SSOAR

Open Access Repository

Using hierarchically linear models to analyze

multilevel data
Kreft, Ita G. G.

Verdffentlichungsversion / Published Version
Zeitschriftenartikel / journal article

Zur Verfiigung gestellt in Kooperation mit / provided in cooperation with:

GESIS - Leibniz-Institut fir Sozialwissenschaften

Empfohlene Zitierung / Suggested Citation:

Kreft, I. G. G. (1991). Using hierarchically linear models to analyze multilevel data. ZUMA Nachrichten, 15(29), 44-56.

https://nbn-resolving.org/urn:nbn:de:0168-ssoar-209729

Nutzungsbedingungen:

Dieser Text wird unter einer Deposit-Lizenz (Keine
Weiterverbreitung - keine Bearbeitung) zur Verfigung gestellt.
Gewéhrt wird ein nicht exklusives, nicht (Ubertragbares,
persénliches und beschrénktes Recht auf Nutzung dieses
Dokuments.  Dieses Dokument ist ausschlieSlich  fiir
den persénlichen, nicht-kommerziellen Gebrauch bestimmt.
Auf sémtlichen Kopien dieses Dokuments missen alle
Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen
Schutz beibehalten werden. Sie dlrfen dieses Dokument
nicht in irgendeiner Weise abéndern, noch dirfen Sie
dieses Dokument fiir &ffentliche oder kommerzielle Zwecke
vervielféltigen, offentlich ausstellen, auffiihren, vertreiben oder
anderweitig nutzen.

Mit der Verwendung dieses Dokuments erkennen Sie die
Nutzungsbedingungen an.

gesIs

Leibniz-Institut
fiir Sozialwissenschaften

Terms of use:

This document is made available under Deposit Licence (No
Redistribution - no modifications). We grant a non-exclusive, non-
transferable, individual and limited right to using this document.
This document is solely intended for your personal, non-
commercial use. All of the copies of this documents must retain
all copyright information and other information regarding legal
protection. You are not allowed to alter this document in any
way, to copy it for public or commercial purposes, to exhibit the
document in public, to perform, distribute or otherwise use the
document in public.

By using this particular document, you accept the above-stated
conditions of use.

Mitglied der

Leibniz-Gemeinschaft ;‘


http://www.ssoar.info
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-209729

Forschungsberichte: Kreft

Using Hierarchically Linear Models
to Analyze Multilevel Data

Vorn Ita G.G. Kreft

Vom 2. bis 5. Jull dieses Jahres fand bei ZUMA der Workshop "The Analysis of
Hierarchically Nested Data” statt, der von Dr. Ita G.G. Kreft, California State University, Los
Angeles durchgefiihrt wurde. Mit dieser Veranstaltung wurde die Reihe der ZUMA-
Workshops fortgesetzt, die in den letzten Jahren Themen der Mehrebenenanalyse zum
Gegenstand hatten. Unter Mehrebenenanalyse ist jedes statistische Verfahren zu verstehen,
mit dem Beziehungen zwischen Einheiten oder Variablen unterschiedlichen Aggregationsni-
veaus statistisch tiberpriift werden kann. Traditionell haben der Gegensatz von Makro- und
Mikrosoziologie und die Idee homologer Bezichungen zwischen Daten der Makro- und der
Mikroebene die Ansédtze der Mehrebenenanalyse dominiert. Die Grenzen dieser Vorstellung
sind in der Literatur in einer Falle von Beispielen zum sogenannten kologischen
Fehlschlu demonstriert worden, wonach die Verwendung von Aggregatdaten zur Ableitung
indtvidueller Beziehungen teflweise extrem irrefihrend sein kann. Es sind allerdings auch
Modellansitze bekannt, in denen umgekehrt die Verwendung von Aggregatdaten bei der
Parameterschitzung von Mikromodellen gegeniiber einer Schitzung mit Hilfe von
Mikrodaten tiberlegen ist. Abseits von diesem Mikro-Makro-Puzzle sind in der
Mehrebenanalyse in den letzten Jahren statistische Modelle und die dazugehdrige Software
entwickelt worden, in denen der gemeinsame Einfluf von Mikro- und Makrovariablen auf
abhangige Mikrovariablen statistisch stringent formuliert werden kann. Die ersten Modelle
dieser Art sind auch- unter dem Namen "Kontextmodelle® bekannt geworden. Der
methodische Fortschritt gegentiber fritheren Ansitzen besteht nun darin, dag nicht nur die
fixen Effekte von EinfluBgrdfien der Makroebene modelliert werden, sondern dariiber hinaus
auch zufallige Makroeffekte zugelassen sind. Mit anderen Worten: Die Gblichen individuellen
Fehlerausdriicke der linearen Modelle als Substitut far die unsystematischen zufalligen
Einflisse ungemessener Variablen werden in einer spezifischen Weise um analoge
Fehlerterme der Makroebene erweitert; man gelangt damit zu speziellen Varianzkomponen-
tenmodellen. Der nachfolgende Artikel von Ita G.G. Kreft gibt eine Einfithrung in
Spezifikation und Anwendung dieses Modelltyps. (Der Herausgeber)

1. Why new techniques? An example from educational
research
Evaluating the effectiveness of large-scale experiments, for instance in
education, involves the analysis of hierarchical data structures. Educational
data are often hierarchical because pupils are in schools, schools are in
districts, districts are in counties, and counties are in states. In a large-scala
research project we usually have information about two or more of the levels
involved, for instance: variables describing individuals (such as intelligence,
school career, and family background), variables describing the schools
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(school type, schools in a special program, curricula offered), and perhaps
variables describing districts or countries (available resources). It is well
known that analysis of these variables on any of these levels separately can
be seriously misleading, (for an overview see Burstein 1980, and Kreft 1987).
More satisfactory would be to construct models and - techniques which
simultaneously take information of all levels into account. But in order to be
able to do this, some serious statistical problems have to be solved, like
problems in hardware and software that were unsolvable until recently. In
the last few years however, a number of papers in.the statistical and
methodological literature have directly attacked the problem of analyzing
variables measured at different levels of a hierarchy. (See Mason/Wong/Ent-
wistle 1985; Aitkin/Longford 1986; Goldstein 1986; Raudenbush/Bryk
1986; and De Leeuw/Kreft 1986). These investigators work with basically the
same model known as the hierarchical linear model, the random coefficient
model, or the Bayesian linear model. All models deal with the problem of
analyzing nested data collected under non-experimental conditions. These
nested data have the same type of structure as the above educational
example. Multilevel data analysis techniques are available in several software
packages. We refer to Mason/Wong/Entwisle (1985 program GENMOD),
Aitkin/Longford (1986, program VARCL), Goldstein (1986, program ML3) and
Raudenbush/Bryk (1986, program HLM). The packages treat the data the
way they are collected; at two or more levels.

2. Some uses of hierarchically nested data in research

Clustered samples are very common in all types of research, especially in
education and sociology. Observations are sampled or observed within
certain groups, which may be students within schools, employees within
industries, or labor strikes within regions.

Two of the most prominent hierarchical data sets in education are the High
School and Beyond (HSB) data set, and the Second International
Mathematics Study (SIMS) data set. The HSB data were first used by
Coleman/Hoffer/Kilgore (1982). It exists of a random sample of high schools
in the USA, which are sampled from within the two sectors: The public and
the private. Many student level variables are included, as well as teacher
level and school level variables. The SIMS data are collected by the
International Association for the Evaluation of Educational Achievement.
One description and analysis can be found in Burstein/Kim/Delandshere
(1988), which exists of random samples of classes that are collected from
within several countries. And furthermore contains student level variables
such as pre- and post mathematics test scores, background variables of the
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student, and school level and country level variables. This list of variables
surveyed in both studies is running into the hundreds, with the emphasis on
factors that influence student achievement on any level of the hierarchy.

Large hierarchical data sets, such as the two mentioned above, have several
major advantages over single level data sets. Data sets with student level
variables only are restricted to relations between students, while data sets
with school or class level data only are restricted to relations between types
of schools or types of classes. Making cross level inferences from school level
analysis to students, or from a student level analysis to schools, is since
Robinson’s famous article in 1950 not considered to be a valid way to
proceed. The danger here is ecological fallacy (see Robinson 1950; Kreft/De
Leeuw 1988). Only data sets that contain measurements of both levels can
be used in a multilevel data analysis and analyzed at both levels, which
allows a testing of cross level interactions as well.

Furthermore, examples of hierarchically nested data can be found in other
areas besides education. A well known example is growth curve analysis,
where measurements obtained at different time points are the lower level
observations, nested within individuals. A hypotheses that can be tested here
is, if growth curves are equal for all individuals or differ for different types
(e.g. gender or race differences). Another example of hierarchically nested
data are vignet studies, which are portraits judged by different people. A
typical research question in such a case is to ascertain how subjective the
judges are in their judgments, and if these subjective variances can be
related to between-judge difference in background and/or personality (see
Hox/Kreft/Hermkens 1991). Vignets are the lower level observations, nested
within judges. Research that studies interview bias is another example of
hierarchically nested data. Interviewers are the context on the higher level,
while the interviewees are nested within interviewers. An important research
question from this fleld is: "What is the influence of the interviewer on the
answers given by the interviewee?", meaning in technical terms if cross-level
interaction effects are present. For instance, does the race (or gender) of the
interviewer make a difference? Has the interviewer a different effect on the
interviewee if both are of the same gender (or race) compared to a situation
where both are of a different gender (or race)?

Multilevel analysis, with data that contains measurements from different
levels of the hierarchy, allows researchers to separate the total variance of
the dependent variable into two (in two level analysis) or three (in three level
analysis) orthogonal variances: the within and the between strata variation.
Single level data analysis estimates the total variance, while neglecting any
grouping of the data, so that this analysis ignores either the variation at the
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group level by doing an individual level analysis, or the variation at the
individual level by doing a group level analysis. Since both levels may have a
significant influence on the dependent variable, it is often important to be
able to analyze both levels at the same time. Analyzing both levels separately
ignores another important effect, which is the interaction of the individual
and the context, namely the cross-level interaction. Only a multilevel
analysis can effectively deal with all level effects, while at the same time
testing for cross level interactions. The full potential multilevel data can only
be used when multilevel data analysis is applied.

The most important advantage of multilevel data sets analyzed in a
multilevel way is, that it allows researchers to answer questions, that could
not be addressed with the traditional linear models such as multiple
regression or analysis of (cojvariance. For instance, given the information
that 55% of the variation in student achievement can be explained by
individual student characteristics such as Intelligence (IQ), ability, SES of
parents, gender and aspiration level (Alexander/Cook/MCDill 1978 in the
USA, and Van Herpen/Smulders 1980 in the Netherlands), the remaining
45% variation may be explained by outside factors such as "significant
others” (see the models used by Sewell/Haller/Portes 1969), peer group
influences (see Webb 1982, 1984), school policies like streaming (see Oakes
1985), or school organization (see Coleman et al. 1982). Obviously, student
level analysis cannot test the influence of the school or the class characteri-
stics, while a school level analysis cannot test the influence of the individual
student charateristics. Analysis of (co)variance can test for group effects,
correcting for individual differences, while random effects Anova could be
used when the groups studied are a sample of all possible groups (as schools
in most educational research are), instead of a fixed number of treatments.
But both methods have their shortcomings; for one, they limit the number of
groups that can be used in the analysis. More importantly, they do not allow
to test what makes some school significantly different from others. What can
be tested in these models is if schools differ significantly, but not why they
are different. Both traditional techniques (ANCOVA and multiple regression)
have limitations in their relation to student learning when individual student-
effects have to be separated from school-effects.

The following example shows how the multilevel model can be used to test
two contradictory theories. One theory claims that the achievement of
students cannot be directly influenced by the school, while another theory
states that it can. The latter propostion stimulates research that investigate
the effects of different organizations and different teaching styles. The other
hypotheses considers the impact of schools or teachers largely illusory, since
it claims that the unexplained 45% of the variance can only be due to
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student’s personal attributes, that inhibit or facilitate good use of what the
school environment has to offer. In this theory, the school environment is
considered as a proxy for the character and motivation of the student
(Hauser/Sewell/Alwin 1976, following Sewell/Haller/Portes 1969). In the
criticism of school effectiveness research, for instance Hauser (1970), group
effects are considered spurious effects and artifacts of inadequately
controlled individual effects. Of course the same may be true for the
individual effects, as being an artifact of inadequately controlled group
effects. For testing opposing claims traditional models are rendered useless.
Using a hierarchical linear model allows for a better control over the effects
of both levels of observation, the level of the school and the level of the
student. Since within each context the same model is fitted, significant
variation in outcomes between models over contexts can show that contexts
are different. The assumption that we need to make is, that the omitted
variables work in the same way within context and can be context specific.
Furthermore, we can assume that omitted variables are randomly
influencing individuals within contexts, but may have different effects across
contexts. The effect of omitted variables is summarized in the error term (as
it is in traditional regression models), with the usual assumption that the
errors have a normal distribution with a variance and a mean of zero within
each context. The model can test both, the within and between variation of,
for instance, school climate. This is nicely illustrated in Rowan/Rauden-
bush/Kang (1991).

A traditional way of analyzing nested data was multiple regression, which
ignored the fact that observations are grouped. The observations are treated
as if belonging to the same domain, although measured at different levels.
For instance teacher, school and student variables are used as predictors of
student achievement in a single level path model, and the level of analysis is
defined by the dependent variable at the student level. In such instances,
where the student is the unit of analysis, school and teacher effects are
disaggregated to the student level. As a result, the significance test
associated to the coefficients of the disaggregated variables are biased. In any
case, the standard errors of the higher level estimates will be too small. In all
regression procedures standard errors of the coefficients are calculated
based on the number of observations. Although the number of schools may
be smaller than the number of individual students, the larger number is
used in the calculation of each standard error of the coefficients in the path
model. For class- and school-variables the correct number of observations is
mostly smaller than the number of students, resulting in standard errors
that are under estimated.
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3. The intra class correlation

Students in the same class tend to be more alike than students in different
classes, due to selection processes and shared history, so that this closeness
in space produces a correlation between observations. While in cases where
simple random sampling is used, each observation adds new and
independent information to the data. In hierarchically clustered samples the
observations are sampled from within the same stratum. As a result these
observations are not independent of each other, but repeat more or less the
same information. The assumption of independence of observations, an
assuption of the traditional linear model, is violated. Thus we have to
assume that the individual error terms in thie multiple regression model, the
e ’'s, or error terms, within the same context are no longer uncorrelated.

or terms of a linear model are defined as containing (random)
measurement error and the {random) effects of omitted variables. Variables
not included in the model are assumed to have a random instead of a
systematic effect. In data where observations are clustered within contexts
this is a questionable assumption, since observations close in time or space
share experiences due to living in the same time period. The unmeasured
effects of time period or context are more likely to be specific than random.
For example, take two neighborhoods in Los Angeles, one very rich: Bel-air,
the other poor: Watts. We can reasonably assume that unmeasured effects of
the neighborhood are more specific than random, since the neighborhood
probably has a systematic effect on the behavior of the children growing up
there. This effect may be in part general and effect all children alike, and in
part interactive, affecting different children differently. We assume that
children growing up in Watts tend to react more like each other than like the
children in Bel-Air. This causes an intra class correlation.

Using fixed effects linear models, that do not specify this intra-class
correlation properly, or assumes a random effect of omitted context
variables, is introducing bias and unreliable results. Working with
incompletely specified models inevitably leads to a loss of efficiency in the
estimates. The standard errors and the hypothesis tests lean heavily on
distributional assuptions, much more so than point estimators do. In
addition, there is more than one source of error (both at the individual and
at the group level). The standard significance test in fixed effects models
ignores the error at the second level by only using the source of error at the
individual level. As a result, the tests based on the standard errors and the
explained variance are less reliable here.
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4, A model that decomposes the total variance into a withim
and a between group variance

The analysis model for the analysis of hierarchically nested data is based on
the concept of a micro-model, defined separately for each macro-unit. it is a
linear model, with individual- and group-level regressors or predictors, and
an individual-level dependent variable, with different assumptions than the
traditional linear models. The assumptions of the multilevel analysis or
random coefficient model are more realistic and based on the way the data
are collected, which is a stratified sample of groups and individuals within
those groups in non-experimental conditions.

The basic random coefficient model is (random variables are still in bold
face),
¥Y=2a+bX +e.
¥ 1y ]
Index i is again used for individuals and index j for groups. Variable a is the
random intercept, b is the random slope, and e 1is the disturbance term.
We assume that ¢ ’ has expectation zero. All e’ are independent of each
other. The variance’of e is equal to ¢ % ¥ is the aependent variable score of
an observation 1 within 4 context Js while'X is the individual-level predictor
or regressor score of the same observation.” The assumptions are: random
coefficients (constant and slopes) at group level; the slopes are independent
from each other but correlated with the random group level intercepts. Error
terms are correlated within groups, which is based on the fact that we do not
assume that a group member’s development and performance is independent
of the experiences and acts of the other members. Slopes and intercepts are
correlated only if they belong to the same group, while disturbances of both
levels are uncorrelated.

(m

The next step in the modeling process is to specify the properties of the
random slopes and intercepts. We first split them up in fixed components
and disturbances. These disturbances are on type group level, have
expectation zero, as usual, and they are independent of the individual-level
disturbances eu. So

= (2)
% Too" &
bj= Yot hj' (3)

From (2) and (3) it is clear that the variance in the dependent variable (Y) is
divided up in a number of components. A grand mean and other fixed effects

50 ZUMA-Nachrichten 29



Forschungsberichte: Kreft

[yoo and vy ), the first level error variance of e and one or more second level
error variances of g and h, since in terms of Yariance components both the
intercept & and the’ slope doefficients b are random at the second level. The
grand meah effect is Y , while g (the drror term) illustrates the deviance of
each context from this Overall méan. The same is true for the slope Y10 which
is the mean slope, of fixed part, while estimate h represents the random part
or the error for the different context around this fnean slope.

The variances are called variance components, each being a variance in its
own right.

Therefore this kind of model is sometimes referred to as variance
components models (see Longford 1986) or error components model. The
model contains fixed effects (yoo+ 710) and random effects (% hj and eij).

The variance of the disturbance of € is ¢, that of g is 1:2, that of h is yz.
and the covariance of g and h is p Y1f wé substitute’ the ’decomposi’dons Yof
the random intercepts (e’quatloﬂ 2 afd 3) in equation (1) we obtain

Ylj= Yot ymxﬁ+ gj + hjx“+ eq. 4)
In above model (4), no macro effects are present, but only the multiple
sources of error. The concern with regard to comparing contexts here is,
whether they show significant differences in the mean outcomes (the
intercepts) and/or in the relation between dependent and independent
variables (the slopes). As such, the simple model above can be used as a
preliminary analysis to assess if statistical significant differences in context
exists, which can later be modeled as functions of one or more context
characteristics. If no such differences can be found in this basic mean model,
no relationships will show up in a more complete model with macro level
variables, since no systematic variability over contexts is present. For
instance, if h (the variation at the second level for slopes) is equal to zero, no
variation of the slopes between contexts exists in the data. This implies that
yj and pj are zero as well. Thus

E(Y)=a +bX, (5)
¥y 3 AR
COV(Y,Y )=t"+8"" ©
§ K J J
where 8" is the Kronecker delta. Modeling a variance of the intercept (or
slopes) is modeling a correlation among residuals within the same unit. It

follows that the correlation between the disturbances of individuals gn tgle
same schocls, when only a random intercept is present, is equal to 1:1 / (1J +

ZUMA-Nachrichten 29 51



Forschungsberichte: Kreft

02). To define the same correlation when random slopes are also present is
more complex.

If g turns out to be close to zero as well, we have again the traditional fixed
lindar model (1). The ML (or GLS) estimates converge to OLS estimates when
the ratio between the individual level error variance and the total error
variance {(individual and between group error variance) converge to one. To
put this another way, if all variation in the dependent variable is explained
by the within group relations, no variation is left to be explained between
groups. This is the case when no significant bétween group error variance
(g) exists. The OLS procedure corresponds to a model in which this ratio is
adsumed to be one. The estimation procedures generalize the one step and
two step procedures used in Boyd/Iversen (1979) and put them on a more
solid statistical basis. The estimation of the parameters in random coefficient
models is complex, especially when the n’s are not the same in each group.
Several methods are used here, such as’ Generalized Least Squares (GLS),
Maximum Likelihood (ML) and weighted Least Squares. Discussion of the
difference in this respect in the software packages for analysis of
hierarchically nested data are in Kreft et al. 1990.

5. An example

If the available data are generated under experimental conditions, standard
statistical methods can be applied. Most observational research however
comes from complex situations in real life, and as an illustration we use the
example of Kreft/De Leeuw (1988). In this study a contextual analysis is
applied, in which the reading test scores of students within elementary
school classes is predicted by gender and the percentage of girls in the class.
The equation is

Y=-a+bX+bX +e. (7)
y 1y 24

In this analysis gender is measured at two different levels: the individual
gender (X) and the class level gender (X ), the percentage of girls in each
class. Thd results of this contextual ax"falysls was surprising, since the
gender effects at the two levels have opposite signs, girls are better readers,
but classes with a high percentage of girls do worse (see 8). The solution in
(8) is given in standardized scores. Gender is scored l=boy, 2=girl. The
positive sign for the coefficient for X means that girls are better readers
than boys, while the negative sign for’the coefficient for X implies that the
higher the percentage of girls is in a class, the lower the medn reading scores
is of that class.
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Y=012X-146X +e . 8
[ L] S04

There are two explanations for above results possible. The first is, that in
classes where boys are in the majority girls do better, or are rated higher by
their teachers. The other explanation is, that in classes where girls are in the

majority, both boys and girls both do worse than in classes where boys are in
the majority.

Both explanations imply that different processes are present in different
classes depending on the percentage of girls. Is so, than the total analysis
above, which ignores grouping of students, does not reflect that fact that

each class may have its own best fitting line, as is shown in the two figures
below.

predicted reading score
predicted reading score

| |
| I
boy girl boy girl

—_

Figures 1 and 2: regression lines for various school classes.

Figure 1 shows four lines of four (hypothetical) classes. The lines start at the
same place, but the effect of gender is in some classes stronger than in
others. The difference between girls and boys in reading scores is larger in
the class that produced the top regression line than in the class that
produced the bottom line. In Figure 2 we have another situation. All lines are
parallel, meaning that the effect of gender on reading scores is in all classes
equally strong and in favor of girls. The difference between classes is in mean
achievement or intercept, since the lines do not start equally high. In the
situation of Figure 2, the mean reading level of classes is not equal. In Figure
1 the slopes of the lines differ, in Figure 2 the intercepts differ.
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This may be the situation, but more likely is that intercepts and slopes both
differ over the classes. Heterogeneity of relations within classes is largely
ignored in the traditional contextual model (8). But heterogeneity can explain
why the same effects, but measured at different levels of the hierarchy, can
have an opposing nature. In both figures this can be shown. Imagine
drawing a line through the means of the classes (equivalent to a school class
level analysis); this line will be almost orthogonal to the lines present in the
pictures. For both examples in the Figures 1 and 2 a pooled regression will
lead to biased estimates, but the direction of the bias cannot be identified a
priori; it can go either way.

In a multilevel analysis one can allow to let intercepts and/or slopes be

different over contexts in the following way:

Y=a+bX +e. Q)

gy 3 59 4

If the intercept is allowed to differ over classes, while adding a second level

variable (here the percentage of girls: X ) to explain this variation, we get
(10). This is the situation as pictured in Figure 2.

8=y + ymx.j-& % . 10

If the slopes are allowed to differ.over classes, partly as a function of the
percentages of girls in the class (X J). we get (11).

bj: Yot Y, 1X.j+ hj (11)

In (11) the y effect is called a cross level interaction. This cross level
interaction is Shown in Figure 1, where the positive effect of the first level
variable “gender" is negatively influenced by the second level variable "the
percentages of girls in the class".

Substituting (10) and (11) into (9) results in (12), the equation of a random
coefficient model. In (12) we see a multilevel model with two random
coefficients, a random intercept (a) and a random slope (b).

Yq= yoo + YOIX.J + g] + (yw + y“X'j + ij)x‘j + elj. (12)
Multiplying and rearranging fixed and random effects leads to (13).

Yq= Too? YmXu M 701X.1+ ‘y“X']Xu+ (eq+ %+ Ih}Xq). (13)
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The complicated error term (between brackets) consists of an individual error
term (with the within class variance §° ), and error terms related to the
intercept and the slope. The variances of the last two terms (t % and 72)
together are the between variances. Since the slope variance is related to tHe
X variable, the between variance can no longer be defined as a single value.
The value will differ with different values of X. For the same reason the intra
class correlation, defined earlier at page 51 as t 2/ (x % 69 cannot be
calculated either. = !

Notes

Suggested Readings: For an overview see Burstein 1980, and Kreft 1987. For a collection of
technical articles see Bock (Ed.), 1988. See Raudenbush/Willms (Eds.), 1991 for a collection
of papers which apply multilevel models in different fields of education. For articles that
explain the basic model see the original articles by: Mason/Wong/Entwistle 1985;
Aitkin/Longford 1986; Goldstein 1986; Raudenbush/Bryk 1986; and De Leeuw/Kreft 1986.
On these articles the four existing software packages are based.

For information on the available software packages for multilevel analysis, contact the
following authors:

GENMOD: Mason, University of California, Hilgard Avenue 405, Los Angeles, CA 90024.
VARCL: Longford, Educational Testing Service, Princeton, New Jersey.

ML3: Goldstein, Institute of Education, University of London, WC1N 1AZ, Great Britain.
HLM, Raudenbush, College of Education, Michigan State University, East Lansing, Michigan
48824,
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