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Arbitrage-free smoothing of the implied volatility surface

Abstract

The pricing accuracy and pricing performance of local volatility models depends

on the absence of arbitrage in the implied volatility surface. An input implied

volatility surface that is not arbitrage-free can result in negative transition proba-

bilities and consequently into mispricings and false greeks. We propose an approach

for smoothing the implied volatility smile in an arbitrage-free way. The method is

simple to implement, computationally cheap and builds on the well-founded theory

of natural smoothing splines under suitable shape constraints.

Key words: implied volatility surface, local volatility, cubic spline smoothing, no-

arbitrage constraints
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1 Introduction

The implied volatility surface (IVS) obtained by inverting the Black Scholes (BS) formula

serves as a key parameter for pricing and hedging exotic derivatives. For this purpose,

other models, more sophisticated than the BS valuation approach, are calibrated to the

IVS. A classical candidate is the local volatility model proposed by Dupire (1994), Derman

and Kani (1994), and Rubinstein (1994). Local volatility models posit the (risk-neutral)

stock price evolution given by

dSt
St

= (rt − δt) dt+ σ(St, t) dWt , (1)

where Wt denotes a standard Brownian motion, and rt and δt the continuously com-

pounded interest rate and a dividend yield respectively (both assumed to be deterministic

here). Local volatility σ(St, t) is a nonparametric, deterministic function depending on

the asset price St and time t. A priori unknown, it must be computed numerically from

option prices, or equivalently, from the IVS. Techniques for calibration and pricing are

proposed, among others, by Andersen and Brotherton-Ratcliffe (1997); Avellaneda et al.

(1997); Dempster and Richards (2000); Jiang and Tao (2001); Jiang et al. (2003).

A crucial property of the calibration data, given as an ensemble of market prices quoted

for different strikes and expiries, is the absence of arbitrage. In this context, we refer to

arbitrage as to any violation of the theoretical properties of option prices, such as negative

butterfly and calendar spreads (see Section 2 for details). If the market data admit arbi-

trage, the calibration of the local volatility model can fail since negative local volatilities

or negative transition probabilities ensue, which obstructs the convergence of the finite

difference schemes solving the underlying generalized Black-Scholes partial differential

equation. Occasional arbitrage violations may be overridden by an ad hoc approach, but

the algorithm fails, when the violations become excessive. While the robustness of the

calibration process can be improved by regularizing techniques (Lagnado and Osher; 1997;

Bodurtha and Jermakyan; 1999; Crépey; 2003a,b), the specific numerical implementation

does not solve the underlying economic problem of data contaminated with arbitrage.

One may therefore obtain mispricings and noisy greeks. For illustration, we present in
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Figure 1 the delta of a down-and-out put which is computed from a local volatility pricer

using a volatility surface contaminated by arbitrage (the data are given in Appendix B).

Comparing with a delta calculated from cleaned data (Figure 10) it is apparent that the

delta displays local discontinuities which are – aside from the one at the barrier – not

economically meaningful. The delta position will hence undergo sudden and unforeseeable

jumps as the spot moves, which are inexplicable by changing market conditions or higher

order greeks. The hedging performance can therefore deteriorate dramatically.

Unfortunately, an arbitrage-free IVS is not a natural situation in practice, since it is often

computed from bid and ask prices, or derived from settlement data of poor quality, see

Hentschel (2003) for an exhaustive exposition of this topic. As a strategy to overcome

this deficiency, one employs algorithms to remove arbitrage violations from the raw data.

Kahalé (2004) proposes an interpolation procedure based on piecewise convex polynomi-

als mimicking the BS pricing formula. The resulting estimate of the call price function

is globally arbitrage-free and so is the volatility smile computed from it. In a second

step, the total (implied) variance is interpolated linearly along strikes. Crucially, for the

interpolation algorithm to work, the data must be arbitrage-free from the outset. Instead

of smoothing prices, Benko et al. (2007) suggest to estimate the IVS using local quadratic

polynomials. Their strategy requires to solve a smoothing problem under nonlinear con-

straints.

Here, we propose an approach that unlike Kahalé (2004) is based on cubic spline smoothing

of option prices rather than on interpolation. Therefore, the input data do not have to

be arbitrage-free. More specifically, for a sample of strikes and call prices, {(ui, yi)},

ui ∈ [a, b] for i = 1, . . . , n, we consider the curve estimate defined as minimizer ĝ of the

penalized sum of squares

n∑
i=1

wi

{
yi − g(ui)

}2

+ λ

∫ b

a

{g′′(v)}2 dv , (2)

given strictly positive weights w1, . . . , wn. The minimization is carried out with respect

to appropriately chosen, linear constraints. The minimizer ĝ is a twice differentiable

function and represents a globally arbitrage-free call price function, the smoothness of

which is determined by the parameter λ > 0. To cope with calendar arbitrage across
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different expiries we apply (2) iteratively to each expiry in adding further constraints.

More precisely, we take advantage of a monotonicity property for European options along

forward-moneyness corrected strike prices. These additional inequality constraints are

straightforward to add to the minimization. Finally, via the BS formula, one obtains an

IVS well-suited for pricing and hedging.

In employing cubic spline smoothing, we benefit from a number of nice properties. First,

it is possible to cast problem (2) into a convex quadratic program that is known to be

solvable within polynomial time (Floudas and Viswewaran; 1995). Second, by virtue

of convexity, we have uniqueness of the minimizer. Third, from a statistical point of

view, spline smoothers under shape constraints achieve optimal rates of convergence in

shape-restricted Sobolev classes (Mammen and Thomas-Agnan; 1999). Finally, since the

natural cubic spline is entirely determined by its set of function values and second-order

derivatives at the knots, it can be stored and evaluated at the desired grid points in

an efficient way and interpolation between grid points is unnecessary. In this way, the

method complements existing local volatility pricing engines. The approach is close to

the literature on estimating risk neutral transition densities nonparametrically, such as

Aı̈t-Sahalia and Duarte (2003) and Härdle and Yatchew (2006), but is less complicated

and also applicable when data are scarce (typically there are 20-25 observations, one for

each strike, only).

The paper is organized as follows. The next section outlines the principles of no-arbitrage

in the option pricing function. Section 3 presents spline smoothing under no-arbitrage

constraints. In Section 4, we explore some examples and simulations, and Section 5

concludes.

2 No-arbitrage constraints on call prices and the IVS

In a dynamically complete market, the absence of arbitrage opportunities implies the

existence of an equivalent martingale measure, Harrison and Kreps (1979) and Harri-

5
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son and Pliska (1981), that is uniquely characterized by a risk-neutral transition prob-

ability function. We assume that its density exists, which we denote by φ(t, T, ST ) =

φ(t, T, ST , {rs, δs}t≤s≤T ), where St is the time-t asset price, T = t + τ the expiry date

of the option, τ time-to-expiration, rt the deterministic risk-free interest rate and δt a

deterministic dividend yield of the asset. The valuation function of a European call with

strike K is then given by

Ct(K,T ) = e−
∫ T

t rsds

∫ ∞
0

max(ST −K, 0)φ(t, T, ST ) dST . (3)

From (3) the well-known fact that the call price function is a decreasing and convex

function in K is immediately obtained1. Taking the derivative with respect to K, and

together with the positivity of φ and its integrability to one, one gets:

−e−
∫ T

t rsds ≤ ∂C

∂K
≤ 0 , (4)

which implies monotonicity. Convexity follows from differentiating a second time with

respect to K (Breeden and Litzenberger; 1978):

∂2C

∂K2
= e−

∫ T
t rsdsφ(t, T, ST ) ≥ 0 . (5)

Finally, by general no-arbitrage considerations, the call price function is bounded by

max
(
e−

∫ T
t δsdsSt − e−

∫ T
t rsdsK, 0

)
≤ Ct(K,T ) ≤ e−

∫ T
t δsdsSt . (6)

These constraints are clear-cut for the option price function, but translate into nonlinear

conditions for the implied volatility smile. This can be seen by computing (5) explicitly,

using the BS formula and assuming a strike-dependent implied volatility function, see

Brunner and Hafner (2003) and Benko et al. (2007) for details.

In the time-to-maturity direction only weak constraints on the option price function are

known. The prices of American calls for the same strikes must be nondecreasing, which

translates to European calls in the absence of dividends. With non-zero dividends, it can

1We stress that these properties do not depend on the existence of a density. In continuous time

models, they hold when the discounted stock price process is a martingale, but may fail for strict local

martingales (Cox and Hobson; 2005).
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be shown that there exists a monotonicity property for European call prices along forward-

moneyness corrected strikes. This result implies that total (implied) variance must be

nondecreasing in forward-moneyness to preclude arbitrage. We define total variance as

ν2(κ, τ) = σ̂2(κ, τ)τ , where κ = K/F T
t is forward-moneyness and F T

t = Ste
∫ T

t (rs−δs)ds the

forward price. The BS implied volatility σ̂ is derived by equating market prices with the

BS formula

CBS
t (K,T ) = e−

∫ T
t δsdsStΦ(d̄1)− e−

∫ T
t rsdsKΦ(d̄2) ,

where Φ is the CDF of the standard normal distribution, and

d̄1 = {ln(St/K) +
∫ T
t

(rs − δs)ds + 1
2
σ̂2τ}/{σ

√
τ} and d̄2 = d̄1 − σ̂

√
τ . The monotonicity

property, which appears to have been found by a number of practitioners independently

(Gatheral; 2004; Kahalé; 2004; Reiner; 2004), must to our knowledge be credited to Reiner

(2000).

Proposition 2.1. (Reiner; 2000): Let rt be an interest rate and and δt dividend yield, both

depending on time only. For τ1 = T1−t < τ2 = T2−t and two strikes K1 and K2 related by

the forward-moneyness, there is no calendar arbitrage if Ct(K2, T2) ≥ e−
∫ T2

T1
δsdsCt(K1, T1).

Furthermore, ν2(κ, τi) is an increasing function in τi.

Proof: Given two expiry dates t < T1 < T2, construct in t the following calendar spread

in two calls with same the forward-moneyness: a long position in the call Ct(K2, T2)

and a short position in e−
∫ T2

T1
δsds calls Ct(K1, T1). The forward-moneyness requirement

implies K1 = e
∫ T2

T1
(δs−rs)dsK2. In T1, if ST1 ≤ K1, the short position expires worth-

less, while CT1(K2, T2) ≥ 0. Otherwise, the entire portfolio consists of CT1(K2, T2) −

e−
∫ T2

T1
δsds
(
ST1 − e

∫ T2
T1

(δs−rs)dsK2

)
= PT1(K2, T2) ≥ 0 by put-call-parity. Thus, the payoff

of this portfolio is always non-negative. To preclude arbitrage we must have:

Ct(K2, T2) ≥ e−
∫ T2

T1
δsdsCt(K1, T1) , (7)

which proves the first statement. Multiplying with e
∫ T2

t rsds and dividing by K2 yields:

e
∫ T2

t rsdsCt(K2, T2)

K2

≥ e
∫ T1

t rsdsCt(K1, T1)

K1

. (8)

7
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Replacing Ct by CBS
t , define the function

f(κ, ν2) =
e

∫ T
t rsdsCBS

t (K,T )

K

= κ−1Φ(d̄1)− Φ(d̄2) . (9)

As can be observed, f(κ, ν2) is a function in κ and ν2 only and, for a fixed κ, is strictly

monotonically increasing in ν2, since ∂f/∂ν2 = 1
2
ϕ(d̄2)/

√
ν2 > 0 for ν2 ∈ (0,∞). Thus,

Eq. (8) implies ν2(κ, T2) ≥ ν2(κ, T1), ruling out calendar arbitrage. �

To more precisely characterize the concept of no-arbitrage in a set of option data we rely

on recent work by Carr et al. (2003) who introduced the concept of ‘static arbitrage’.

Static arbitrage refers to a costless trading strategy which yields a positive profit with

non-zero probability, but has zero probability to incur a loss. The term ‘static’ means

that positions can only depend on time and the concurrent underlying stock price. In

particular, they are not allowed to depend on past prices or on path properties. For a

discrete ensemble of strikes Ki, i = 1, . . . ,∞ and expiries Tj, j = 1, . . . ,M , static no

arbitrage can be established along the line of arguments outlined in Carr and Madan

(2005): Given that the data set does not admit strike arbitrage and calendar arbitrage,

one constructs a convex order of risk neutral probability measures at different expiries.

The convex order implies the existence of a Markov martingale by the results of Kellerer

(1972). It follows that there exists a martingale measure consistent with all call price

quotes and defined on a filtration that contains at least the underlying asset price and

time. Hence the option call price quotes are free of static arbitrage (Carr et al.; 2003;

Carr and Madan; 2005).

As a consequence of Proposition 2.1, a plot of the total variance against the forward

moneyness shows calendar arbitrage when the graphs intersect. In Figure 2 we provide

such a total variance plot of our IVS data. Evidently, there are a significant number of

implied volatility observations with three days to expiry which violate the no-arbitrage

restriction. It is typical that only the front month violates calendar arbitrage. This occurs

when the short run smile is very pronounced or when the term structure of the IVS is

strongly downward sloping or humped.

8
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3 Spline smoothing

3.1 Generic set-up

Spline smoothing is a classical statistical technique that is covered in almost every mono-

graph on smoothing, see e.g. Härdle (1990) and Green and Silverman (1994). A particu-

larly nice resource is Turlach (2005) whose exposition we follow closely.

Assume that we observe call prices yi at strikes a = u0, . . . , un+1 = b. A function g defined

on [a, b] is called a cubic spline, if g, on each subinterval (a, u1), (u2, u3), . . . , (un, b), is a

cubic polynomial and if g belongs to the class of twice differentiable functions C2([a, b]).

The points ui are called knots. The spline g has the representation

g(u) =
n∑
i=0

1{[ui, ui+1)} si(u) (10)

where si(u) = ai + bi(u− ui) + ci(u− ui)2 + di(u− ui)3 ,

for i = 0, . . . , n and given constants ai, bi, ci, di. There are 4(n + 1) coefficients to be

determined. The continuity conditions on g and its first and second order derivatives in

each interior segment imply 4n restrictions on the coefficients. The indeterminacy can be

resolved by requiring that g has zero second order derivatives in the very first and the

very last segment of the spline. This assumption implies that c0 = d0 = cn = dn = 0,

in which case g is called a natural cubic spline. This choice is justified by the fact that

the gamma of the call converges fast to zero for high and low strikes. As will be seen

presently, the natural cubic spline allows for a convenient formulation of the no-arbitrage

conditions to be imposed on the call price function2.

2It should be noted that the literature on the numerical treatment of splines also discusses other end

conditions (Wahba; 1990). A popular choice is to fix the first-order derivatives at the end points of the

spline. We experimented with this solution. In this case, the smoothness penalty does not have the

convenient quadratic form anymore, see Proposition 3.1, but could be approximated by the smoothness

penalty given by the natural spline. Further, since in our application the two first-order derivatives are

unknown, they must be estimated. As proxy we used the first-order BS derivative w.r.t. the strike

evaluated at the strike implied volatility. In our simulations it turned out that the spline functions are

9
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As is discussed in Green and Silverman (1994), a more convenient representation of (10)

is given by the so called value-second derivative representation of the natural cubic spline.

In particular it allows to formulate a quadratic program to solve (2). For the value-second

derivative representation, put gi = g(ui) and γi = g′′(ui), for i = 1, . . . , n. Furthermore

define g = (g1, . . . , gn)> and γ = (γ2, . . . , γn−1)
>. By definition, γ1 = γn = 0. The

nonstandard notation of the entries in γ is proposed by Green and Silverman (1994). The

natural spline is completely specified by the vectors g and γ. In Appendix A, we give the

formulae to switch between the two representations.

Not all possible vectors g and γ result in a valid cubic spline. Sufficient and necessary

conditions are formulated via the following two matrices Q and R. Let hi = ui+1− ui for

i = 1, . . . , n− 1, and define the n× (n− 2) matrix Q by its elements qi,j, for i = 1, . . . , n

and j = 2, . . . , n− 1, given by

qj−1,j = h−1
j−1 , qj,j = −h−1

j−1 − h−1
j , and qj+1,j = h−1

j ,

for j = 2, . . . , n− 1, and qi,j = 0 for |i− j| ≥ 2. The columns of Q are numbered in the

same non-standard way as the vector γ.

The (n − 2) × (n − 2) matrix R is symmetric and is defined by its elements ri,j for

i, j = 2, . . . , n− 1, given by

ri,i = 1
3
(hi−1 + hi) for i = 2, . . . , n− 1

ri,i+1 = ri+1,i = 1
6
hi for i = 2, . . . , n− 2 ,

(11)

and ri,j = 0 for |i − j| ≥ 2. The matrix R is strictly diagonal dominant, so by standard

arguments in linear algebra, R is strictly positive-definite.

Proposition 3.1. The vectors g and γ specify a natural cubic spline if and only if

Q>g = Rγ . (12)

If (12) holds, the roughness penalty satisfies∫ b

a

g′′(u)2du = γ>Rγ . (13)

very sensitive to a misspecification of the first-order derivatives and less robust than the natural spline

solution.

10
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Proof: Green and Silverman (1994, Section 2.5). �

This result allows us to state the spline smoothing task as a quadratic minimization

problem. Define the (2n − 2)-vector y = (w1y1, . . . , wnyn, 0, . . . , 0)>, where the wi are

strictly positive weights, and the (2n − 2)-vector x = (g>,γ>)>. Further, define the

matrices, A =
(
Q,−R>

)
and

B =

 Wn 0

0 λR

 , (14)

where Wn = diag(w1, . . . , wn). The solution to (2) can then be written as the solution of

the quadratic program:

min
x

−y>x +
1

2
x>Bx , (15)

subject to A>x = 0 .

The quadratic program (15) serves as the basis for our arbitrage-free smoothing of the

call price function. To this end we will add further restrictions on x that ensure the

properties outlined in Section 2. Since B is strictly positive-definite by construction,

program (15) benefits from two decisive properties, irrespective of the additional no-

arbitrage constraints to be imposed. First, by positive-definiteness of B, it belongs to the

class of convex programs which are known to be solvable within polynomial time (Floudas

and Viswewaran; 1995). Algorithms for solving convex quadratic programs are nowadays

available in almost every statistical software package. An excellent resource is Boyd and

Vandenberghe (2004). Second, and most importantly, convex programs are known to have

a unique minimizer. Hence the smoothing spline, for given data and λ, is unique (Green

and Silverman; 1994, Theorem 2.4).

3.2 Cubic spline smoothing under no-arbitrage constraints

It is straightforward to translate the no-arbitrage conditions for the call price function

into conditions on the smoothing spline. Convexity of the spline is imposed by noting

11
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that the second derivative of the spline is linear. Hence it is sufficient to require that the

second derivatives at the knot points be positive, i.e.,

γi ≥ 0 , (16)

for i = 2, . . . , n− 1. By definition, we have γ1 = γn = 0.

Next, the price function must be nonincreasing in strikes. Since the convexity constraints

insure that the slope is increasing, it is sufficient to constrain the initial derivatives at

both end points of the spline. For a cubic spline on the segment [uL, uR] the left boundary

derivative from the right is given by g′(u+
L) = (gR− gL)/h− h(2γL + γR)/6, and the right

boundary derivative from the left by g′(u−R) = (gR − gL)/h+ h(γL + 2γR)/6. Thus, since

γ1 = γn = 0, the necessary and sufficient constraints are given by

g2 − g1

h1

− h1

6
γ2 ≥ −e−

∫ T
t rsds and

gn − gn−1

hn−1

+
hn−1

6
γn−1 ≤ 0 . (17)

Finally, we add the constraints:

e−
∫ T

t δsdsSt − e−
∫ T

t rsdsu1 ≤ g1 ≤ e−
∫ T

t δsdsSt and gn ≥ 0 . (18)

Including the conditions (16) to (18) into the quadratic program (15) yields an arbitrage-

free call price function and, in consequence, an arbitrage-free volatility smile.

12
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3.3 Estimating an arbitrage-free IVS

The preceding sections lead to a natural procedure to generate an arbitrage-free IVS:

1. Estimate the IVS via an initial estimate on a regular forward-moneyness grid

J = [κ1, κn]× [t1, tm].

2. Iterate through the price surface from the last to the first maturity, and solve the

following quadratic program.

For tm, solve

minx −y>x + 1
2
x>Bx ,

subject to A>x = 0

γi ≥ 0 ,

g2−g1
h1
− h1

6
γ2 ≥ −e−

∫ T
tm

rsds

−gn−gn−1

hn−1
− hn−1

6
γn−1 ≥ 0

g1 ≤ e−
∫ T

tm
δsdsSt (∗)

g1 ≥ e−
∫ T

tm
δsdsSt − e−

∫ T
tm

rsdsu1

gn ≥ 0 .

(19)

where x = (g>,γ>)>;

For tj, j = m− 1, . . . , 1, solve (19) replacing condition (∗) by:

g
(j)
i < e

∫ tj+1
tj

δsds g
(j+1)
i , for i = 1, . . . , n ,

where g
(j)
i denotes the ith spline value of maturity j.

In order to respect condition (7), Step 1 can be circumvented by evaluating each spline

of the previous time-to-maturity at the desired strikes. But it might be faster to employ

the initial estimate, because the IVS observations can easily be spaced on the forward-

moneyness grid. As an initial estimator any two-dimensional nonparametric smoother,

such as a local polynomial estimator or a thin plate spline, is a natural candidate (Wahba;

13
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1990; Green and Silverman; 1994). The absence of strike arbitrage along the price function

and the absence of calendar arbitrage at the knots is insured by Step 2. In general, it

cannot be excluded that there is calendar arbitrage between the knots, but this is very

unlikely given the convex, monotonic shape of the call price function.

The smoothing parameter λ can either be determined according to a subjective view

or an automatic, data-driven choice of the smoothing parameter can be used. In the

latter case, asymptotically optimal bandwidths can be found by ‘leave-one-out’ cross-

validation techniques (Green and Silverman; 1994, Section 3.2). Unfortunately, due to

the no-arbitrage constraints present in the program, the common and efficient calculation

techniques are not applicable. For each cross validation score it is necessary to solve

n separate smoothing problems which is cumbersome. However, the shape constraints

we impose – monotonicity and convexity – act already as a strong smoothing device.

As pointed out by Dole (1999, p. 446), bounds on second-order derivatives can be seen

as smoothing parameters in their own right. Therefore, the choice of the smoothing

parameter is of secondary importance. It can be fixed at some small number without

large impact on the estimate (see Turlach (2005) for a related discussion). Choosing

a very small number has the additional benefit that initially good data will hardly be

smoothed at all.

From the perspective of financial theory, one might worry that the sum of squared dif-

ferences of yi − g(ui) in (2) may not be the right measure of loss, since an investor is

only interested in relative prices. This concern can be addressed by using the underly-

ing asset price as numéraire. By setting wi = S−2
t and switching to a spot moneyness

space ũ = u/St, one can conduct the minimization on relative option prices after some

obvious adjustments to the no-arbitrage constraints in (19). The resulting curve estimate

(g̃>, γ̃>)> can be inflated again via gi(u) = Stg̃i(ũ) and γi(u) = γ̃i(ũ)/St, which yields a

natural cubic spline as can be verified from (12). Seemingly this approach comes at the

additional cost of a homogeneity assumption. However, as can be observed from (15), in

choosing as smoothing parameter λ̃ = λS−3
t the program in relative prices is equivalent

to the former one in absolute prices (up to the aforementioned scales). This property is
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hidden in the value-second derivative representation of the natural cubic spline. For a

discussion of the financial implications of an option pricing function that is homogeneous

in spot and strikes we refer to Renault (1997), Alexander and Nogueira (2007) and Fengler

et al. (2007).

4 Empirical demonstration

We demonstrate the estimator using single expiries and the entire IVS of DAX settlement

data observed on June 13, 2000; see also Table 1 the Appendix B. These data represent a

typical situation one faces when working with settlement data. By the conditions spelled

out in Section 2, market data violating strike arbitrage conditions are found by testing in

the sample of strikes and prices (Ki, Ci), i = 1, . . . , n, whether

−e−
∫ T

t rsds ≤ Ci − Ci−1

Ki −Ki−1

≤ Ci+1 − Ci
Ki+1 −Ki

≤ 0 (20)

holds. In the optimization do not use specific weights and work in absolute prices. A good

initial value x0 for the quadratic program (19) is given by the observed market prices; the

part in x0 containing the second-order derivatives is initialized to 1e-3. The smoothing

parameter fixed at λ =1e-7. Implied volatility is computed from the smoothed call prices.

For the exposition, we pick the expiries with 68 and 398 days time-to-maturity as they

have a significant vega. Figures 3 and 6 show the smoothed implied volatility data together

with the original observations printed as crosses. We identify the (center) observations

that allow for arbitrage according to Eq. (20) by an additional square. Since the residuals

computed as differences between the raw data and the estimated spline are sometimes

hardly discernible, we further present the implied volatility residuals in Figures 4 and 7

and the price residuals in Figures 5 and 8. Note that all observations marked with

the square are in the positive half plane of the plot. The reason is that the simplest

way to correct three observations for convexity is to pull the center observation (marked

with the square) downwards and to correct the observations i − 1 and i + 1 into the

opposite direction. This is the correction the quadratic program chooses in most cases.
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The adjustments, which are necessary to achieve an arbitrage-free set of call prices, can

be substantial. Measured in terms of implied volatility they amount to around 10bp in

Figure 4 and to around 30bp in Figure 7. For the price residuals, the biggest deviations

are observed near-the-money, where the vega sensitivity is highest.

The entire IVS is given in Figure 9. The estimate is obtained using a thin plate spline as

initial estimator on the forward-moneyness grid J = [0.6, 1.25] × [0.1, 1.6] with 100 grid

points altogether and by applying the arbitrage-free estimation technique from the last

to first time-to-maturity. For these computations the implied volatility observations with

three days to expiry were deleted from the raw data sample as is regularly suggested in

the literature (Andersen and Brotherton-Ratcliffe; 1997; Bodurtha and Jermakyan; 1999;

Crépey; 2003b). In Figure 10 we present the delta of the down-and-out put obtained from

the local volatility model based on this arbitrage-free data set. The delta is computed via

a finite difference quotient, directly read from the grid of the PDE solver. As explained

in the introduction, the local discontinuities vanish when using data smoothed in an

arbitrage-free manner.

To give an idea of the properties of our spline smoothing approach we do a simulation

comparing it with a benchmark model. As benchmark model we choose the Heston (1993)

model, which is often taken as the first alternative to local volatility models. Under a

risk-neutral measure, the model is given by

dSt = (rt − δt)Stdt+
√
VtStdW

1
t (21)

dVt = κ(θ − Vt)dt+ σ
√
VtdW

2
t , (22)

where dW 1dW 2 = ρdt. Unlike spline smoothing the Heston model is a parametric model

with five parameters κ, θ, σ, ρ and the initial variance V0. A comparison between the two

models is essentially a comparison of the trade-off between variance and bias. Nevertheless

it is instructive to compare both types of models.

The set-up we used is borrowed from Bliss and Panigirtzoglou (2002) developed for testing

the stability of state price densities. The idea is to resample from artificially perturbed

data. We consider two cases. First we fit the Heston model to the observed data using
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the FFT pricer by Carr and Madan (1999). From the estimated parameters we generate

implied volatility smiles that are perturbed by zero mean normal errors. The standard

deviation is chosen between 50bp to 10bp. Then we fit both models to the perturbed

Heston data. Second, we use the market data and perturb those. Again both models are

fitted. We look at single expiries only, since the Heston model displayed too much bias

when fitted to the entire surface. The number of simulations is set to 100. At any time,

the natural cubic spline converged, while the Heston model occasionally did not; in these

cases a new set of random errors was drawn.

The results are displayed in Table 2. The trade-off between variance and bias is well

obvious in the figures. In almost every case the RSME (root mean square error) of

the spline model is smaller than the Heston model’s. Furthermore, when comparing

the RMSE* measures, which present the error w.r.t. the true smile, it is evident that

the Heston model is superior to the spline in terms of identifying its own model, from

which data are generated. This advantage disappears when the market data are used

and perturbed. Of course, the Heston model cannot identify the unperturbed market,

and the error measures are of comparable size. This is a significant virtue of the spline

smoother, since as a matter of fact the market model is unknown; it underpins that the

spline smoother is a the natural complement to local volatility pricers which aim at best

fitting all market prices.

5 Conclusion

Local volatility pricers require as input an arbitrage-free implied volatility surface (IVS)

– otherwise they can produce mispricings. This is because arbitrage violations lead to

negative transition probabilities in the underlying finite difference scheme. In this paper,

we propose an algorithm for estimating the IVS in an arbitrage-free manner. For a single

time-to-maturity the approach consists in applying a natural cubic spline to the call price

function under suitable linear inequality constraints. For the entire IVS, we first obtain

the fit on a fixed forward-moneyness grid. Second the natural spline smoothing algorithm
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is applied by stepping from the last expiry to the first one. This precludes calendar and

strike arbitrage.

The method improves on existing algorithms in three ways. First the initial data do

not have to be arbitrage-free from the beginning. Second, the solution is obtained via

a convex quadratic program that has a unique minimizer. Finally, the estimate can

be stored efficiently via the value-second derivative representation of the natural spline.

Integration into local volatility pricers is therefore straightforward.
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Kahalé, N. (2004). An arbitrage-free interpolation of volatilities, RISK 17(5): 102–106.

Kellerer, H. G. (1972). Markov-Komposition und eine Anwendung auf Martingale, Math-

ematische Annalen 198: 99–122.

Lagnado, R. and Osher, S. (1997). A technique for calibrating derivative security pricing

models: Numerical solution of an inverse problem, Journal of Computational Finance

1(1): 13–25.

21

Page 22 of 38

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

Mammen, E. and Thomas-Agnan, C. (1999). Smoothing splines and shape restrictions,

Scandinavian Journal of Statistics 26: 239–252.

Reiner, E. (2000). Calendar spreads, characteristic functions, and variance interpolation.

Mimeo.

Reiner, E. (2004). The characteristic curve approach to arbitrage-free time interpolation of

volatility, presentation at the ICBI Global Derivatives and Risk Management, Madrid,

España.

Renault, E. (1997). Econometric models of option pricing errors, in D. M. Kreps and

K. F. Wallis (eds), Advances in Economics and Econometrics, Seventh World Congress,

Econometric Society Monographs, Cambridge University Press, pp. 223–278.

Rubinstein, M. (1994). Implied binomial trees, Journal of Finance 49: 771–818.

Turlach, B. A. (2005). Shape constrained smoothing using smoothing splines, Computa-

tional Statistics 20(1): 81–104.

Wahba, G. (1990). Spline Models for Observational Data, SIAM, Philadelphia.

22

Page 23 of 38

E-mail: quant@tandf.co.uk  URL://http.manuscriptcentral.com/tandf/rquf

Quantitative Finance

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

A Transformation formulae

To switch from the value-second derivative representation to the piecewise polynomial

representation (10) employ:

ai = gi

bi = gi+1−gi

hi
− hi

6
(2γi + γi+1)

ci = γi

2

di = γi+1−γi

6hi

(23)

for i = 1, . . . , n− 1. Furthermore,

a0 = a1 = g1, an = gn, b0 = b1, c0 = d0 = cn = dn = 0 ,

and

bn = s′n−1(un) = bn−1 + 2cn−1hn−1 + 3dn−1h
2
n−1 =

gn − gn−1

hn−1

+
hi
6

(γn−2 + 2γn) ,

where hi = ui+1 − ui for i = 1, . . . , n− 1 and γ1 = γn = 0.

Changing vice versa is accomplished by:

gi = si(ui) = ai for i = 1, . . . , n ,

γi = s′′i (ui) = 2ci for i = 2, . . . , n− 1 ,

γ1 = γn = 0 .

(24)
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B Data

time-to-maturity 3 28 48 68 133 198 263 398
strikes implied volatilities
2600 367.09
2800 340.92
3000 316.57
3200 293.81
3400 272.43
3600 252.28
3800 233.23
4000 215.16
4200 197.98 38.39
4400 181.60 37.10
4600 165.96 36.19 34.51
4800 150.99 36.86 35.25 33.79
4900 143.73 36.15
5000 136.63 35.65 34.16 33.28
5100 129.66 35.38
5200 122.83 34.57 33.55 32.32
5300 116.13 33.94
5400 109.56 33.57 32.35 31.82
5500 103.11 33.02
5600 96.78 31.86 32.30 31.70 31.11
5700 90.56 31.80
5800 84.45 30.18 31.53 30.65 30.16
5900 78.44 30.73
6000 72.54 28.46 29.12 30.13 29.92 29.38 29.47 29.49
6100 66.74 29.77
6200 61.03 27.04 28.01 29.17 29.04 28.72 28.91 28.78
6250 58.21
6300 55.42 28.54 28.58
6350 52.64
6400 55.24 25.86 27.06 28.19 28.26 28.06 28.00 27.83
6450 52.88
6500 50.76 27.66 28.04
6550 48.08
6600 45.41 24.70 26.02 27.08 27.44 27.24 27.39 27.87
6650 42.77 24.29 25.74 26.88
6700 40.15 24.15 25.38 26.74 26.99 26.97
6750 37.55 24.05 25.12 26.59
6800 34.97 23.59 24.96 26.23 26.67 26.79 26.79 27.15
6850 34.14 23.32 24.90 25.92
6900 31.62 23.21 24.49 25.69 26.48 26.30
6950 29.71 23.00 24.21 25.54

Raw DAX implied volatility data from June 13, 2000, traded at the EUREX, Germany.

Time-to-maturity measured in calendar days.
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time-to-maturity 3 28 48 68 133 198 263 398
strikes implied volatilities
7000 28.95 22.62 24.02 25.45 25.91 25.88 26.00 26.63
7050 28.46 22.41 23.94 25.15
7100 26.85 22.42 23.65 24.83 25.50 25.53
7150 27.11 22.01 23.34 24.59
7200 25.56 21.74 23.14 24.43 25.24 25.30 25.54 26.32
7250 25.30 21.69 23.07 24.34
7300 23.98 21.21 22.65 23.91 24.87 24.86
7350 23.80 20.94 22.33 23.60
7400 23.59 20.86 22.16 23.37 24.39 24.40 24.47 24.94
7450 23.91 20.77 22.11 23.23
7500 24.87 20.46 21.88 23.17 24.06 24.06
7550 25.59 20.37 21.62 22.95
7600 26.96 20.37 21.48 22.67 23.89 23.85 23.90 24.45
7650 28.32 20.06 21.48 22.48
7700 29.03 20.00 22.38 23.51 23.71
7750 30.25 20.10 22.35
7800 32.47 19.80 20.93 22.07 23.14 23.30 23.56 24.15
7850 34.69 21.84
7900 36.37 19.89 20.65 21.72 22.93 22.97
7950 35.67 21.67
8000 37.85 19.55 20.48 21.48 22.76 22.76 22.91 23.67
8050 40.02 21.32
8100 42.17 21.15 22.35 22.66
8150 44.31
8200 46.44 19.53 20.04 21.08 22.13 22.33 22.59 23.19
8250 48.55
8300 20.68 22.06 22.02
8400 54.81 19.54 20.60 21.69 21.81 22.05 22.92
8500 21.72
8600 62.97 19.38 20.23 21.36 21.45
8700 21.14
8800 70.95 19.93 20.85 20.97 21.31 22.07
8900 20.90
9000 78.75 19.78 20.61 20.63
9100 20.37
9200 86.37 19.74 20.25 20.21 20.64 21.46
9400 93.84 19.91 19.93 19.86
9600 101.14 19.93 19.86 19.52 19.90 20.85
9800 108.29 19.94 19.54 19.15
10000 115.30 20.38 19.53 18.89 19.19 20.13
10200 19.35
10400 19.41

Raw DAX implied volatility data from June 13, 2000, traded at the EUREX, Germany.

Time-to-maturity measured in calendar days.
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Figures
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Figure 1: Delta of a one-year down-and-out put calculated from arbitrage-contaminated

IVS of DAX settlement data from June 13, 2000. Strike is at 120% and barrier at 80% of

the DAX spot price at 7268.91. Pricing follows Andersen and Brotherton-Ratcliffe (1997)

which is an implicit finite difference solver; delta is read from the grid.
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Figure 2: Total variance plot for DAX data, June 13, 2000, see Table 1 and Appendix B

for the data. Total variance is defined by ν2(κ, τ) = σ̂2(κ, τ)τ . Time-to-maturity given in

calendar days; top graph corresponds to top legend entry, second graph to the second one,

etc.
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Figure 3: Arbitrage-free implied volatility smile for a time-to-maturity of 68 days. Es-

timated function is shown as straight line, original observations are denoted by crosses.

Observations violating strike arbitrage and belonging to the center strike price in Eq. (20)

are identified by additional squares.
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Figure 4: Implied volatility residuals for the time-to-maturity of 68 days computed as

σ̂i − ̂̂σi, where ̂̂σi denotes the estimator for the arbitrage-free implied volatility. Residuals

belonging to observations that previously violated strike arbitrage according to Eq. (20)

are identified by additional squares.
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Figure 5: Call price residuals for the time-to-maturity of 68 days computed as gi − ĝi,

where ĝi denotes the value of the estimated spline. Residuals belonging to observations

that previously violated strike arbitrage according to Eq. (20) are identified by additional

squares.
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Figure 6: Arbitrage-free implied volatility smile for a time-to-maturity of 398 days. Es-

timated function is shown as straight line, original observations are denoted by crosses.

Observations violating strike arbitrage and belonging to the center strike price in Eq. (20)

are identified by additional squares.
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Figure 7: Implied volatility residuals for the time-to-maturity of 398 days computed as

σ̂i − ̂̂σi, where ̂̂σi denotes the estimator for the arbitrage-free implied volatility. Residuals

belonging to observations that previously violated strike arbitrage according to Eq. (20)

are identified by additional squares.
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Figure 8: Call price residuals for the time-to-maturity of 398 days computed as gi − ĝi,

where ĝi denotes the value of the estimated spline. Residuals belonging to observations

that previously violated strike arbitrage according to Eq. (20) are identified by additional

squares.
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Figure 9: Estimated arbitrage-free IVS using the constrained cubic spline applied to an

initial estimate coming from a thin plate spline; DAX settlement data, June 13, 2000.
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Figure 10: Delta of a one-year down-and-out barrier put calculated from the arbitrage-free

IVS of DAX settlement data from June 13, 2000. Strike is at 120% and barrier at 80%

of the DAX spot at 7268.91. Pricing follows Andersen and Brotherton-Ratcliffe (1997);

delta is read from the grid.
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Tables

Time-to-maturity 3 28 48 68 133 198 263 398

Interest rate 4.36% 4.47% 4.53% 4.57% 4.71% 4.85% 4.93% 5.04%

Table 1: Data of DAX index settlement prices, June 13, 2000. Time-to-maturity is given

in calendar days; the dividend yield is assumed to be zero, since the DAX index is a

performance index, see Deutsche Börse (2006) for a precise description. DAX spot price

is St = 7268.91.
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Time-to-mat. 3 28 48 68 133 198 263 398

NCS, RMSE (prices) 1.0749 0.3542 0.3552 0.3648 0.5623 0.6617 1.4107 3.9284

NCS, RMSE (vol) 0.0496 0.0004 0.0003 0.0004 0.0004 0.0003 0.0006 0.0012

Heston, RMSE (prices) 4.1435 0.7916 0.9091 1.0389 1.7211 2.5468 3.8228 8.1583

Heston, RMSE (vol) 0.4684 0.0040 0.0008 0.0031 0.0034 0.0017 0.0019 0.0026

κ 1.0066 9.0638 7.6691 1.2101 0.4868 1.0146 0.1302 0.1254

θ 9.2017 0.0682 0.0636 0.4323 0.5882 0.2278 1.1336 0.8087

σ 4.3041 0.8755 0.8902 0.8300 0.6445 0.6286 0.5432 0.4503

ρ -0.3019 -0.4399 -0.5243 -0.6084 -0.6592 -0.6892 -0.7037 -0.7327

V0 0.0001 0.0370 0.0492 0.0011 0.0010 0.0001 0.0003 0.0014

Simulation from estimated Heston

NCS, RMSE (prices) 0.0275 0.5873 1.1637 0.6514 1.5852 2.3430 0.8430 1.4461

NCS, RMSE (vol) 0.0039 0.0031 0.0025 0.0009 0.0013 0.0014 0.0004 0.0005

NCS, RMSE* (prices) 0.5311 1.6894 2.1193 1.5639 2.2984 2.8380 1.5578 2.0008

NCS, RMSE* (vol) 0.0055 0.0045 0.0039 0.0020 0.0019 0.0017 0.0008 0.0007

Heston, RMSE (prices) 0.4668 1.6949 2.4265 1.7513 2.9378 3.9392 1.8838 2.6694

Heston, RMSE (vol) 0.0067 0.0079 0.0066 0.0026 0.0025 0.0023 0.0009 0.0010

Heston, RMSE* (prices) 0.3348 0.9430 1.1195 0.6452 0.8520 0.8915 0.4786 0.5445

Heston, RMSE* (vol) 0.0044 0.0058 0.0046 0.0014 0.0009 0.0006 0.0003 0.0002

Simulation from observed market data

NCS, RMSE (prices) 1.3195 2.5556 3.7661 1.9850 2.4999 3.7458 1.8047 4.3230

NCS, RMSE (vol) 0.0395 0.0034 0.0034 0.0018 0.0016 0.0017 0.0008 0.0014

NCS, RMSE* (prices) 1.3510 2.0523 2.7571 1.5376 2.3321 3.2912 2.2842 4.6488

NCS, RMSE* (vol) 0.0393 0.0035 0.0028 0.0017 0.0018 0.0017 0.0010 0.0015

Heston, RMSE (prices) 4.1974 3.6398 4.7761 3.4267 5.0641 5.6090 4.4932 8.8147

Heston, RMSE (vol) 0.4794 0.0107 0.0046 0.0090 0.0081 0.0029 0.0020 0.0028

Heston, RMSE* (prices) 4.1438 1.7627 1.6052 2.2388 3.7631 2.9330 3.9613 8.7661

Heston, RMSE* (vol) 0.4793 0.0093 0.0017 0.0084 0.0076 0.0019 0.0018 0.0028

stdev. of simul. errors [bp] 50 50 50 25 25 25 10 10

Table 2: RMSE (root mean square error) for prices and implied volatilities for the natural

cubic spline (NCS) and the Heston model computed from unweighted observations. Num-

ber of simulations is 100. RMSE* is the error between the true (or the market) model and

the perturbed one. Last line gives the standard deviation of the errors added to implied

volatility during the simulations.
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