously. As an extension to the changing parameter model, multilevel models can be 

also used to study the causes of a changing parameter (e.g., varying slope), since the X-Y 

relationship is modeled as a function of change in macro level conditions. 

However, the approach does involve some statistical problems. Most of these 

complications relate to the temporal ordering of our multilevel data. For example, we must 

take into account that the data for 1970 immediately precedes the data for 1971 and that one 

year can affect subsequent years (but not preceding ones). At this point, we must deal with 

similar issues and are faced with comparable problems as time series applications. Thus, the 

possible solutions we discuss are guided mainly by approaches of time series research.11

 

 

Serial correlation 

In our case, in which the higher level units consist of years, we have a likely serial correlation, 

or autocorrelation of errors at the macro level, resulting in biased estimates of standard errors: 

The error term ut at year t tends to be positively correlated with the error terms ut+1, ut+2,… 

and ut-1, ut-2 ,… and so on.12 This violates the Gauss-Markov assumption of the absence of 

serial correlation (CORR(ut,ut−1) = 0) (Wooldridge 2009: 349). Such correlation in the error 

terms usually arises from the correlation of the omitted variables that the error term captures. 

Thus, the values of the variable Zt tend to be positively correlated with the values of Zt-1

                                                 
11 According to time series analysis, as a first step, we have to test our macro processes under study very 

precisely and identify whether we have stochastic or deterministic and stationary or nonstationary processes 
(Chatfield 1989: 27 et seq.; Wooldridge 2009: 378). The goal, according to most time series textbooks, is to 
achieve stochastic stationary models as most of the probability theory of time series is concerned with it (e.g. 
Box, Jenkins, and Reinsel 2008; Enders 2004: 48 et seq.). While most economic time series (e.g. 
unemployment rate or GDP) are assumed to be stochastic, in most cases, it is necessary to turn a nonstationary 
series into a stationary one (with constant mean and variance). 

 

12 If errors in one year (e.g., 1973, u1973) are correlated directly with errors in the previous year (u1972), the 
correlation is called a first-order autocorrelation and occurs most commonly in social science analyses. 
However, the correlation might not take place until after two, three, or four years, which would be higher order 
serial correlation (Maddala and Lahiri 2009: 240). 
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(Maddala and Lahiri 2009: 240). For example, if the female activity rate or the unemployment 

0rate is comparatively low in 1972, then it is likely to be similarly low in 1973 (Table 1).  

 

Table 1 Partial listing of data on West German female activity and unemployment 
rates, 1972-2010 

 
Year Female activity rate Unemployment Rate 

1972 47.6 1.1 

1973 48.4 1.2 

1974 48.3 2.6 

… … … 

2008 68.3 7.2 

2009 68.9 7.7 

2010 69.4 7.4 
Source: Female activity rate: Results of the German Microcensus,  

published by the Federal Bureau of Statistics; 
Unemployment rate: Statistics of the Federal Employment Agency. 

 

To detect the presence of first-order autocorrelation, the simplest and most popular test is the 

Durbin-Watson test.13 The test is implemented in most statistical programs and involves the 

calculation of a test-statistic based on the residuals from the OLS regression procedure. Its 

coefficient d is interpreted as the measure of first-order autocorrelation between two errors. 

Tables exist to test the hypothesis of zero autocorrelation against the hypothesis of first-order 

positive autocorrelation (e.g., Pindyck and Rubinfeld 1998: 165; Maddala and Lahiri 2009: 

616). A rule of thumb holds that if the value of d is close to 0 or 4, the errors are highly 

correlated (Maddala and Lahiri 2009: 240).14

If the Durbin-Watson test or the autocorrelation coefficient suggest serial correlation, 

several solutions exist for stationary processes (with constant mean and variance), which we 

also see in time series analysis (e.g., Engelhardt 2004: 378). The most common way is to use 

a first-difference equation (Maddala and Lahiri 2009: 242; Wooldridge 2002: 279-284). Here 

we regress (Y

 Other tests are based on the autocorrelation 

coefficient ρ. ρ measures the correlation between errors in year t and errors in year t-1. When 

ρ=0, no first-order serial correlation is present, while a large value of ρ implies the existence 

of one (Pindyck and Rubinfeld 1998: 161). 

t - Yt-1) on (Zt - Zt-1

                                                 
13 There are also several tests for higher order serial correlation, which we will not cover in this paper (see 

Wooldridge 2009: 417-419). 

). Of course, in differencing, we lose the first year for each 

14 The expected value of d in a situation of no autocorrelation is 2. 
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cross-section, and it is applicable only for linear trends. The implicit assumption is that the 

first differences of the errors (ut - ut-1) are independent. The first-difference (FD) model 

would look like:15

 

 

ttt uZY ∆+∆+=∆ βα         (20) 

 

However, attention should be paid to the fact that the interpretation of the coefficients is now 

different than estimating absolute macro level effects. We now explain changes by changes, 

e.g., explaining increased poverty rates by declined fertility rates. How far this method makes 

sense depends on one’s particular research question. 

In stochastic trends which are widespread in economic time series (such as 

unemployment rate or GDP), autocorrelation is often corrected by estimating models in which 

the error terms are autoregressive (e.g., by Cochrane-Orcutt estimation) (for further details, 

see Maddala and Lahiri 2009: 246-249 and Box, Jenkins, and Reinsel 2008: 55 et seq.). If the 

error ut is regressed on ut-1, it is called a first-order autoregression or AR(1) because ut is 

regressed on its past with only one lag. In time-series cross-section models (Chapter 2.3), the 

serial correlation problem of stochastic processes is mostly tackled by the Beck and Katz 

method, which involves adding lagged dependent variables (LDV) to the model and using 

panel-corrected standard errors (PCSE) (Beck and Katz 1995, 1996). However, it should 

make theoretical sense again to explain Y with Yt-1

 

, which will not always be the case.  

Small N problem 

Another problem of adopting the multilevel approach to repeated surveys is the so-called 

“small N problem”, which implies biased estimates in cases of a small number of contextual 

level units, years in our case. If the number of years is small but the number of individuals 

large, which normally will be the case in repeated cross-sections, it is likely that we will 

overestimate the effects of the socio-historical context and underestimate standard errors. 

However, this problem occurs in most multilevel structures. A solution is to use more 

sophisticated estimation methods, such as the Bayesian-inspired Markov Chain Monte Carlo 

(MCMC) estimation (Gill 2008; Lynch 2007). The basic idea of this approach is to estimate 

the parameters of interest from the distribution in the sample. Unlike the frequentist maximum 

likelihood estimation resting on multivariate normality assumptions, MCMC methods are 

simulation-based procedures and run for many iterations. At each iteration, an estimate for 
                                                 
15 The extension of this model to multiple independent variables is straightforward. 
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each unknown parameter is produced (Browne 2012: 3).16

 

 MCMC is now the preferred form 

of estimation for complex multilevel models (though not without introducing some new 

challenges of its own): Most textbooks on multilevel analysis include a chapter on Bayesian 

analysis encouraging social scientists to apply the approach (e.g., Goldstein 2011: 45 et seq.; 

Hamaker and Klugkist 2011; Draper 2008). Consequently, several popular statistical packages 

include the option of Bayesian analysis at this time (e.g., MLWin, MPLus (since version 6), 

R, and SAS). 

No random sample at the year level 

A final problem we would like to point out is that the contextual units we use, years, are not 

drawn at random (this is the case for individuals at level 1). However, for the substantially 

relevant period, we analyze data from every year not just a subsample of years. In our 

example, we focus on the increase of family poverty since the 1970s (Chapter 3.1), so we are 

only interested in the period of 1970 to 2010. Our aim is to describe social change in precisely 

this period. We do not intend to draw inferences to other periods of time (e.g., to the Middle 

Ages or the future). Therefore, we apply methods of inferential statistics only in a heuristic 

sense. In cross-national research in which scholars must deal with similar issues, the problem 

is widely ignored. The issue has been discussed only recently (e.g., Beckers 2011). Possible 

solutions might also be found by using Bayesian estimation methods. 

Altogether, the complications that might occur emphasize that the presented analysis 

strategy can assumed to be more complicated than current approaches to the study of social 

change, as well as regular multilevel analysis. However, in our view, the substantial 

advantages of treating time as socio-historical context justify the application and make it 

rewarding. 

 

4 Discussion and Conclusion 

Repeated cross-sectional surveys will become increasingly appropriate for multilevel models 

of social change as they continue to cumulate. We argue that applying multilevel techniques 

to these data offers theoretical and methodological advantages. Our paper makes two main 

contributions. First, we hypothesize and elaborate on our assumption that the current 

approaches to the study of social change have substantive shortcomings, specifically for 

theory-driven analyses. Second and primarily, we focus on how to analyze social change 

using multilevel techniques. We do not develop new methods, but rather applying existing 
                                                 
16  For more details about MCMC methodology see, for example, Gilks, Richardson, and Spiegelhalter 1996. 
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models within a different conceptual framework to demonstrate that the approach is fruitful 

and can be a useful tool in social change research. 

In theoretical terms, we conceptualize time as a socio-historical context for 

individuals. For example, the poverty risk of individuals living in a specific social 

environment (e.g., with high unemployment, low female employment, or low child care) 

should be affected by these socio-historic conditions, in addition to individual characteristics 

(e.g., education or gender). Our proposal for incorporating this theoretical multilevel idea into 

a statistical model is to treat individuals of repeated cross-sectional surveys as micro level 

units and each survey year as a contextual unit with time-varying macro level conditions as 

the contextual variables. 

Given the complexity of the multilevel approach, we consider it necessary to spell out 

the procedure on a step-by-step or, more precisely, on a model-by-model basis. Doing so 

required a relatively technical description of the procedure. Therefore, this concluding section 

offers a summary of the benefits of the multilevel strategy for the study of time-dependent 

social processes: First, in multilevel analysis, we take into account the clustered data structure 

and, thus, control for the dependencies of individuals living in the same year. Second, in 

contrast to all standard approaches, both variable groups that we regard in sociological terms 

as equally meaningful are considered – both micro and macro explanatory variables. 

Moreover, multilevel modeling is not only a means of assessing the relative contribution of 

individual and contextual effects but also provides a way to frame and test ideas about time-

related processes and variability. Third, as an extension of the changing parameter model, 

multilevel models can be used to study the causes of a changing parameter. For example, we 

can detect which contextual variables explain between-year differences in the effect of 

education on one’s poverty risk.  

However, there are also a number of obstacles that have to be overcome with this 

approach. The key problem is serial correlation. Since this is likely to be a problem of time 

series applications in general, we present possible solutions guided by tools of time series 

research. Whether these approaches can be adapted successfully to a multilevel context needs 

to be further explored. 

Moreover, it remains to be seen under which conditions our approach can be applied 

using panel data. Although we argue that repeated cross-sectional data are best suited for the 

study of social change (Firebaugh 2008: 172 et seq.), applying these models to panel data 

might also be advantageous. For example, intra-individual changes can be analyzed more 

properly with panel surveys than with repeated cross-sections. Although most panel studies 
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(e.g., the GSOEP) were not generated until the early 1980s and initially conducted to study 

individual change over the life course, they are increasingly used to observe long-term social 

processes as well. Whether our approach using each wave as a contextual unit could be a 

fruitful supplement or whether the additional panel structure will cause further complications 

(attrition is a major problem but also serial correlation) needs to be tested in future. 
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