Open Access Repository www.ssoar.info ## Informational cascades elicit private information Gossner, Olivier; Melissas, Nicolas Veröffentlichungsversion / Published Version Arbeitspapier / working paper Zur Verfügung gestellt in Kooperation mit / provided in cooperation with: SSG Sozialwissenschaften, USB Köln ## **Empfohlene Zitierung / Suggested Citation:** Gossner, O., & Melissas, N. (2004). *Informational cascades elicit private information.* (Discussion Papers / Wissenschaftszentrum Berlin für Sozialforschung, Forschungsschwerpunkt Markt und politische Ökonomie, Abteilung Wettbewerbsfähigkeit und industrieller Wandel, 2004-19). Berlin: Wissenschaftszentrum Berlin für Sozialforschung gGmbH. https://nbn-resolving.org/urn:nbn:de:0168-ssoar-197290 #### Nutzungsbedingungen: Dieser Text wird unter einer Deposit-Lizenz (Keine Weiterverbreitung - keine Bearbeitung) zur Verfügung gestellt. Gewährt wird ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen, nicht-kommerziellen Gebrauch bestimmt. Auf sämtlichen Kopien dieses Dokuments müssen alle Urheberrechtshinweise und sonstigen Hinweise auf gesetzlichen Schutz beibehalten werden. Sie dürfen dieses Dokument nicht in irgendeiner Weise abändern, noch dürfen Sie dieses Dokument für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, aufführen, vertreiben oder anderweitig nutzen. Mit der Verwendung dieses Dokuments erkennen Sie die Nutzungsbedingungen an. #### Terms of use: This document is made available under Deposit Licence (No Redistribution - no modifications). We grant a non-exclusive, non-transferable, individual and limited right to using this document. This document is solely intended for your personal, non-commercial use. All of the copies of this documents must retain all copyright information and other information regarding legal protection. You are not allowed to alter this document in any way, to copy it for public or commercial purposes, to exhibit the document in public, to perform, distribute or otherwise use the document in public. By using this particular document, you accept the above-stated conditions of use. SOCIAL SCIENCE RESEARCH CENTER BERLIN Olivier Gossner * Nicolas Melissas ** ## **Informational Cascades Elicit Private Information** * CERAS ** University of Leicester **SP II 2004 - 19** December 2004 ISSN Nr. 0722 - 6748 Research Area Markets and Political Economy Forschungsschwerpunkt Markt und politische Ökonomie Research Unit Competitiveness and Industrial Change Abteilung Wettbewerbsfähigkeit und industrieller Wandel #### Zitierweise/Citation: Olivier Gossner and Nicolas Melissas, Informational Cascades Elicit Private Information, Discussion Paper SP II 2004 – 19, Wissenschaftszentrum Berlin, 2004. Wissenschaftszentrum Berlin für Sozialforschung gGmbH, Reichpietschufer 50, 10785 Berlin, Germany, Tel. (030) 2 54 91 – 0 Internet: $\underline{\text{www.wz-berlin.de}}$ #### **ABSTRACT** #### Informational Cascades Elicit Private Information* by Olivier Gossner and Nicolas Melissas We introduce cheap talk in a dynamic investment model with information externalities. We first show how social learning adversely affects the credibility of cheap talk messages. Next, we show how an informational cascade makes thruthtelling incentive compatible. A separating equilibrium only exists for high surplus projects. Both an investment subsidy and an investment tax can increase welfare. The more precise the sender's information, the higher her incentives to truthfully reveal her private information. Keywords: Cheap Talk, Information Externality, Informational Cascades, Social Learning, Herd Behaviour JEL Classification: D62, D83 _ We are indebted to C. Chamley for encouraging us to work on this topic and for his helpful comments. This paper also benefited from comments by A. Al-Nowaihi, I. Brocas, R. Burguet, A. Farber, D. Gerardi, G. Haeringer, P. Heidhues, P. Legros, M. Dewatripont, A. Rivière, G. Roland, P. Sørensen and X. Vives. We also thank seminar participants at the Gerzensee European Summer Symposium (2000), Center, IAE, UAB and at the ULB for helpful comments and discussions. Nicolas Melissas gratefully acknowledges financial assistance provided by the European Commission through its TMR Program (Contract number FMRX-CT98-0203). #### ZUSAMMENFASSUNG ## Informationskaskaden bei Investitionsentscheidungen Wir modellieren eine zweistufige dynamische Investitionsentscheidung mit Informationsexternalitäten und "Cheap Talk". Dabei können wir zunächst zeigen, dass die Glaubwürdigkeit von "Cheap Talk"-Aussagen darunter leidet, wenn die Investitionsentscheidung von solchen Informationen beeinflusst wird, die sich eher aus dem Handeln der Mitakteure als durch ihre verbalen Bekundungen ableiten. Dann zeigen wir, dass Informationskaskaden, die alle Akteure dieselbe Handlung aufgrund öffentlicher Information ohne Berücksichtigung ihrer privaten Informationen ausführen lassen, dazu führen, das Offenbaren der wahren Präferenzen der Investoren – optimistisch oder pessimistisch - anreizkompatibel zu machen. Vergleicht man Projekte mit niedrigen und hohen Überschüssen, existiert ein Trenngleichgewicht nur bei letzteren, so dass glaubwürdige Kommunikation eher über Worte als über Taten funktioniert. Will ein sozialer Planer die Investitionsentscheidungen beeinflussen, kann er sowohl durch eine Subventionierung als auch durch eine Besteuerung der Investitionen die Wohlfahrt vergrößern. ## 1 Introduction A decision maker typically faces a lot of uncertainty when deciding over a course of action. For example, investors know they face the risk of losing all their money. Students do not know which University degree maximises their future job market prospects. Consumers do not know which product offers the best price/quality ratio... To be more specific, suppose someone has the opportunity to invest in a project whose returns are positively correlated with the "general future health of the U.S. economy". Obviously, assessing the future state of the U.S. economy is a hard task and no human being is smart enough to make an errorless prediction about it. However, investors do not live like Robinson Crusoe - isolated on an island. Instead, they realise that the economy is populated by many other potential investors who all face the same type of risk. Moreover, they know that if they were to meet and exchange opinions, this would enable them to reduce their forecasting error. But if investors really care about one another's opinions, how will this information be disseminated throughout the economy? Casual observation of everyday life suggests there are two different channels through which investors may learn about one another's opinions: one may learn through words or one may learn through actions. With the former, we have in mind a situation in which one investor simply tells her opinion to (possibly many) other investors. For example, every now and then managing directors of important companies appear in the media and express their opinions on a wide range of issues such as future technological developments, future oil prices, future market growth, etc... Some institutions are even specialised in collecting and summarising the opinions of a large number of market participants. For example, the Munich-based IFO institute for economic research releases a quarterly index reflecting the business confidence of the average German investor. With learning through actions, we mean that if someone invests in a one-million-dollar project in the U.S., this reveals her confidence in the American business climate. In this paper, we analyse the interaction between both communication channels. More specifically, we consider the following set-up: N players must take an investment decision and possess a private, imperfect signal concerning the future state of the world. Investment is only profitable in the good state. For the sake of simplicity, we assume that the returns of the investment project only depend on the state of the world. Hence, for efficiency reasons one would want to have all players truthfully exchanging their signals. Players can invest in two periods. In the second period, everyone observes how many agents invested at time one. One randomly drawn player (the sender) is asked to divulge her private information (i.e. her signal) to the other players (the receivers) prior to the first investment period, and we compute all monotone equilibria¹ of our game. We first show that both communication channels do not co-exist peacefully, in the sense that there does not exist a monotone equilibrium in which the sender truthfully announces her private information and in which subsequently a lot of information is generated through actions. This tension between both communication channels manifests itself differently depending on the surplus generated by the project: for low surplus projects the unique monotone equilibrium is the pooling one², while for high surplus projects there also exists an equilibrium in which the sender truthfully reveals her private information but in which "little" information is transmitted through actions. The intuition behind this result goes as follows: in our model expected payoffs are driven by the relative number of optimists in the economy (the higher the proportion of optimists in the population, the higher the probability that the world is in the good state). At time two all players observe the number of period-one investments and use this knowledge to get an "idea" of the proportion of optimists in the economy. This updating process depends on the period-one investment strategies³ (which are affected by the sender's message). If the investment only generates a low surplus, pessimists will - independently of the sender's message - never invest
in the first period. Both sender's types then want to send the message which makes the optimists invest with as large a probability as possible⁴. Thus both sender's types share the same preferences over the receivers' actions, and therefore no information can be transmitted through cheap talk. For high surplus projects, however, this intuition is incomplete. In that case all players face a positive gain of investing after receiving the message "I am an optimist". If a player then believes that everyone will invest at time one, it's optimal for her to do so too (i.e. an informational cascade⁵ in which everyone invests ¹Bluntly stated, in a monotone equilibrium we rule out the (unintuitive) possibility that pessimistic players are more likely to invest (at time one) than optimistic ones. ²In this equilibrium no credible information is transmitted through words, but "a lot" of information is transmitted through actions. ³For example, upon observing k period-one investments, players compute different posteriors if pessimists invested (at time one) with zero probability and optimists with a probability equal to one, than if pessimists invested with the same probability as the optimists. ⁴If the sender succeeds for example in making the optimistic receivers invest with probability one, she perfectly learns the proportion of optimists in the population. ⁵All players - irrespective of their private information - rely on the public information (i.e. the message of the sender) and take the same action at time one. By definition, this is an informational cascade. is ignited by the arrival of a favourable message). In our model this informational cascade induces a pessimist to send the message "I am a pessimist": if she were to deviate and sent instead the message "I am an optimist", she wouldn't be able to learn anything about the proportion of optimists in the population and would never invest. An optimist faces a high opportunity cost of waiting, and independently of her message, invests at time one. Hence, she cannot gain by sending the message "I am a pessimist".⁶ We next argue that our analysis allows us to draw some positive and normative conclusions. In particular, we show that an investment subsidy, by artificially increasing the surplus generated by the project, promotes truthful revelation of private information. However, this does not mean that an investment subsidy always increases welfare: a social planner knows that if the subsidy induces truthful revelation, this comes at the cost of less information transmission through actions. In the paper we show that a social planner may even want to tax investments to cause information to be revealed through actions instead of words. Finally, we also show that a more able sender (i.e. a sender possessing a more precise signal) has more incentives to truthfully reveal her private information than a less able one. This paper belongs to the literature on informational cascades (see among others Banerjee (1992), Bikhchandani, Hirschleifer and Welch (1992) (BHW hereafter), Chamley and Gale (1994), Chamley (2004a), for an excellent overview and introduction to this literature see Chamley (2004b). Those papers assume away any preplay communication and study the efficiency properties of social learning (learning takes place through actions only). Our results provide a justification for this approach: for low surplus projects, no information can be transmitted through words because players want to influence their future learning capabilities. In those papers the public information is the consequence of some costly actions undertaken by the early movers: for example a second mover knows that the first mover is an optimist because she spent money to undertake a new investment project. Hence, in those papers the credibility of the public information is not an issue. In this paper it is costless to send public information, and its credibility must therefore be carefully checked. Those papers show how an informational cascade develops as a consequence of the arrival of some early (and credible) information. In this paper, we show that the causality can also be reversed: it is the informational cascade, by reducing the gain of sending ⁶Note that in the separating equilibrium information only gets transmitted through actions when the sender announces "I am a pessimist". As will become clear below, the amount of information produced after the arrival of an unfavourable message is always lower than the one that would have been produced in the absence of cheap talk (or in the pooling equilibrium). the message "I am an optimist", which causes the public information to be credible. Doyle (2002) also introduces a social planner in a dynamic investment model with information externalities but without cheap talk. In contrast to our paper, pessimistic players do not possess an investment option and therefore never invest. Hence, Doyle's model does not feature an equilibrium in which pessimistic players invest at time one and consequently blur the information contained in all players' time-one investment decisions. Therefore, in his model one would never want to tax investments. Gill and Sgroi (2003) analyse a set-up in which a, possibly "optimistic", "pessimistic" or "unbiased", sender is asked whether or not to endorse a product. Upon hearing the sender's message, receivers decide sequentially whether or not to buy the product. Hence, in their model receivers also learn through other receivers' actions and through the sender's message. In contrast to our paper, the authors assume that the sender does not want to learn about the receivers' types (because, for instance, she already consumed the product and received her payoff). Therefore, she cannot gain by misrepresenting her private information.⁷ Obviously, this is not the first paper to investigate the credibility of cheap talk statements. In a seminal paper, Crawford and Sobel (1982) already analysed the issue of information transmission through cheap talk. However, in their model the receiver chooses an action which influences both player's payoffs after having received a message from the informed sender. In our model the sender first sends a message and then plays a (waiting) game with the receivers. Farrell (1987, 1988), Farrell and Gibbons (1989) and Baliga and Morris (2002) also assume that both players play a game after having received or sent a message. However, they consider a very different game: in Farrel (1987, 1988) and Baliga and Morris (2002), the communication stage is followed by a coordination game, while in Farrell and Gibbons (1989) both players engage in a bargaining game after the communication stage. As we consider a (very) different game, we also get very different results: Crawford and Sobel (1982) have shown how the credibility of cheap talk statements are undermined when the sender and the receiver have different preferences over the optimal action, Baliga and Morris (2002) argued that positive spillovers impede information exchange, while we show how social learning may destroy incentives for truthtelling (and how informational cascades help in restoring these incentives). This paper is organised as follows. In section two, we present our two-stage game. In the third section, we take the players' posteriors as given and solve for all monotone stable continuation equilibria. The proofs of the results stated in this ⁷Sgroi (2002) analyses a similar set-up and computes the optimal number of senders. As in Gill and Sgroi (2003) the senders are not interested in the receivers' signals. section tend to be quite lengthy and we therefore decided not to include them in this paper. We refer the interested reader to Gossner and Melissas (2003). We next compute equilibrium strategies in the sender-receiver game (section four). We first show how the credibility of cheap talk may be undermined when players can postpone their investment decisions (Proposition 4). Next, we show how this credibility can be restored by an informational cascade (Proposition 5). In section 5, we discuss some normative and positive implications of our theory. Final comments are summarised in the sixth and final section. ## 2 The Model Assume that a population of $N \geq 5$ risk neutral players must decide whether to invest in a risky project or not. $V \in \{1,0\}$ denotes the value of the investment project. The state of the economy is described by $\Theta \in \{G,B\}$. If $\Theta = G$ the good state prevails and V = 1 whereas if $\Theta = B$, the economy is in a bad state and V = 0. The prior probability that $\Theta = G$ equals 1/2. The cost of the investment project is denoted by c. Each player receives a private, conditionally independent signal concerning the realised state of the world. Formally, player l's signal $s_l \in \{g,b\}$ (l = 1,...,N) where $\Pr(g|G) = \Pr(b|B) = p > 1/2$. We assume that: A1: $$1 - p < c < p$$. A1 implies that a player who received signal g is, a priori, willing to invest $(\Pr(G|g) = p > c)$, and that a player who received a signal b is, a priori, not willing to invest $(\Pr(G|b) = 1 - p < c)$. Henceforth, we call a player who received a good (bad) signal an optimist (pessimist)⁸. If $c \le 1/2$ (c > 1/2), we call the investment opportunity a high (low) surplus project. We analyse the stage game that unfolds as follows: - -1 The state of nature is realised and players receive signals, - 0 A randomly selected player i is asked to report her signal. Her message, $\hat{s}_i \in \{q, b\}$, is made public to all the other players, - 1 All players make investment decisions, ⁸Observe that in our model all players are Bayesian rational: optimists (pessimists) do not overestimate (underestimate) the probability that $\Theta = G$. Hence, our definitions differ from the ones that are used by behavioural economists. However, these definitions are intuitive and should not confuse the reader. - 2 All players observe
who invested at time one, and those who haven't invested yet make new investment decisions, - 3 All players learn the true state of the world. Payoffs are received and the game ends. In the first stage (time zero) player i (the sender) influences the time-one posteriors of the remaining players (the receivers). Henceforth, we call the second stage the waiting game (or the continuation game). At time one, player l must choose an action, a_l , from the set {invest, wait}. At time two all players who waited at time one must choose an action from the set {invest, not invest}. Each player only possesses one investment opportunity, so a period-one investor cannot invest in a second project at time two. Investments are irreversible. If a player does not invest in any of the two periods, she gets zero. Investment decisions at period one are represented by a N-vector x where the l-th coordinate equals 1 if player l invested at time one and zero otherwise. δ denotes the discount factor. We let h_t (t=0,1,2) denote the history of the game at time t. Thus $h_0 = \{\emptyset\}$, $h_1 = \hat{s}_i$ and $h_2 = (\hat{s}_i, x)$. H_t denotes the set of all possible histories at time t, and the set of histories is $H = \bigcup_{t=0}^2 H_t$. A symmetric behavioural strategy for the receivers is a function $\rho: \{g, b\} \times H \to [0, 1]$ with the interpretation that $\rho(s_j, h_t)$ represents the probability of investing at date t given s_j and h_t (j=1,...,N) and $j \neq i$). For instance, $\rho(g,b)$ is the probability that an optimistic receiver invests at time one given that $\hat{s}_i = b$, and $\rho(b,g)$ is the probability that a pessimistic receiver invests at time one given that $\hat{s}_i = g$. Since each player can only invest once, $\rho(s_j, h_2) = 0$ if player j invested at time one, and $\rho(s_j, h_0) = 0$ since no one can invest at time zero. A behavioural strategy for the sender is a function $\sigma: \{g, b\} \times H \to [0, 1]$. $\sigma(g, h_0)$ $(\sigma(b, h_0))$ represents the probability with which an optimistic (pessimistic) sender sends $\hat{s}_i = g$. $\sigma(\cdot, h_1)$ $(\sigma(\cdot, h_2))$ represents the probability that player i invests at date one (two). As before, $\sigma(\cdot, h_2) = 0$ if the sender invested in the first period. When solving our game, we rely on four equilibrium selection criteria. First, we require a candidate equilibrium to belong to the class of the perfect Bayesian equilibria. Henceforth, $\sigma^*(\cdot)$ ($\rho^*(\cdot)$) denotes the value taken by $\sigma(\cdot)$ ($\rho(\cdot)$) in a perfect Bayesian equilibrium (PBE). In a PBE strategies and beliefs (concerning the other players' types) must be such that (i) the sender cannot gain by choosing a $\sigma \neq \sigma^*$ given her beliefs and given ρ^* , (ii) receivers cannot gain by choosing a $\rho \neq \rho^*$ given their beliefs and given σ^* and (iii) beliefs must be computed using Bayes's rule whenever possible. As usual, a pooling equilibrium is a PBE in which $\sigma^*(g, h_0) = \sigma^*(b, h_0)$. In that case the message $\hat{s}_i = g$ is as likely to come from an optimistic as from a pessimistic sender. Hence, in that case messages have no informational content and do not affect posteriors. For the sake of concreteness (and without loss of generality), we assume that $\sigma^*(g, h_0) \geq \sigma^*(b, h_0)$. This assumption merely defines message $\hat{s}_i = g$ as the one which influences posteriors in a (weakly) favourable way. Under this assumption, a separating equilibrium is a PBE in which $\sigma^*(g, h_0) = 1$ and $\sigma^*(b, h_0) = 0$. Note that at time one the posterior of the receivers may differ from the sender's. Therefore, we do not impose $\sigma^*(g, h_1)$ to be equal to $\rho^*(g, h_1)$. Similarly, we allow $\sigma^*(b, h_1)$ to be different from $\rho^*(b, h_1)$. Second, we restrict ourselves to the class of the *monotone* strategies. Consider players l and l' (where l or l' may be the sender). Let $q \equiv \Pr(G|s_l, \hat{s}_i)$ (respectively $q' \equiv \Pr(G|s_l, \hat{s}_i)$) denote player l's (respectively player l's) time-one posterior. Strategies are said to be monotone if they possess the following two properties: 1) if q = q', then $\Pr(l \text{ invests})$ at time one) = $\Pr(l' \text{ invests})$ at time one), 2) if $\Pr(l \text{ invests})$ at time one) > $\Pr(l' \text{ invests})$ at time one), then q > q'. Remark that from the first property, monotone strategies are symmetric. Note also that the first property implies that whenever the sender's message is uninformative, the sender invests at time one with the same probability as a receiver of the same type, which need not hold in symmetric strategies. Property two implies that the time-one investment probabilities (weakly) increase in the time-one posteriors. Below, we will explain in more detail our need to focus on monotone strategies. Third, we discard unstable equilibria. With "unstable" we refer to the traditional notion according to which an equilibrium is unstable if a small change in the investment probability of the other players induces a change in player l's optimal investment probability with the same sign and with a greater magnitude. This equilibrium selection criterion has also been used in the study of coordination problems (see, for example, Cooper and John (1988) and Chamley (2003)). Chamley (2004a) already noted their existence in games with social learning. This requirement will also be explained in more detail below. Finally, we require every candidate equilibrium to be robust to the introduction of an ϵ -reputational cost. More specifically, we assume that with probability ϵ_1 receivers detect any "lie" (i.e. the optimistic sender who sends message $\hat{s}_i = b$, or the pessimistic sender who sends message $\hat{s}_i = g$) from the sender, in which case she suffers a reputational cost equal to ϵ_2 . It is important to note that ϵ_1 is unrelated to the sender's behaviour in the continuation game. This assumption ensures that the sender's behaviour in the continuation game is only driven by informational reasons (and not by her desire to "mask" a past lie). Let $\epsilon \equiv \epsilon_1.\epsilon_2$ and we assume that ϵ represents an arbitrary small, but strictly positive, number. With this reputational cost, an optimistic sender prefers to send a favourable to an unfavourable message (as will become clear below, in the absence of this ϵ , she would be indifferent between the two messages). A monotone stable perfect Bayesian equilibrium (MSPBE) is a tuple of strategies and beliefs which satisfy our four equilibrium selection criteria. ## 3 Strategic Waiting Before proving the existence of a PBE in our game, we analyse equilibrium behaviour in the continuation game. We restrict ourselves to the class of the monotone stable continuation equilibria (MSCE). Henceforth, $\tilde{\sigma}(\cdot)$ ($\tilde{\rho}(\cdot)$) denotes the value taken by $\sigma(\cdot)$ ($\rho(\cdot)$) in a MSCE. A MSCE is identical to a MSPBE except that we do not require the sender to choose $\tilde{\sigma}(g, h_0)$ and $\tilde{\sigma}(b, h_0)$ optimally given her beliefs and given equilibrium behaviour in the continuation game. Stated differently, in a MSCE we do not endogenise the receivers' time-one posteriors. Instead, we just treat them as if they were exogenous and analyse equilibrium behaviour in the continuation game given players' posteriors. Note that every MSPBE is a MSCE, while the contrary need not hold. In the appendix we characterise the set of MSCE's for all possible time-one posteriors. To avoid a lengthy and technical exposition, below we "only" intuitively explain our most important results. Moreover, when providing an intuition we often restrict attention to the limit case in which (i) the sender is an optimist who truthfully reports her private information and (ii) receivers compute their posteriors under the assumption of truthful revelation. In this limit case optimistic receivers possess two favourable pieces of information and compute $Pr(G|s_j = g, \hat{s}_i = g) = p^2/(p^2 + (1-p)^2) \equiv \overline{q}$. Pessimistic receivers possess two contradictory pieces of information and compute $Pr(G|s_j = b, \hat{s}_i = g) = 1/2$. Our model is void of any competition effects or positive network externalities. Hence, a player's expected gain of investing is solely determined by the relative number of optimists (as compared to the number of pessimists) in the population. Denote by n the random number of optimists in our population. The higher n, the higher Pr(G|n) and the higher the expected gain of investing. Unfortunately, by postponing one's investment decision, players observe x, the vector of time-one investment decisions, instead of n. Hence, at time two all players who waited at time one face an inference problem: on the basis of x they must try to get "as precise an idea" about n. As we only consider symmetric strategies, player i does not care about who invests, but rather in *how many* players invest. Therefore, from the sender's point of view all information contained in x can be summarised by k^s (the number of receivers who invest at time one). Similarly, from a receiver's point of view all information contained in x can be summarised by k (the number of remaining receivers who invest at time one) and a_i (the time-one action of the sender). We thus continue our analysis by working with k, k^s and a_i . If player j waits, she observes k and a_i and invests if $\Pr(G|q, k, a_i) \geq c$. Hence, for a given k and a_i player j's payoff equals $\max\{0, \Pr(G|q, k, a_i) - c\}$. Of course, player j cannot ex ante know the realization of k and a_i . Therefore, player j's ex ante gain of waiting (net of discounting costs), $W(q, \sigma_1, \rho_1)$, equals (1) $$W(q, \sigma_1, \rho_1) =
\sum_{a_i} \sum_{k} \max\{0, \Pr(G|q, k, a_i) - c\} \Pr(k|q, a_i) \Pr(a_i|q),$$ where $\rho_1 \equiv (\rho(b, h_1), \rho(g, h_1))$ and $\sigma_1 \equiv (\sigma(b, h_1), \sigma(g, h_1))$. Similarly, player *i*'s gain of waiting, $W(q, \rho_1)$, equals (2) $$W(q, \rho_1) = \sum_{k^s} \max\{0, \Pr(G|q, k^s) - c\} \Pr(k^s|q).$$ To gain some insight behind equations (1) and (2) it is useful to consider equation (1) when $q = \overline{q}$ (i.e. when player j is an optimist who believes the sender to be optimistic as well), $\sigma_1 = (0,0)$ (i.e. when the sender invests with probability zero), and $\rho_1 = (0, \rho(g, g))$ (i.e. pessimistic receivers wait, while the optimistic ones invest with probability $\rho(\cdot)$). Equation (1) can then be rewritten as (3) $$W(\overline{q}, (0, 0), (0, \rho(g, g))) = \sum_{k} \max\{0, \Pr(G|\overline{q}, k, \text{wait}) - c\} \Pr(k|\overline{q}, \text{wait}).$$ Suppose that $\rho(g,g) = 0$. If player j waits, she will then observe zero investments and compute $\Pr(G|\overline{q}, 0, \text{wait}) = \overline{q}$. This is intuitive: player j, independently of n, always observes zero period-one investments. Stated differently, if $\rho(g,g) = 0$, it's as if she doesn't receive any additional information concerning the realised state of the world. Therefore she has no reason to change her posterior and $\Pr(G|\overline{q}, 0, \text{ wait}) = \overline{q}$. Hence, $$W(\overline{q},(0,0),(0,0)) = \overline{q} - c.$$ Suppose now that $\rho(g,g) = 1$. Then, in the next period player j learns how many optimists are present in the economy (i.e. n = k+2)¹⁰. At time two player j computes ⁹In mathematical terms, we mean that $Pr(n|x, s_i) = Pr(n|k^s, s_i), \forall n$. $^{^{10}}$ By assumption, player j is an optimist who waited at time one. Moreover, we analyse a case in which player j learned (through the sender's message) that $s_i = g$. Therefore, n = k + 2. $\Pr(G|n)$, and invests if $\Pr(G|n) \geq c$. As before, player j cannot ex ante know how many optimists are present in the economy, and therefore (4) $$W(\overline{q}, (0,0), (0,1)) = \sum_{n} \max\{0, \Pr(G|n) - c\} \Pr(n|\overline{q}).$$ LEMMA 1 $\forall \sigma_1, W(q, \sigma_1, (0, 1)) > q - c$. Proof: See appendix. To gain some intuition behind Lemma 1, we explain why $\forall c \in (1-p,p), W(\overline{q},(0,0),(0,1)) > \overline{q} - c$ whenever our economy consists of at least five players. We can rewrite player j's gain of investing as follows: $$\overline{q} - c = \sum_{n} \Pr(G|n) \Pr(n|\overline{q}) - c.$$ Suppose $\rho_1 = (0,1)$ and assume that player j decides to wait at time one and then to invest unconditionally (i.e. to invest at time two independently of n). The above equality merely states that investing at time one is payoff-equivalent (net of discounting costs) to unconditionally investing at time two. Equation (4) learns us that waiting (when $\rho_1 = (0,1)$) is equivalent to making an optimal conditional second-period investment decision. Observe that n cannot take a value lower than two because both players j and i are assumed to be optimists. If $\Pr(G|n=2)$ is higher or equal than c, then the optimal conditional second-period investment decision always coincides with unconditionally investing at time two. This means that $\overline{q} - c$ is equal to $W(\overline{q}, (0,0), (0,1))$. Hence, $W(\overline{q}, (0,0), (0,1))$ is strictly greater than $\overline{q} - c$ if (and only if) $\Pr(G|n=2) < c$. In this model all players possess a signal of the same precision. Therefore, $\forall c \in (1-p,p)$, it takes three pessimistic receivers to refrain an optimist, who learned through the sender's message that $s_i = g$, from investing (and therefore N must be greater or equal than five). To focus on the interesting parameter range, we assume: A2: $$\frac{\overline{q}-c}{W(\overline{q},(0,0),(0,1))} < \delta < 1$$. The first inequality of A2 puts a lower bound on the discount factor δ such that an optimistic receiver, who learned (through the sender's message) that $s_i = g$, faces a positive option value of waiting (i.e. if player j expects all the optimistic receivers to invest and all the other players to wait, then she rather waits). The first inequality ensures thus that $\tilde{\rho}(g,g) < 1$. The second inequality ensures that $\tilde{\rho}(g,g) > 0$. LEMMA 2 $\forall \rho'(g, h_1) > \rho(g, h_1)$, $W(q, \sigma_1, (0, \rho'(g, h_1))) \geq W(q, \sigma_1, (0, \rho(g, h_1)))$, and there exists a value $\rho^c(q)$ such that the inequality becomes strict whenever $\rho'(g, h_1) > \rho^c(q)$ ($\rho^c(q) \in [0, 1)$). Proof: See appendix. From Lemma 2 follows: ``` COROLLARY 1 \forall \rho'(g, h_1) > \rho(g, h_1), 1) W(p, (0, \rho'(g, h_1))) \geq W(p, (0, \rho(g, h_1))), where the inequality becomes strict when- ever \rho'(g, h_1) > \rho^c(p) \ (\rho^c(p) \in (0, 1)), 2) W(1 - p, (0, \rho'(g, h_1))) > W(1 - p, (0, \rho(g, h_1))). ``` Proof: See appendix. A slightly different version of Corollary 1 was already proven in Chamley and Gale (1994, Proposition 2). To understand the intuition behind Lemma 2 and Corollary 1, compare the following two "scenarios". In scenario one all optimistic receivers randomise with probability $\rho'(g,g)$, in scenario two all optimistic receivers randomise with probability $\rho(g,g) < \rho'(g,g)$. Denote by n^r the number of optimistic receivers. Call k' (respectively k) the number of players investing at time one when $n^r - 1$ optimistic receivers invest with probability $\rho'(g,g)$ (respectively $\rho(g,g)$). Now, having $n^r - 1$ players investing with probability $\rho(g,g)$ is ex ante equivalent to the following two-stage experiment: first let all $n^r - 1$ players invest with probability $\rho'(g,g)$, next let all k' investors re-randomise with probability $\frac{\rho(g,g)}{\rho'(g,g)}$. Therefore the statistic k is generated by adding noise to the statistic k'. Therefore k' is a sufficient statistic for k. From Blackwell's value of information theorem (1951) we know that this implies that $W(\overline{q}, (0,0), (0, \rho'(g,g))) \geq W(\overline{q}, (0,0), (0, \rho(g,g)))$. Lemma 2 states that the inequality becomes strict once $\rho'(g,g)$ passes a critical threshold level. Stated differently, $\rho(g,g)$ captures the ex ante amount of information produced by the optimistic receivers. The higher $\rho(g,g)$, the easier one can infer n out of k (this can best be seen by comparing the two polar cases where $\rho(g,g)=0$ and $\rho(g,g)=1$ (see above)) and thus the higher the ex ante gain of waiting. PROPOSITION 1 If the investment generates a low surplus and if $Pr(G|s_j = g, \hat{s}_i = g) > p$, there exists a unique MSCE in which the sender and the pessimistic receivers wait while the optimistic receivers invest with probability $\tilde{\rho}(g,g) \in (0,1)$. Proof: See appendix. To understand the intuition behind Proposition 1 we focus on our limit case in which $\Pr(G|g,g) = \overline{q}$. As $c > 1/2 = \Pr(G|b, \hat{s}_i = g)$, no pessimist wants to invest at time one. Suppose the optimistic receivers anticipate that the optimistic sender waits. On the basis of A2 and Lemma 2, it is easy to see that there exists then a unique $\tilde{\rho}(g,g)$ which makes them indifferent between investing and waiting. This is depicted in Graph 1. **Graph 1:** Existence of a MSCE in which $\tilde{\rho}(g,g) \in (0,1)$. We now explain why the optimistic sender wants to wait given that the remaining optimistic receivers invest with probability $\tilde{\rho}(g,g)$. Consider therefore the following Lemma (and its first Corollary). LEMMA 3 $\forall (\sigma_1, \rho_1), \delta W(q, \sigma_1, \rho_1) - (q - c)$ is decreasing. Proof: See appendix. Lemma 3 is illustrated in Graph 2. **Graph 2:** The effect of a change in q on q-c and $W(\cdot)$. Suppose player j anticipates that $\Theta = G$ with some probability q. As before, Graph 2 shows the existence of a unique $\tilde{\rho}(\cdot)$ where the gain of investing equals the gain of waiting. Suppose now that for some exogenous reason player j becomes "more optimistic" in the sense that she now anticipates that $\Theta = G$ with probability q' > q. An increase in q shifts the gain of waiting upwards for two different reasons: (i) it increases the likelihood that $\Pr(G|q,k,a_i) > c$ and thus that player j will get a non-zero expected utility and (ii) it increases her expected gain of investing whenever player j does so. However, the presence of δ in front of $W(q,\cdot)$ (and not in front of q-c) dampens this increase in $\delta W(q,\cdot)$, which explains Lemma 3. COROLLARY 2 Suppose the sender and the pessimistic receivers wait (i.e. $\sigma(b, \hat{s}_i) = \sigma(g, \hat{s}_i) = \rho(b, \hat{s}_i) = 0$). Then, $\tilde{\rho}(g, \hat{s}_i)$ is increasing in $\Pr(G|g, \hat{s}_i)$. The Corollary is also illustrated on Graph 2: as the upward shift of the gain of investing dominates the one of the gain of waiting, $\tilde{\rho}(\cdot)$ must increase to make an optimistic receiver indifferent between investing and waiting. We now know enough to understand why the optimistic sender wants to wait given that $\Pr(G|g,g) = \overline{q}$ and that all optimistic receivers invest with probability $\tilde{\rho}(g,g)$. Two different reasons lie at the root of this finding: the first one is due to the fact that the sender observes k^s instead of k, the second one is due to the fact that $p < \overline{q}$. To illustrate the first reason suppose the sender's posterior probability that $\Theta = G$ equals the one of the optimistic receivers. One can think of the statistics k and k^s as follows. Let the n^r optimistic receivers invest with probability $\tilde{\rho}(\cdot)$. Next, construct k as follows: if player j invested¹¹, $k = k^s - 1$, otherwise $k = k^s$. Hence, k^s is a sufficient statistic for k and, thus, player i's gain of waiting cannot be lower than player j's. To
illustrate the second reason, suppose that if the sender waits, she observes k instead of k^s . Call k the probability with which the optimistic receivers must invest such that k and waiting and waiting). As k and k are k and k and waiting k are k and k are k and k are k and k and k are are k and k are k are k and k are k are k and k are and k are k are k and k are k are k are k are k and k are k are k are k and k are and k are COROLLARY 3 Under A2, $q - c < \delta W(q, (0, 0), (0, 1))$. Proof: A2 states, among others, that $\overline{q} - c < \delta W(\overline{q}, (0, 0), (0, 1))$. From Lemma 3 we know that the downward shift of the gain of investing dominates the one of the gain of waiting. Q.E.D. In words, Corollary 3 states that if a player who possesses the highest possible posterior faces a positive option value of waiting, then this will also be true for all less optimistic ones. PROPOSITION 2 There does not exist a MSCE in which the optimistic sender, after having sent an unfavourable message, gets a payoff strictly higher than $p - c - \epsilon$. ¹¹Remind that player j is an optimistic receiver who is indifferent between investing and waiting and who, therefore, invests with probability $\tilde{\rho}(\cdot)$. Proof: See appendix. As the optimistic sender "lied", she suffers an ϵ -reputational cost. Thus, if she invests, she gets $p-c-\epsilon$. If she waits, she gets $\delta W(p,\tilde{\rho}_1)-\epsilon$. Hence, if her payoff strictly exceeds $p-c-\epsilon$, this means that she strictly prefers to wait. Suppose there exists a MSCE in which $\tilde{\sigma}(g,b)=0$. As she sent an unfavourable message, she is the most "optimistic" player in our economy (i.e. $\Pr(G|b,\hat{s}_i=b)<\Pr(G|g,\hat{s}_i=b)\leq p$). As we restrict attention to monotone strategies (in particular this implies that time-one investment probabilities must weakly increase in time-one posteriors) $\tilde{\rho}(g,b)\leq \tilde{\sigma}(g,b)=0$. Clearly, this cannot be a MSCE as the optimistic sender, anticipating that no receiver will invest at time one, then strictly prefers to invest. In our companion paper we prove that if the optimistic sender sends $\hat{s}_i=b$, there exists a unique MSCE in which $\tilde{\sigma}(g,b)>0$. This implies that her payoff can then not exceed $p-c-\epsilon$. The explanation above also underscores our need to focus on monotone strategies. Lemma 3 and Corollary 2 already establish that, in equilibrium, the time-one investment probabilities of the receivers (weakly) increase in their time-one posteriors. However, consider a candidate continuation equilibrium in which $\tilde{\rho}(g,b) \in (0,1)$ and in which the optimistic sender, despite being the most "optimistic" player in the economy, strictly prefers to wait on the grounds that she observes k^s instead of k. Lemma 3 and Corollary 2 are not sufficient to rule out those kind of non-monotone candidate continuation equilibria. We decided not to study non monotone equilibria in this paper as we would not expect them to constitute a natural focal point of our game. More research is needed to investigate their existence and their welfare properties. PROPOSITION 3 If the investment generates a high surplus and if $\Pr(G|s_j = b, \hat{s}_i = g) = 1/2$, there exist two (and only two) MSCE's. In the first one the optimistic receivers invest with probability $\tilde{\rho}(g,g) \in (0,1)$, while the other players wait. In the second one, the optimistic sender together with all (optimistic and pessimistic) receivers invest at time one. Proof: See appendix. As mentioned above, if $\Pr(G|b,g) = 1/2$, this means that (i) the sender truthfully announced that she is an optimist and (ii) receivers compute their posteriors under the assumption of truthful revelation. For the same reasons as the ones explained above, there exists a MSCE in which only the optimistic receivers randomise at time one. As the investment generates a high surplus, at time one both the optimistic and the pessimistic receivers face a positive gain of investing. Suppose player j anticipates that everyone invests at time one. Player j knows that the sender is an optimist. Thus, she does not expect to learn something about the sender's type by observing her time-one action. Hence, player j only wants to wait to learn something about the other receivers' types. However, the other receivers, independently of their types, also invest at time one. Hence, player j cannot learn by waiting and, due to discounting, prefers to invest at time one. Note that in this MSCE all receivers possess some public (i.e. the favourable message sent by player i) and some private information (i.e. their signals). All receivers, independently of their signals, rely on the public information by investing at time one. This behaviour is identical to the one followed by the players inside an informational cascade in BHW's (1992) and Banerjee's (1992) models. In those models all players also possess some public (i.e. the action(s) of the first mover(s)) and private information (i.e. their signals) and, independently of their signals, adopt the same action. Therefore, we call the MSCE in which all receivers invest at time one an informational cascade. Chamley (2004a) has shown that this informational cascade does not hinge on our use of a binomial distribution. Rather, it can be recovered under a wide range of distributional assumptions. The reader may wonder why there does not exist a third MSCE in which only the pessimistic receivers randomise. The answer is simple: that continuation equilibrium is not stable. To understand this, consider Graph 3. Graph 3: An unstable continuation eq. when only pessimistic receivers randomise. Suppose player j is a pessimistic receiver who believes the sender to be optimistic. Graph 3 depicts player j's gain of investing and her gain of waiting as a function of $\rho(b,g)$. If $\rho(b,g)=0$, at time two player j will learn how many optimists are present in the economy and her gain of waiting is maximal. If $\rho(b,g)=\rho(b,g)=1$, all receivers, independently of their types, invest at time one and player j's gain of waiting is minimal. Graph 3 reveals the existence of a continuation equilibrium in which all pessimistic receivers invest with probability a. More importantly, the graph also shows that player j's gain of waiting is decreasing in $\rho(b,g)$. This is intuitive: when only pessimistic receivers randomise (while the optimistic receivers invest), the act of waiting becomes informative. The higher $\rho(b,g)$, the harder it is to infer n on the basis of k, and the lower a player's gain of waiting. As player j's gain of waiting is decreasing in $\rho(b,g)$, from Graph 4 it is clear that a small increase (decrease) in $\rho(b,g)$ induces player j to increase (decrease) her equilibrium investment probability from a to one (a to zero). Hence, that equilibrium is unstable. ## 4 Cheap Talk We now analyse player i's incentives to truthfully reveal her private information at time zero. One may think about player i in two ways. First, one may interpret player i as a "guru" whose opinion concerning investment matters is often asked by the media. Second, given our assumptions one would want to introduce an opinion poll (instead of just interviewing one player) at time zero. Unfortunately, analytical results are harder to get when one introduces other players at time zero. Therefore one can also interpret our model as one explaining "the economics of opinion polls" under the simplifying assumption that the size of the opinion poll equals one. We first state and prove the following "negative" result. PROPOSITION 4 For low surplus projects, there exists a unique MSPBE. In that equilibrium the optimistic and the pessimistic sender send $\hat{s}_i = g$. This MSPBE is supported by the out-of-equilibrium belief that if $\hat{s}_i = b$, the sender is a pessimist. Proof: The Proposition is proven in two different steps. First, we prove that $\sigma^*(b, h_0)$ must be equal to $\sigma^*(g, h_0)$. Next, we explain why $\sigma^*(b, h_0) = \sigma^*(g, h_0) = 1$. The proof of the first step appears below. The proof of the second step, which is less insightful, can be found in the appendix. We decided to follow this "two-step procedure" to better highlight the role played by the ϵ -reputational cost in our model. Suppose there exists a MSPBE in which $\sigma^*(g, h_0) > \sigma^*(b, h_0)$. This can only be an equilibrium if the pessimistic sender does not want to deviate, i.e. if $$E(U_i|s_i = b, \hat{s}_i = b) \ge E(U_i|s_i = b, \hat{s}_i = g).$$ If the sender sends "I am a pessimist", in our companion paper we have proven that our continuation game is then characterised by a unique MSCE in which $\sigma^*(g, b) = 1$ and $\rho^*(g,b) \in [0,1)$. If the sender sends "I am an optimist", $\Pr(G|g,g) > p$ and from Proposition 1 we know that in the continuation game the sender and the pessimistic receivers wait while the optimistic receivers invest with probability $\rho^*(g,g) \in (0,1)$. We now argue that $\rho^*(g,b) < \rho^*(g,g)$. If $\rho^*(g,b) = 0$, it trivially follows that $\rho^*(g,b) < \rho^*(g,g)$. Therefore, suppose that $\rho^*(g,b) > 0$. In that case both probabilities are solutions of the following system of two equations: (5) $$\delta W(\Pr(G|g,b), (0,1), (0, \rho^*(g,b))) - (\Pr(G|g,b) - c) = 0,$$ $$\delta W(\Pr(G|g,g),(0,0),(0,\rho^*(g,g))) - (\Pr(G|g,g) - c) = 0.$$ Suppose equality (5) is satisfied. From Lemma 3 then follows that $$\delta W(\Pr(G|q,q), (0,1), (0, \rho^*(q,b))) - (\Pr(G|q,q) - c) < 0.$$ In the appendix it is proven that $$\delta W(\Pr(G|g,g),(0,0),(0,\rho^*(g,b))) \le \delta W(\Pr(G|g,g),(0,1),(0,\rho^*(g,b))).$$ This is intuitive: a receiver's gain of waiting cannot decrease if the sender chooses a more informative time-one strategy. Hence, $$\delta W(\Pr(G|g,g), (0,0), (0,\rho^*(g,b))) - (\Pr(G|g,g) - c) < 0,$$ and from
Lemma 2 then follows that $\rho^*(g,b) < \rho^*(g,g)$. From Corollary 1 we know that this implies that $$\delta W(1-p,(0,\rho^*(g,b))) < \delta W(1-p,(0,\rho^*(g,g))).$$ The left-hand side of the inequality above represents $E(U_i|s_i=b,\hat{s}_i=b)$, while the right-hand side represents $E(U_i|s_i=b,\hat{s}_i=g)+\epsilon$. Hence, in the absence of an ϵ -reputational cost, $E(U_i|g,b) < E(U_i|g,g)$, which contradicts the necessary condition we identified earlier. As ϵ is sufficiently close to zero, the pessimistic sender still strictly prefers to send "I am an optimist" to "I am a pessimist", and, thus, for low surplus projects no information can be transmitted through words. Q.E.D. Intuitively, there does not exist a MSPBE in which $\sigma^*(b, h_0) < \sigma^*(g, h_0)$ because if player i were to send an unfavourable message, this reduces the optimistic receivers' gain of investing and consequently the equilibrium probability $\rho^*(g, \cdot)$. As it becomes then more difficult for the sender to infer n out of k, this reduces the sender's gain of waiting. The intuition why $\sigma^*(b, h_0) = \sigma^*(g, h_0) = 1$ is based on our ϵ -reputational cost. As messages do not affect posteriors, the optimistic sender cannot influence her gain of waiting. To avoid paying ϵ , she thus strictly prefers to send $\hat{s}_i = g$. The pessimistic sender knows that $\sigma^*(g, h_0) = 1$. As argued above, if she sends $\hat{s}_i = g$, she learns more (about the receivers' types) than by sending $\hat{s}_i = b$ (note, however, that this will be at the expense of her reputation). As $\epsilon \to 0$, she also strictly prefers to send $\hat{s}_i = g$ instead of $\hat{s}_i = b$. Note that Proposition 4 fundamentally relies on the assumption that players can wait and observe the period-one investment decisions. If players were not allowed to observe past investment decisions, our game would be characterised by a unique PBE in which $\sigma^*(g, h_0) = 1$ and $\sigma^*(b, h_0) = 0$. The intuition is simple: if the sender is optimistic she will, independently of her message, invest in the first period. If she is pessimistic she will, independently of her message, not invest. Hence, to save on the ϵ -reputational cost, a sender strictly prefers to truthfully report her type. Hence, Proposition 4 shows how the credibility of cheap talk statements can be adversely affected when players can learn through actions. As we mentioned in our introduction, the literature on social learning (see among others Banerjee (1992), BHW (1992), Chamley and Gale (1994), Chamley (2004a),...) assumes that information only gets revealed through actions. As those models are void of any competition effects, some economists wonder why information should not be revealed through words. 12 Proposition 4 thus provides a justification for the "ad-hoc" omission of a cheap-talk communication channel in many herding models. This paper also possesses a more "positive" result which is summarised below. PROPOSITION 5 For high surplus projects our game is characterised by two MSPBE's: a pooling and a separating one. In the separating equilibrium all receivers, independently of their types, invest at time one if $\hat{s}_i = g$. If $\hat{s}_i = b$, the optimistic receivers invest with probability $\rho^*(g,b)$, while the remaining players wait. In the pooling equilibrium both sender's types send $\hat{s}_i = g$. The pooling equilibrium is supported by the out-of-equilibrium belief that if $\hat{s}_i = b$, the sender is a pessimist. Proof: The existence of a separating equilibrium is proven below. The existence of a pooling equilibrium is proven in the appendix. Finally, in the appendix we also prove the nonexistence of a MSPBE in which $\sigma^*(b, h_0) < \sigma^*(g, h_0)$. Relative performance evaluation also justify agents' unwillingness to share information, an issue that is problematic in many herding models. ¹²For example, Zwiebel (1995, p.16) wrote: Suppose the investment project is a high surplus one (i.e. $c \leq 1/2$) and that all receivers revise their posteriors under the assumption that $\sigma^*(b, h_0) = 0$ and that $\sigma^*(g, h_0) = 1$. Consider first the optimistic sender. From Proposition 2, we know that if she deviates and sends $\hat{s}_i = b$, her payoff cannot exceed $p - c - \epsilon$. If she sends $\hat{s}_i = g$, from Proposition 3 we know that there exists a continuation equilibrium in which all receivers, along with the optimistic sender, invest at time one. Hence, absent the ϵ -reputational cost, an optimistic sender is indifferent between the two messages. If she prefers not to be caught "lying", she strictly prefers to truthfully report her signal. Consider now the pessimistic sender. If she sends $\hat{s}_i = b$, $c \leq \Pr(G|g, \hat{s}_i = b) = 1/2$. We now argue that $\rho^*(g, b) > 0$ if c < 1/2. As all receivers know s_i at time one, no additional information (about the sender's type) can be learned through the observation of a_i . Therefore, a receiver's gain of waiting is independent of σ_1 .¹³ Hence, if $\Pr(G|g, b) = 1/2 > c$, $$\delta W(\frac{1}{2},(0,1),(0,0)) = \delta W(\frac{1}{2},(0,0),(0,0)) = \delta(\frac{1}{2}-c) < \frac{1}{2}-c.$$ From Graph 1, we know there exists then a unique $\rho^*(g, b) > 0$ such that an optimistic receiver is indifferent between investing and waiting. From Corollary 1 follows that $$E(U_i|s_i = b, \hat{s}_i = b) = \delta W(1 - p, (0, \rho^*(g, b))) > 0, \forall c < \frac{1}{2}.$$ If the pessimistic sender deviates and sends $\hat{s}_i = g$, all receivers, independently of their types, invest at time one. As the sender does not receive any payoff relevant information she will not invest and $E(U_i|s_i=b,\hat{s}_i=g)=-\epsilon$. As $$E(U_i|s_i = b, \hat{s}_i = b) > 0 > E(U_i|s_i = b, \hat{s}_i = g)$$ whenever $c < \frac{1}{2}$, a pessimist strictly prefers to reveal her unfavourable information. Q.E.D. The intuition behind our pooling equilibrium (in which both sender's types send the message $\hat{s}_i = g$) is identical to the one we explained above. In words, a separating equilibrium is fundamentally driven because: (i) both sender's types face different opportunity costs of waiting and (ii) sending a favourable message creates an informational cascade. An optimist believes the investment project is good. For her "time is money" and she is only willing to postpone her investment plans (with probability one) if pessimists don't invest and if optimists invest with a relatively high probability. Unfortunately these two aims cannot be simultaneously achieved by any of the ¹³See appendix (Lemma 11) for a formal proof. two messages. Therefore, in the presence of an ϵ -reputational cost, she strictly prefers to send $\hat{s}_i = g$. A pessimist believes the investment project is bad. She is unwilling to invest unless she observes "relatively many" optimists investing at time one. If the pessimist were to deviate and sent a favourable message, an informational cascade would occur, she wouldn't receive any payoff-relevant information and she would get zero. Hence, it is the informational cascade which ultimately induces a pessimist to send an unfavourable message. If $\rho^*(b, h_1)$ would always be equal to zero (as is the case for low surplus projects), a pessimist would never want to send a negative message because - if this message were to be believed - this would reduce $\rho^*(g, h_1)$. Observe that Proposition 5 also stresses the importance of the informational cascade to elicit private information. There only exist two MSPBE's. There does thus not exist a MSPBE in which $\sigma^*(b, h_0) < \sigma^*(g, h_0)$ and in which $(\rho^*(b, g), \rho^*(g, g)) \neq (1, 1)$. So far we assumed that the sender always possesses private information. In Gossner and Melissas (2003), we allowed for an uninformed sender, in the sense that $s_i \in \{b, \phi, g\}$. If $s_i = \phi$, the sender's signal is completely uninformative. We assumed that $\Pr(s_i = \phi|\cdot) = \epsilon$ (where $\epsilon > 0$ and $\epsilon \to 0$) and showed the existence of a semi-separating equilibrium in which the pessimistic and the uninformed sender send the same message (say, message $\hat{s}_i = \phi$) and the optimistic one sends message $s_i = g$. The intuition is similar to the one behind Proposition 5: the pessimistic and the uninformed sender do not want to send the message $\hat{s}_i = g$ as this triggers an informational cascade. The optimistic sender - independently of her message - invests at time one and prefers to report truthfully for reputational reasons. Hence, one should not interpret Proposition (5) as follows: "informational cascades induce all possible types of players to truthfully reveal their private information". Instead, Proposition (5) should be interpreted as: "informational cascades put an upper limit above which some types of players don't want to misrepresent their information". # 5 Some normative and positive implications of our theory #### 5.1 Should we subsidise investments? Denote by sub an investment subsidy granted to each period-one investor. Call $c' \equiv c - sub$. A social planner can, by appropriately choosing sub, alter the amount of learning in two different ways. First, by making it relatively more attractive to invest at time one, she can influence all players' gain of waiting in a favourable way. Second, by setting sub such that $c' \leq 1/2 < c$, she changes the sender's incentives to truthfully reveal her private information (and thus the nature (separating versus pooling) of the equilibrium played in our game). In a full-fledged welfare study, one should compute the value of sub which maximises expected welfare. This exercise, however, is lengthy and outside the scope of this paper. Rather, in this subsection we assume that $sub \in [-\epsilon, \overline{sub})$ and highlight
some advantages and disadvantages of setting $sub \neq 0$. If $sub = -\epsilon$ (where, as above, ϵ represents an arbitrary small, but strictly positive number) this means that the social planner taxes first-period investments. Note that we only allow for a "low" subsidy¹⁴ in the sense that $$sub < \overline{sub} \equiv \min\{\overline{sub_1}, \overline{sub_2}\}, \text{ where}$$ $$\overline{sub_1} \equiv \delta W(\overline{q}, (0, 0), (0, 1)) - (\overline{q} - c) \text{ and}$$ $$\overline{sub_2} \equiv c + p - 1.$$ If $sub < \overline{sub}_1$, this means that the most optimistic type in our model still faces a positive option value of waiting. If $\underline{sub} < \overline{sub}_2$, this means that 1 - p < c'. In the appendix we show that $\forall sub \in [-\epsilon, \overline{sub})$, Propositions 4 and 5 are unaffected by the introduction of a first-period subsidy, i.e. if c' > 1/2, the unique MSPBE is the pooling one, if $c' \le 1/2$ there exists a separating and a pooling equilibrium. We first analyse the case in which the first-period subsidy does not change the nature of the played equilibrium. To illustrate our way of working, suppose the investment project is a high surplus one and that players always focus on the separating equilibrium. As mentioned above, in this equilibrium the message of the sender reveals her type, and strategies of period one are given by: after a good message, everyone invests in period 1, after a bad message, optimistic receivers invest with probability $\rho^*(q, b)$, and the remaining players do not invest. LEMMA 4 $$\forall sub \in [0, \overline{sub}), \ \rho^*(g, b)$$ is strictly increasing in sub and $\rho^*(g, b) < 1$. Proof: See appendix. The intuition behind Lemma 4 is straightforward. We are considering a separating equilibrium. Thus, after the arrival of an unfavourable message, optimistic receivers know they are the only players in the economy who face a positive gain of investing. If an optimistic receiver waits, she forfeits the investment subsidy. Hence, the higher sub, the higher a player's cost of waiting. However, in equilibrium ¹⁴We consider an investment subsidy which may be paid to a potentially very large number of firms. In comparison to the investment cost, it is then unlikely that the subsidy would be very important. We do not have in mind a situation in which a government offers a generous subsidy to attract an important investment project (e.g. the subsidy offered by the French Government to attract Eurodisney). the gain of waiting must equal the cost of waiting, and, thus, the higher sub, the higher a player's gain of waiting (and from Graph 1 we know that this requires a higher $\rho^*(g,b)$). Wel(g, sub, sep) (Wel(b, sub, sep)) denotes the expected payoffs (net of the subsidies received) of the optimistic (pessimistic) players given the first-period subsidy and given that all players focus on the separating equilibrium. For the optimistic players, one has $$Wel(g, sub, sep) = \frac{N}{2}(p - c + sub) - (\frac{1}{2}2p(1-p)(N-1)\rho^*(g, b) + \frac{1}{2}[(p^2 + (1-p)^2)(N-1) + 1])sub.$$ The first term is given by the expected number of optimists multiplied by their expected utilities. The second is the expected number of optimistic players who invest in period one¹⁵ times the subsidy which is paid to them. This last expression simplifies to (6) $$Wel(g, sub, sep) = \frac{N}{2}(p-c) + (N-1)p(1-p)(1-\rho^*(g,b))sub.$$ Observe that the second term is strictly positive whenever sub > 0. This finding implies that, from a welfare point of view, a strictly positive subsidy is better (insofar as the optimistic players are concerned) than no subsidy at all. From Lemma 4 we know that $(1 - \rho^*(g, b))sub$ (and thus also Wel(g, sub, sep)) need not be monotonic in sub. This is intuitive: an increase in sub increases an optimist's gain of waiting, but also reduces the probability that an optimist will wait and effectively benefit from a more informative signal. For pessimists, one has (7) $$Wel(b, sub, sep) = (N-1)p(1-p)(\frac{1}{2}-c) + \frac{1}{2}[(p^2 + (1-p)^2)(N-1)]$$ $$\delta W(\Pr(G|b, s_i = b), (0, 1), (0, \rho^*(g, b))) + \delta W(1-p, (0, \rho^*(g, b)))].$$ The first term corresponds to the expected welfare for pessimistic receivers given an optimistic sender. Similarly, the first term between square brackets corresponds to the expected welfare of all pessimistic receivers given a pessimistic sender. The second term between square brackets corresponds to the expected utility of the pessimistic sender. From Lemmas 2 and 4 and Corollary 1 follows that Wel(b, sub, sep) cannot ¹⁵With probability 1/2, the sender is pessimistic, in which case 2p(1-p)(N-1) optimistic receivers invest at time one with probability $\rho^*(g,b)$; with probability 1/2, the sender is optimistic, in which case $(p^2 + (1-p)^2)(N-1) + 1$ optimistic players (= conditional expected number of optimistic receivers plus the optimistic sender) invest at time one with probability one. decrease in sub. This is also intuitive: the higher sub, the higher $\rho^*(g, b)$, and, as explained in section 3, this cannot decrease the expected utilities of the pessimistic players. Total social welfare equals $$Wel(sub, sep) = Wel(g, sub, sep) + Wel(b, sub, sep).$$ Suppose now that all players, independently of the surplus generated by the project, focus on the pooling equilibrium. From above, we know that both sender's types then send the message $\hat{s}_i = g$, that optimists invest with probability $\rho^*(g,g)$ and that pessimists do not invest. Note that receiving the message $\hat{s}_i = g$ in the pooling equilibrium is informationally different from receiving the same message in the separating one (and, more importantly, leads to a different behaviour in the continuation game). To avoid confusion, in this subsection we denote by $\rho^*(g, h_1)$ (respectively $\rho^*(g,g)$) the probability with which all optimists invest at time one in the pooling (respectively separating) equilibrium after having received a favourable message. Here again, we estimate the social welfare separately for optimists and for pessimists (total welfare is denoted by Wel(sub, pool)). For optimists, this writes: (8) $$Wel(g, sub, pool) = \frac{N}{2}(p-c) + \frac{N}{2}(1-\rho^*(g, h_1))sub.$$ For pessimists, we have: (9) $$Wel(b, sub, pool) = \frac{N}{2} \delta W(1 - p, (0, \rho^*(g, h_1))).$$ LEMMA 5 $\forall sub \in [0, \overline{sub}), \ \rho^*(g, h_1)$ is strictly increasing in sub and $\rho^*(g, h_1) < 1$. Proof: See appendix. The intuition is similar to the one behind Lemma 4. As above, Wel(g, sub, pool) need not be monotonic in sub, while Wel(b, sub, pool) cannot decrease in sub. Our main result is summarised below. PROPOSITION 6 If the subsidy does not alter the nature of the played equilibrium, any $sub \in (0, \overline{sub})$ is (strictly) better (for welfare) than no subsidy at all. The relationship between welfare and sub need, however, not be monotonic. Proposition 6 is not very surprising: because of the information externality the social benefit of investing at time one exceeds the private one. Hence, a social planner fixes sub > 0 to close the gap between both benefits. A similar result is also present in Doyle (2002). However, it would be premature to conclude that - in the presence of information externalities - investments must always be subsidised as the example below suggests. Suppose c = 1/2 and that our players focus on the separating equilibrium. We now show that the social planner can increase welfare by imposing an arbitrarily small, but strictly positive, investment tax (i.e. $sub = -\epsilon$). We first compute Wel(0, sep). Observe that in the separating equilibrium $Pr(G|s_j = g, \hat{s}_i = b) = 1/2 = c$, and thus there exists a PBE in which $\rho^*(g, b) = 0$. Hence, from equation (6) follows that (10) $$Wel(g, 0, sep) = \frac{N}{2}(p - c).$$ As $\rho^*(g, b) = 0$, $$\delta W(\Pr(G|b, s_i = b), (0, 1), (0, 0)) = \delta W(1 - p, (0, 0)) = 0,$$ and from equation (7) we know that (11) $$Wel(b, 0, sep) = (N-1)p(1-p)(\frac{1}{2}-c) = 0.$$ Adding (10) and (11), one has (12) $$Wel(0, sep) = \frac{N}{2}(p - c).$$ This is intuitive: if $\hat{s}_i = g$, pessimists invest at time one and get a zero payoff. If $\hat{s}_i = b$, $\rho^*(g, b) = 0$ and our pessimistic players also get a zero payoff. Hence, if c = 1/2 total welfare is only determined by the expected utilities of the optimistic players. If $\hat{s}_i = g$, all optimists invest at time one. If $\hat{s}_i = b$, optimistic receivers do not invest, but nonetheless obtain the same payoff (i.e. zero) as the one they would obtain if they were to invest at time one. Stated differently, unconditionally investing at time one is - for an optimist - payoff equivalent to the alternative strategy in which she only invests if $\hat{s}_i = g$. Thus, an optimist gets p - c and, in expected terms, half of the population is optimistic. Thus, welfare equals N/2(p-c). If $sub = -\epsilon$, c' > 1/2 and the unique MSPBE is the pooling one. As $\epsilon \to 0$, $$Wel(g, -\epsilon, pool) \rightarrow \frac{N}{2}(p-c)$$ and $Wel(b, -\epsilon, pool) = \delta W(1-p, (0, \rho^*(g, h_1))).$ As $\rho^*(g, h_1) > \rho^*(g, b) = 0$, pessimists benefit from a more informative statistic in the pooling equilibrium and thus $Wel(0, sep) < Wel(-\epsilon, pool)$. Our main insight is summarised below. PROPOSITION 7 An investment tax can - by altering the nature of the played equilibrium - (strictly) increase welfare. In the analysis above, we restricted ourselves to the case in which c=1/2. However, it should be clear that Proposition 7 is crucially driven by the fact that when c is close to 1/2 (and $c \le 1/2$) the expected utility of a pessimist hardly exceeds zero in the separating equilibrium. In our introduction we explained why our last insight is not present in Doyle (2002). ## 5.2 How does the sender's ability influence her incentives
for truthful revelation? So far we assumed that the sender was "as able" as the receivers in the sense that all players possess a signal of the same precision. One may find it more natural to endow player i with a more precise signal. After all, in our model she can be interpreted as a guru and people typically think of them as being better informed. There is a straightforward way to allow for a better informed sender. Let's assume that player i's signal is drawn from the distribution: $\Pr(g|G) = \Pr(b|B) = r$ and $\Pr(b|G) = \Pr(g|B) = 1 - r$ (where 1 > r > p). The higher r, the "smarter" or the better informed the sender. Our main result is summarised below. PROPOSITION 8 $\forall c \in (1-p, \min\{p, \frac{(1-p)r}{(1-p)r+p(1-r)}\}), \exists a \text{ separating equilibrium. This range of parameter values cannot decrease in the precision of the sender's signal.}$ Proof: A MSCE in which $\tilde{\rho}(b,g) = \tilde{\rho}(g,g) = 1$ exists only if $\Pr(G|b, \hat{s}_i = g) \geq c$. This posterior probability is now computed as: $$\Pr(G|b, \hat{s}_i = g) = \frac{\Pr(G, \hat{s}_i = g|b)}{\Pr(\hat{s}_i = g|b)} = \frac{(1-p)r}{(1-p)r + p(1-r)} > \frac{1}{2}.$$ Using a reasoning identical to the one we outlined above, one can check that, if $c \in (1-p, \frac{(1-p)r}{(1-p)r+p(1-r)})$, there exists a separating equilibrium. Q.E.D. The intuition behind proposition 8 is simple. As we showed in Proposition 5, a separating equilibrium only exists if the sender can make the pessimists change their minds. Proposition 8 therefore rests on the intuitive idea that the "smarter" the sender (or the more precise her private information), the "easier" it will be for her to make the pessimists change their minds. If the sender cannot convince the remaining pessimists to invest at time one (either because the sender is commonly perceived to be "stupid" or because the investment project only generates a low surplus) then she doesn't want to reveal any unfavourable information because this will worsen her second-period inference problem. ## 6 Conclusions In this paper we introduced cheap talk in an investment model with information externalities. We first showed that for low surplus projects, the unique MSPBE is the pooling one. This is because a pessimist is reluctant to divulge her bad information as this worsens her second-period inference problem. For high surplus projects, however, there exists a separating equilibrium: as a pessimist doesn't learn anything upon observing an informational cascade (which occurs whenever the sender sends a favourable message) revelation of bad information is compatible with maximising behaviour. A subsidy on low-surplus projects increases welfare, provided the subsidy does not turn a low-surplus project into a high-surplus one. Without an adequate equilibrium selection theory, one cannot appraise the welfare consequences of a policy aimed at subsidising high-surplus projects. Finally, we argued that "smart" people have more incentives to truthfully reveal their private information than "stupid" ones. The reader must bear in mind that we only introduced cheap talk in an endogenous-queue set-up. More research is thus needed to check the robustness of exogenous-queue herding models to the introduction of cheap talk. In our model one should think about the sender as a famous investor who's being interviewed by the media. We believe it would be equally interesting to consider a set-up in which many players have access to the communication channel through words. In particular, we have two interpretations in mind. First, one could model "the economics of opinion polls" in which a subset of the population is asked to simultaneously send a message to all players in the economy. Second, one could model "the economics of business lunches" in which a subset of the population meet and discuss the investment climate prior to the first investment date (the outcome of the discussion is not divulged to the other players in the economy). We also believe this to constitute an interesting topic for future research. #### **Appendix** ### 1 Some Definitions and Useful Lemmas Let $$q \in \{q_{\omega}, q_{\pi}, 1-p, p\}$$, where $q_{\omega} \equiv \Pr(G|s_j = g, \hat{s}_i)$ and $q_{\pi} \equiv \Pr(G|s_j = b, \hat{s}_i)$. Let $$\rho_1 \equiv (\rho(b, h_1), \rho(g, h_1)), \tilde{\rho}_1 \equiv (\tilde{\rho}(b, h_1), \tilde{\rho}(g, h_1)), \text{ and}$$ $$\sigma_1 \equiv (\sigma(b, h_1), \sigma(g, h_1)), \tilde{\sigma}_1 \equiv (\tilde{\sigma}(b, h_1), \tilde{\sigma}(g, h_1)).$$ $$\Delta^r(q, \sigma_1, \rho_1) \equiv \delta W(q, \sigma_1, \rho_1) - (q - c'),$$ $^{^{16}}$ In contrast to Sgroi (2002) we have in mind a situation in which the sender wants to learn the receivers' private information. where c' = c - sub, and (14) $$W(q, \sigma_1, \rho_1) = \sum_{a_i} \sum_{k} \max\{0, \Pr(G|q, k, a_i) - c\} \Pr(k|q, a_i) \Pr(a_i|q).$$ Similarly, $$\Delta^{s}(q, \rho_1) \equiv \delta W(q, \rho_1) - (q - c'),$$ where, $$W(q, \rho_1) \equiv \sum_{k^s} \max\{0, \Pr(G|s_i, k^s) - c\} \Pr(k^s|s_i).$$ In words, $\Delta^r(q, \sigma_1, \rho_1)$ denotes a receiver's difference between her gain of waiting and her gain of investing given her posterior, σ_1 , ρ_1 and sub. $\Delta^s(p, \rho_1)$ denotes the difference between an optimistic sender's gain of waiting and her gain of investing. Note that the sender, when observing k investments, computes her posterior by explicitly taking into account the fact that N-1 (and not N-2) players were investing with probability $\rho(b, h_1)$ if they were pessimists and with probability $\rho(g, h_1)$ if they were optimists. Observe that, as $sub \in [-\epsilon, \overline{sub})$ ($\epsilon > 0$ and $\epsilon \to 0$ and the definition of \overline{sub} can be found in the body of our paper), 1 - p < c' < p. LEMMA 6 $\Delta^r(q, \sigma_1, \rho_1)$ is (weakly) increasing in $(\sigma(q, h_1) - \sigma(b, h_1))$. Proof: As we are focusing on monotone strategies $\sigma(g, h_1) - \sigma(b, h_1) \ge 0$. We prove the Lemma in two different steps. First, we show that $\Delta^r(\cdot)$ is weakly increasing in $\sigma(g, h_1)$ for any given $\sigma(b, h_1) \le \sigma(g, h_1)$. Next, we show that $\Delta^r(\cdot)$ is weakly decreasing in $\sigma(b, h_1)$ for any given $\sigma(b, h_1) \le \sigma(g, h_1)$. Step 1: Fix an arbitrary $\sigma(b,h_1) \leq \sigma(g,h_1)$, and consider two investment probabilities $\sigma(g,h_1) < \sigma'(g,h_1)$. Call a_i (a_i') the time-one action taken by the sender when $\sigma_1 = (\sigma(b,h_1),\sigma(g,h_1))$ ($\sigma_1 = (\sigma(b,h_1),\sigma'(g,h_1))$). Having the optimistic sender randomize with probability $\sigma(g,h_1)$ is ex ante identical to the following two-stage experiment: let the optimistic sender invest with probability $\sigma'(g,h_1)$. Construct a_i then in the following way: if $$a'_i$$ = invest, $$\begin{cases} a_i = \text{ invest} & \text{with probability } \frac{\sigma(g, h_1)}{\sigma'(g, h_1)}, \\ a_i = \text{ wait} & \text{with probability } 1 - \frac{\sigma(g, h_1)}{\sigma'(g, h_1)}, \end{cases}$$ if a'_i = wait, $$a_i = \text{ wait} & \text{with probability } 1.$$ Hence, a_i' is a sufficient statistic for a_i and from Blackwell's theorem follows that $\forall \sigma(b, h_1) \leq \sigma(g, h_1)$, $W(q, (\sigma(b, h_1), \sigma(g, h_1)), \rho_1) \leq W(q, (\sigma(b, h_1), \sigma'(g, h_1)), \rho_1)$. Step 2: Fix an arbitrary $\sigma(g, h_1) \geq \sigma(b, h_1)$, and consider two investment probabilities $\sigma'(b, h_1) < \sigma(b, h_1)$. Call a_i (a_i') the time-one action taken by the sender when $\sigma_1 = (\sigma(b, h_1), \sigma(g, h_1))$ ($\sigma_1 = (\sigma'(b, h_1), \sigma(g, h_1))$). As above, one can construct a_i on the basis of a_i' in the following way: let the pessimistic sender wait with probability $1 - \sigma'(b, h_1)$. If $$a'_i = \text{wait}$$, $\begin{cases} a_i = \text{wait} & \text{with probability } \frac{1 - \sigma(b, h_1)}{1 - \sigma'(b, h_1)}, \\ a_i = \text{invest} & \text{with probability } 1 - \frac{1 - \sigma(b, h_1)}{1 - \sigma'(b, h_1)}. \end{cases}$ if a'_i = invest, a_i = invest with probability 1. As before, a_i' is a sufficient statistic for a_i and from Blackwell's theorem follows that $\forall \sigma(b, h_1) \leq \sigma(g, h_1), W(q, (\sigma(b, h_1), \sigma(g, h_1)), \rho_1) \leq W(q, (\sigma'(b, h_1), \sigma(g, h_1)), \rho_1)$. Q.E.D. LEMMA 7 $\Delta^r(q, \sigma_1, \rho_1)$ is strictly decreasing in $q, \forall \rho_1, \forall \sigma_1$. Proof: Consider player l and player l'. Both players received the same message from the sender but player l anticipates that $\Theta = G$ with probability q, while player l' anticipates that $\Theta = G$ with probability q'. Suppose, without loss of generality, that q' > q. Observe that equation (14) can be rewritten as: (15) $$W(q, \sigma_1, \rho_1) = q \sum_{x} \Pr(x|G, \hat{s}_i) (1 - c) I_{\{\Pr(G|q, x) \ge c\}} + (1 - q) \sum_{x} \Pr(x|B, \hat{s}_i) (-c) I_{\{\Pr(G|q, x) \ge c\}},$$ where $I_{\{\cdot\}}$ represents the indicator function. Remind that x denotes a $(1 \times N)$ vector where the l-th element equals one if player l invested at time one and zero otherwise. We start by proving the following inequality: (16) $$q' - q \ge W(q', \sigma_1, \rho_1) - W(q, \sigma_1, \rho_1).$$ Note that $$W(q', \sigma_1, \rho_1) - W(q, \sigma_1, \rho_1) \le W(q', \sigma_1, \rho_1) - W'(q, \sigma_1, \rho_1),$$ where, $$W'(q, \sigma_1, \rho_1) \equiv q \sum_{x} \Pr(x|G, \hat{s}_i) (1 - c) I_{\{\Pr(G|q', x) \ge c\}} + (1 - q) \sum_{x} \Pr(x|B, \hat{s}_i) (-c) I_{\{\Pr(G|q', x) \ge c\}}.$$ Hence, a sufficient condition for (16) to hold is that (17) $$q' - q \ge W(q', \sigma_1, \rho_1) - W'(q, \sigma_1, \rho_1).$$ Note that the RHS of (17) can be written as: (18) $$W(q', \sigma_1, \rho_1) - W'(q, \sigma_1, \rho_1) = (q' - q) \sum_{x} \Pr(x|G, \hat{s}_i) (1 - c) I_{\{\Pr(G|q', x) \ge c\}} - (q' - q) \sum_{x} \Pr(x|B, \hat{s}_i) (-c)
I_{\{\Pr(G|q', x) \ge c\}}.$$ Note also that the LHS of (17) can be rewritten as: (19) $$q' - q = (q' - q) \sum_{x} \Pr(x|G, \hat{s}_i)(1 - c) - (q' - q) \sum_{x} \Pr(x|B, \hat{s}_i)(-c).$$ Using (18) and (19), inequality (17) can be rewritten as $$(q'-q)\sum_{x} \Pr(x|G,\hat{s}_i)(1-c)(1-I_{\{\Pr(G|q',x)\geq c\}})$$ $$+(q'-q)\sum_{x} \Pr(x|B,\hat{s}_i)c(1-I_{\{\Pr(G|q',x)\geq c\}})\geq 0,$$ which is obviously satisfied. Using (13), one has $$\Delta^{r}(q', \sigma_1, \rho_1) - \Delta^{r}(q, \sigma_1, \rho_1) = \delta(W(q', \sigma_1, \rho_1) - W(q, \sigma_1, \rho_1)) - (q' - q).$$ From above (+ using the fact that $\delta < 1$), it follows that $$\Delta^r(q', \sigma_1, \rho_1) < \Delta^r(q, \sigma_1, \rho_1),$$ which proves the Lemma. Q.E.D. LEMMA 8 $$\Delta^{s}(p, \rho_{1}) = \Delta^{r}(p, \rho_{1}, \rho_{1})$$ and $\Delta^{s}(1 - p, \rho_{1}) = \Delta^{r}(1 - p, \rho_{1}, \rho_{1})$. Proof: Suppose $s_j = g$ (the argument if $s_j = b$ is fully symmetric). Observe that, as $q_\omega = p$, player j did not learn anything about the sender's type after the communication stage. Observe also that the sender invests with the same probability as the receivers. Both observations imply that observing a_i invest is informationally equivalent to observing a_l invest (where $l \neq j$ and $l \neq i$). Hence, if player j waits she has access to an information service that is ex ante identical to the one of the optimistic sender. Thus, player j and the optimistic sender face the same gain of waiting and the same gain of investing, which implies the Lemma. Q.E.D. LEMMA 9 $\Delta^s(p, \rho_1)$ is strictly decreasing in $p, \forall \rho_1$. Proof: From Lemma 8, we know that $\Delta^s(p, \rho_1) = \Delta^r(p, \rho_1, \rho_1)$. But then it follows from Lemma 7 that $\Delta^r(p, \rho_1, \rho_1)$ is strictly decreasing in p. Q.E.D. LEMMA 10 $\forall \rho'(g, h_1) > \rho(g, h_1)$, $\Delta^r(q, \sigma_1, (0, \rho(g, h_1))) \leq \Delta^r(q, \sigma_1, (0, \rho'(g, h_1)))$, where the inequality becomes strict whenever $\rho'(g, h_1) > \rho^c \geq 0$. Proof: First observe that whenever $Pr(G|q, k, a_i)$ is well defined, one has: Remark 1: $$\Pr(G|q, k = 0, a_i) < \Pr(G|q, k = 1, a_i) < ... < \Pr(G|q, k = N - 2, a_i)$$. Remark 2: $Pr(G|q, k = 0, a_i)$ is strictly decreasing in $\rho(g, h_1)$. Remark 3: $$\Pr(G|q, k = 0, a_i = \text{wait}) \leq \Pr(G|q, k = 0, a_i = \text{invest})$$. Remark 3 rests on the observation that, as 1-p < c', $\sigma^*(b,h_1) = 0$. Before defining ρ^c we must make a distinction between the following two cases: (1) $\Pr(G|q,0,wait)$ is well defined and (2) $\Pr(G|q,0,wait)$ is not well defined. Observe that whenever $\rho'(g,h_1) > 0$, (2) only happens if after the communication stage - all players learned that $s_i = g$ and that $\sigma(g,g) = 1$. In (1) we must make the following distinction: (a) $\Pr(G|q,wait) > c$ and (b) $\Pr(G|q,wait) \le c$. In (a) we define ρ^c as the probability with which N-2 receivers must invest (if they are optimists) such that $\Pr(G|q,0,wait) = c$. Observe that in (a) $$\Pr(G|q, 0, wait, \rho(g, h_1) = 1) < c < \Pr(G|q, wait) = \Pr(G|q, 0, wait, \rho(g, h_1) = 0),$$ and, thus, in (a) $0 < \rho^c < 1$. In (b) there does not exist a $\rho(g, h_1) > 0$ such that $\Pr(G|q, 0, wait) = c$. Hence, in (b) we define ρ^c as being equal to zero. In (2) we make the following distinction: (c) $\Pr(G|q, invest) > c$ and (d) $\Pr(G|q, invest) \le c$. As before, in (c) we define ρ^c as the probability with which the N-2 receivers must invest (if they are optimists) such that $\Pr(G|q, 0, invest) = c$. In this case $0 < \rho^c < 1$. In (d) we define ρ^c as being equal to zero. Call k'(k) the number of time-one investors when N-2 receivers invest with probability $\rho'(g, h_1)$ ($\rho(g, h_1)$) if they are optimists, and with probability zero if they are pessimists. From the explanation given in the text we know that k' is a sufficient statistic for k. Consider two receivers: player 1 and player 2. Both players anticipate that $\Theta = G$ with probability q. If player 1 (2) waits, she observes statistic k'(k). If $\rho(g, h_1) < \rho'(g, h_1) \le \rho^c$, from Remarks 1, 2 and 3 we know that both players always invest at time two and $\Delta^r(q, \sigma_1, (0, \rho(g, h_1))) = \Delta^r(q, \sigma_1, (0, \rho'(g, h_1)))$. If $\rho^c \le \rho(g, h_1) < \rho'(g, h_1)$, with strictly positive probability $$\Pr(G|q, k = 0, a_i) < c < \Pr(G|q, k' = N - 2, a_i),$$ in which case player two (wrongly) doesn't invest and loses $\Pr(G|q, k' = N - 2, a_i) - c > 0$. Hence, whenever $\rho'(g, h_1) > \rho(g, h_1) \geq \rho^c$, $$\Delta^r(q, \sigma_1, (0, \rho(g, h_1)) < \Delta^r(q, \sigma_1, (0, \rho'(g, h_1)).$$ Q.E.D. Lemma 10 gives rise to the following Corollary. Corollary 4 $\forall \rho'(g, h_1) > \rho(g, h_1),$ 1) $\Delta^s(p,(0,\rho'(g,h_1))) \geq \Delta^s(p,(0,\rho(g,h_1)))$ where the inequality becomes strict whenever $W(p,(0,\rho(g,h_1))) > p-c$, 2) $$\Delta^{s}(1-p,(0,\rho'(g,h_1))) > \Delta^{s}(1-p,(0,\rho(g,h_1))).$$ Proof: This Corollary was already proven in Chamley and Gale (1994) (see their Proposition 2). In our set-up the Corollary follows from our previous Lemmas as the argument below shows. Suppose that $q \in \{1 - p, p\}$ and that $\sigma_1 = \rho_1$. From Lemma 8, we know that player j's gain of waiting is then identical to player i's. Define ρ^c in a similar way as in the proof of Proposition 10. Observe that $0 < \rho^c < 1 \Leftrightarrow W(p, \rho_1, \rho_1) > p - c$. The Corollary then follows from the proof of Lemma 10. Q.E.D. LEMMA 11 $\Delta^r(\frac{1}{2}, \sigma_1, \rho_1)$ and $\Delta^r(\overline{q}_{\omega}, \sigma_1, \rho_1)$ are independent of σ_1 . Proof: Observe that $W(q, \sigma_1, \rho_1)$ can also be rewritten as (20) $$W(q, \sigma_1, \rho_1) = \Pr(a_i = \text{invest}|s_j, \hat{s}_i)W^r(q', \rho_1)$$ $$+\Pr(a_i = \text{wait}|s_i, \hat{s}_i)W^r(q'', \rho_1), \text{ where}$$ $q' = \Pr(G|s_j, \hat{s}_i, a_i = \text{invest}), q'' = \Pr(G|s_j, \hat{s}_i, a_i = \text{wait}),$ $$W^{r}(q', \rho_1) = \sum_{k} \max\{0, \Pr(G|s_j, \hat{s}_i, k, \text{invest}) - c\} \Pr(k|s_j, \hat{s}_i, a_i = \text{invest}) \text{ and}$$ $$W^r(q'', \rho_1) = \sum_k \max\{0, \Pr(G|s_j, \hat{s}_i, k, \text{wait}) - c\} \Pr(k|s_j, \hat{s}_i, a_i = \text{wait}).$$ If $q = \frac{1}{2}$ or if $q = \overline{q}_{\omega}$, this means that the receivers learned s_i through the sender's message. Hence, if q' and q'' are well defined, q' = q'' and $$W(q, \sigma_1, \rho_1) = W^r(q', \rho_1) = W^r(q'', \rho_1) = \sum_k \max\{0, \Pr(G|s_j, k, s_i) - c\} \Pr(k|s_j, s_i),$$ which is independent of σ_1 . If either q' or q'' are not well defined (because $\Pr(a_i = \text{invest}|s_j, \hat{s}_i)$ equals one or zero), this means that $W(q, \sigma_1, \rho_1)$ either equals $W^r(q', \rho_1)$ or $W^r(q'', \rho_1)$. In both cases, $W(\cdot)$ is independent of σ_1 . Q.E.D. LEMMA 12 $\forall \rho(b, h_1) < \rho'(b, h_1), \Delta^r(q, \sigma_1, (\rho(b, h_1), 1)) \ge \Delta^r(q, \sigma_1, (\rho'(b, h_1), 1)),$ where the inequality becomes strict whenever $\rho(b, h_1) < \rho_c \le 1$. Proof: The proof mirrors the one we outlined in Proposition 10. Whenever $\rho(b,h_1)<1$ and $\rho(g,h_1)=1$, the act of waiting becomes informative and the probability with which each pessimist decides to take the informative action equals $(1-\rho(b,h_1))$. Take any two waiting probabilities $1-\rho(b,h_1)>1-\rho'(b,h_1)$. Call z (z') the number of players who waited when pessimistic receivers randomised with probability $1-\rho(b,h_1)$ ($1-\rho'(b,h_1)$) and optimistic receivers with probability zero. Having N-2 players randomising with probability $\rho(b,h_1)$ (if they are pessimists) is ex ante identical to the following two-stage experiment: take N-2 players and let them wait (if they are pessimists) with probability $(1-\rho(b,h_1))$. Next, take the z non-investors and let them invest with probability $\frac{1-\rho'(b,h_1)}{1-\rho(b,h_1)}$. Hence, the statistic z' can be constructed by adding noise to the statistic z. In the rest of the proof we always assume that $\rho(b,h_1)<1$. Whenever $\Pr(G|q,z,a_i)$ is well defined one has: Remark 1: $\Pr(G|q, z = 0, a_i) > \Pr(G|q, z = 1, a_i) > ... > \Pr(G|q, z = N - 2, a_i)$. Remark 2: $Pr(G|q, z = 0, a_i)$ is strictly decreasing in $\rho(b, h_1)$. Remark 3: $Pr(G|q, z, wait) \leq Pr(G|q, z, invest)$. As above, we must distinguish among different cases. If $\Pr(G|q, z = 0, \text{invest})$ is well defined and if $\Pr(G|q, \text{invest}) < c$, we define ρ_c as the probability with which N-2 receivers must invest (if they are pessimists) such that $\Pr(G|q, 0, \text{invest}) = c$. If $\Pr(G|q, 0, \text{invest})$ is not well defined and if $\Pr(G|q, \text{wait}) < c$, we define ρ_c as the probability with which N-2 receivers must invest (if they are pessimists) such that $\Pr(G|q, 0, \text{wait}) = c$. In all the other cases we define ρ_c as being equal to one. If $\rho_c \leq \rho(b, h_1) < \rho'(b, h_1)$ from Remarks 1, 2 and 3 we know that both players never invest at time two and $\Delta^r(q, \sigma_1, (\rho(b, h_1), 1)) = \Delta^r(q, \sigma_1, (\rho'(b, h_1), 1))$. If $\rho(b, h_1) < \rho'(b, h_1) \leq \rho_c$ with a strictly positive probability $$\Pr(G|q, z = N - 2, a_i) < c \le \Pr(G|q, z' = 0, a_i),$$ in which case player 2 wrongly invests (at time two) and loses $c - \Pr(G|q, z = N - 2, a_i) > 0$. Hence, $\forall \rho(b, h_1) < \rho'(b, h_1) \leq \rho_c$, $$\Delta^r(q, \sigma_1, (\rho(b, h_1), 1)) > \Delta^r(q, \sigma_1, (\rho'(b, h_1), 1)).$$ Q.E.D. Lemma 13 $\Delta^r(\overline{q}_{\omega}, (0,0), (0,0)) < 0 < \Delta^r(\overline{q}_{\omega}, (0,0), (0,1)).$ Proof: The fact that $\Delta^r(\overline{q}_{\omega}, (0,0), (0,0)) < 0$ trivially follows from our assumption that $\delta < 1$. The second inequality rests on A2 and on the fcat that $sub < sub_1$. Q.E.D.
LEMMA 14 $\Delta^r(q,(0,0),(0,1)) > 0$, $\forall q \ and \ \forall sub \in [-\epsilon, \overline{sub})$. Proof: From Lemmas 13 and 7 follows that $\forall q \text{ and } \forall sub \in [-\epsilon, \overline{sub}),$ $$0 < \Delta^r(\overline{q}_{c}, (0,0), (0,1)) < \Delta^r(q, (0,0), (0,1)).$$ Q.E.D. #### 2 Proof of all Lemmas and Propositions in our Paper The proofs of Lemmas 2, 3 and Corollary 1 can be found above. #### Proof of Lemma 1 Call n^r the number of optimistic receivers in the economy. Observe that $\Pr(G|q,n^r)$ is increasing in n^r . As explained in the paper if $\Pr(G|\overline{q}_{\omega},n^r=1)=\Pr(G|n=2)< c$, then $\Pr(G|q,n^r=1)< c$ and $W(q,\sigma_1,(0,1))>q-c \ \forall q$. Hence, we just focus on the question: "How high must N be such that $\Pr(G|\overline{q}_{\omega},n^r=1)< c$?" The posterior $q_{\omega}=\overline{q}_{\omega}$ can only be generated if (i) player i sent a favourable message and (ii) $\sigma(g,h_0)=1$ and $\sigma(b,h_0)=0$. Therefore if $q_{\omega}=\overline{q}_{\omega}$, n cannot take a value lower than two. Now: $$\Pr(G|n=2) = \frac{C_N^2 p^2 (1-p)^{N-2}}{C_N^2 p^2 (1-p)^{N-2} + C_N^2 (1-p)^2 p^{N-2}}$$ where C_N^2 represents the number of possible combinations of two players out of a population of N players. It can easily be shown that $\forall N_1 > N_2 \geq 2$: $$\frac{p^2(1-p)^{N_1-2}}{p^2(1-p)^{N_1-2}+(1-p)^2p^{N_1-2}}<\frac{p^2(1-p)^{N_2-2}}{p^2(1-p)^{N_2-2}+(1-p)^2p^{N_2-2}}$$ From statistical textbooks (see e.g. De Groot (1970)) we know that in our set-up $\Pr(G|n)$ is driven by the difference between the good and the bad signals in the population.¹⁷ Therefore if $N \geq 5$, $\Pr(G|n=2) \leq 1-p$ which is strictly lower than c by A1. Q.E.D. ### Proofs of Propositions 1, 2 and 3 We characterise the set of MSCE by proving the following 6 points. **Point 1:** If $q_{\pi} < 1 - p < c' < q_{\omega} < p$, \exists a unique MSCE in which $\tilde{\rho}(b, b) = \tilde{\sigma}(b, b) = 0$ and $\tilde{\rho}(g, b) \in [0, 1), \tilde{\sigma}(g, b) = 1$. Proof: Observe that $q_{\pi} < 1 - p$, which means that the sender sent message $\hat{s}_i = b$. As $q_{\pi} < 1 - p < c'$, this implies that $\tilde{\rho}(b,b) = \tilde{\sigma}(b,b) = 0$. We first show that there does not exist a monotone continuation equilibrium in which $0 < \tilde{\rho}(g,b) \le \tilde{\sigma}(g,b) < 1$. As both types are willing to randomise this means that $$\Delta^{r}(q_{\omega}, (0, \tilde{\sigma}(g, b)), \tilde{\rho}_{1}) = 0,$$ $$\Delta^{s}(p, \tilde{\rho}_{1}) = 0.$$ Both equalities cannot be simultaneously satisfied as we can successively apply Lemmas 6, 7 and 8 to construct the following contradiction: $$0 = \Delta^r(q_\omega, (0, \tilde{\sigma}(q, b)), \tilde{\rho}_1)) \ge \Delta^r(q_\omega, \tilde{\rho}_1, \tilde{\rho}_1) > \Delta^r(p, \tilde{\rho}_1, \tilde{\rho}_1) = \Delta^s(p, \tilde{\rho}_1) = 0.$$ Next, observe that there does not exist a monotone continuation equilibrium in which $\tilde{\sigma}(g,b) < 1$ and $\tilde{\rho}(g,b) = 0$, because the optimistic sender, knowing that $\tilde{\rho}(g,b) = 0$, then strictly prefers to invest at time one with probability one. We now prove the existence of a monotone continuation equilibrium in which $\tilde{\sigma}(g,b) = 1$ and $\tilde{\rho}(g,b) \in [0,1)$. Consider the optimistic receiver. She knows that $\tilde{\sigma}(g,b) = 1$. There are then two possibilities: (i) $\Delta^r(q_\omega,(0,1),(0,0)) \geq 0$ and (ii) $\Delta^r(q_\omega,(0,1),(0,0)) < 0$. In case (i), $\tilde{\rho}(g,b) = 0$. ¹⁷For example, $\Pr(G|n=1, N=3) = \Pr(G|n=2, N=5) = 1-p$. In both cases: #pessimists -# optimists = N-n-n=1. The optimistic sender knows that $\tilde{\rho}(g,b) = 0$ and thus stictly prefers to invest at time one with probability one (i.e. $\tilde{\sigma}(g,b) = 1$). In case (ii), from Lemmas 6 and 14, one has $$\Delta^r(q_\omega, (0, 1), (0, 1)) \ge \Delta^r(q_\omega, (0, 0), (0, 1)) > 0.$$ From Lemma 10, there exists a unique $\tilde{\rho}(g,b) \in (0,1)$ such that $\Delta^r(q_{\omega},(0,1),(0,\tilde{\rho}(g,b))) = 0$. Successively applying Lemmas 7, 6 and 8, one has $$0 = \Delta^r(q_\omega, (0, 1), \tilde{\rho}_1) > \Delta^r(p, (0, 1), \tilde{\rho}_1) \ge \Delta^r(p, (0, \tilde{\rho}(q, b)), \tilde{\rho}_1) = \Delta^s(p, \tilde{\rho}_1),$$ and the optimistic sender, knowing that $\tilde{\rho}(g,b)$ is fixed such that $\Delta^r(q_\omega,(0,1),\tilde{\rho}_1)=0$, strictly prefers to invest at time one (i.e. $\tilde{\sigma}(g,b)=1$). Q.E.D. **Point 2:** If $q_{\pi} < 1 - p < q_{\omega} \le c' < p$, \exists a unique MSCE in which $\tilde{\rho}(b, b) = \tilde{\sigma}(b, b) = \tilde{\rho}(g, b) = 0$ and $\tilde{\sigma}(g, b) = 1$. Proof: In this case the sender also sent message $\hat{s}_i = b$. As $q_{\pi} < 1 - p < c'$, $\tilde{\rho}(b,b) = \tilde{\sigma}(b,b) = 0$. Observe also that if $q_{\omega} \leq c'$, $\forall \rho(g,b) > 0$, $\Delta^r(q_{\omega},\sigma_1,(0,\rho(g,b))) > 0$. Hence, $\tilde{\rho}(g,b) = 0$. The optimistic sender, knowing that $\tilde{\rho}(b,b) = \tilde{\rho}(g,b) = 0$, strictly prefers to invest at time one with probability one. Q.E.D. **Point 3:** If $1 - p < q_{\pi} < c' < p < q_{\omega}$, \exists a unique MSCE in which $\tilde{\sigma}(b, g) = \tilde{\rho}(b, g) = \tilde{\sigma}(g, g) = 0$ and $\tilde{\rho}(g, g) \in (0, 1)$. Proof: In this case the sender sent message $\hat{s}_i = g$. As $1 - p < q_{\pi} < c'$, $\tilde{\sigma}(b, g) = \tilde{\rho}(b, g) = 0$. Suppose there exists a continuation equilibrium in which $0 < \tilde{\sigma}(g, g) \le \tilde{\rho}(g, g) < 1$. As both types of players are willing to randomize, this means that $$\Delta^r(q_\omega, (0, \tilde{\sigma}(g, g)), (0, \tilde{\rho}(g, g))) = 0,$$ $$\Delta^{s}(p, (0, \tilde{\rho}(q, q))) = 0.$$ Both equalities cannot be simultaneously satisfied as we can successively apply Lemmas 6, 7 and 8 to construct the following contradiction: $$0 = \Delta^r(q_\omega, (0, \tilde{\sigma}(q, g)), \tilde{\rho}_1) \le \Delta^r(q_\omega, \tilde{\rho}_1, \tilde{\rho}_1) < \Delta^r(p, \tilde{\rho}_1, \tilde{\rho}_1) = \Delta^s(p, \tilde{\rho}_1) = 0.$$ Note also that there cannot exist continuation equilibria in which $\tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 0$ or in which $\tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$ (both candidate continuation equilibria contradict our assumption that $\delta < 1$ and Lemma 14). Suppose $\tilde{\sigma}(g,g) = 0$. From Chamley and Gale, we know that there exists then a unique $\tilde{\rho}(g,g) \in (0,1)$ such that $\Delta^r(q_\omega,(0,0),(0,\tilde{\rho}(g,g))) = 0$. Successively applying Lemmas 7, 6 and 8, one has $$0 = \Delta^{r}(q_{\omega}, (0, 0), \tilde{\rho}_{1}) < \Delta^{r}(p, (0, 0), \tilde{\rho}_{1}) \leq \Delta^{r}(p, (0, \tilde{\rho}(q, q)), \tilde{\rho}_{1}) = \Delta^{s}(p, \tilde{\rho}_{1}),$$ and the pessimistic sender, knowing that $\tilde{\rho}(g,g)$ is fixed such that $\Delta^r(q_{\omega},(0,0),\tilde{\rho}_1)=0$, strictly prefers to wait at time one (i.e. $\tilde{\sigma}(g,g)=0$). Q.E.D. **Point 4:** If $1 - p < c' \le q_{\pi} < \frac{1}{2} < p < q_{\omega}$, \exists a MSCE in which $\tilde{\sigma}(b, g) = \tilde{\rho}(b, g) = \tilde{\sigma}(g, g) = 0$ and $\tilde{\rho}(g, g) \in (0, 1)$. Depending on the values of our exogenous parameters, there may also exist one (and only one) other MSCE in which $\tilde{\sigma}(b,g) = 0$ and $\tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$. Proof: In this case the sender sent message $\hat{s}_i = g$. As 1 - p < c', $\tilde{\sigma}(b,g) = 0$. We prove this point in seven different steps. Steps 1, 2 and 3 show that there does not exist a monotone continuation equilibrium in which more than one type of player randomizes. Steps 4, 5 and 6 show that there exists a unique monotone continuation equilibrium in which only one type of player (i.e. the optimistic receiver) randomises (while the optimistic sender and the pessimistic receiver wait with probability 1). Step 7 investigates the existence of monotone continuation equilibria in which none of our players randomize. Step 1: There does not exist a monotone continuation equilibrium in which $0 < \tilde{\rho}(b,g) \le \tilde{\sigma}(g,g) \le \tilde{\rho}(g,g) < 1$. Suppose the statement is true. Then one can apply Lemma 7 to construct the following contradiction $$0 = \Delta^r(q_{\pi}, \tilde{\sigma}_1, \tilde{\rho}_1) > \Delta^r(q_{\omega}, \tilde{\sigma}_1, \tilde{\rho}_1) = 0.$$ Step 2: There does not exist a monotone continuation equilibrium in which $0 = \tilde{\rho}(b,g) < \tilde{\sigma}(g,g) \le \tilde{\rho}(g,g) < 1$. Suppose the statement is true. Successively applying Lemmas 8, 7 and 6 we can construct then the following contradiction $$0 = \Delta^{s}(p, (0, \tilde{\rho}(g, g))) = \Delta^{r}(p, (0, \tilde{\rho}(g, g)), \tilde{\rho}_{1}) >$$ $$\Delta^r(q_\omega, (0, \tilde{\rho}(g, g)), \tilde{\rho}_1) \ge \Delta^r(q_\omega, (0, \tilde{\sigma}(g, g)), \tilde{\rho}_1) = 0.$$ Step 3: There does not exist a monotone continuation equilibrium in which $0 < \tilde{\rho}(b, g) \le \tilde{\sigma}(g, g) < 1 = \tilde{\rho}(g, g)$. Suppose the statement is true. This implies that (21) $$\Delta^{r}(q_{\pi}, (0, \tilde{\sigma}(q, g)), (\tilde{\rho}(b, g), 1)) = 0,$$ (22) $$\Delta^s(p, (\tilde{\rho}(b, g), 1)) = 0.$$ Applying Lemmas 7 and 11 to equality (21), one has (23) $$0 = \Delta^r(q_{\pi}, \tilde{\sigma}_1, \tilde{\rho}_1) \ge \Delta^r(\frac{1}{2}, \tilde{\sigma}_1, \tilde{\rho}_1) = \Delta^r(\frac{1}{2}, (0, 1), \tilde{\rho}_1).$$ Applying Lemmas 8 and 6 to equality (22), one has (24) $$0 = \Delta^{s}(p, \tilde{\rho}_{1}) = \Delta^{r}(p, (\tilde{\rho}(b, q), 1), (\tilde{\rho}(b, q), 1)) < \Delta^{r}(p, (0, 1), \tilde{\rho}_{1}).$$ Inequalities (23) and (24) cannot be simultaneously satisfied as we run into the following contradiction (after applying Lemma 7) $$0 \ge \Delta^r(\frac{1}{2}, (0, 1), \tilde{\rho}_1) > \Delta^r(p, (0, 1), \tilde{\rho}_1) \ge 0.$$
Step 4: There does not exist a monotone continuation equilibrium in which $0 = \tilde{\rho}(b, g) < \tilde{\sigma}(g, g) < 1 = \tilde{\rho}(g, g)$. This is easy to see: if $\tilde{\rho}_1 = (0, 1)$, from Lemmas 2, 6 and 8, follows that $$0 < \Delta^r(p, (0, 0), (0, 1)) \le \Delta^r(p, (0, 1), \tilde{\rho}_1) = \Delta^s(p, \tilde{\rho}_1),$$ and thus the optimistic sender is not indifferent between investing and waiting. Step 5: There does not exist a monotone continuation equilibrium in which $0 < \tilde{\rho}(b,g) < \tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$. Consider a pessimistic receiver. There are two different possibilities: (i) $\Delta^r(q_\pi,(0,1),(1,1)) \ge 0$ or (ii) $\Delta^r(q_\pi,(0,1),(1,1)) < 0$. In case (i), a pessimistic receiver, knowing that by waiting she will perfectly learn the sender's type, prefers to wait and is thus unwilling to randomize. In case (ii) from Lemmas 6 and 2 we know that $$\Delta^r(q_\pi, (0, 1), (0, 1)) \ge \Delta^r(q_\pi, (0, 0), (0, 1)) > 0.$$ From Lemma 12 we know that there exists a unique $\tilde{\rho}(b, g)$ such that $$\Delta^r(q_{\pi}, (0, 1), (\tilde{\rho}(b, g), 1)) = 0.$$ In this case $c'<\frac{1}{2}$ and thus $\forall sub\in[-\epsilon,\overline{sub}),\ c\in(1-p,\frac{1}{2}).$ In particular this implies that $\Pr(G|q_\pi,\text{invest})=\frac{1}{2}>c$ and thus that $\rho_c=1$ (for the definition of ρ_c , see Lemma 12). From Lemma 12 we know that $W(q_\pi,(0,1),(\rho(b,g),1))$ is strictly decreasing in $\rho(b,g)$: this implies that a pessimistic receiver's best response is increasing in $\rho(b,g)$: if $\rho(b,g)>(<)\tilde{\rho}(b,g)$, player j strictly prefers to invest (wait). It is well-known that this implies that the candidate continuation equilibrium in which $0<\tilde{\rho}(b,g)<\tilde{\sigma}(g,g)=\tilde{\rho}(g,g)=1$ is unstable. Step 6: There exists a unique monotone continuation equilibrium in which $0 = \tilde{\rho}(b,g) = \tilde{\sigma}(g,g) < \tilde{\rho}(g,g) < 1$. From Lemma 14, we know that $\Delta^r(q_\omega,(0,0),(0,0)) < 0 < \Delta^r(q_\omega,(0,0),(0,1))$. From Chamley and Gale we know that there exists a unique $\tilde{\rho}(g,g) \in (0,1)$ such that $\Delta^r(q_\omega,(0,0),(0,\tilde{\rho}(g,g))) = 0$. As $q_\pi < q_\omega$, from Lemma 7 follows that $$0 = \Delta^{r}(q_{\omega}, (0, 0), (0, \tilde{\rho}(g, g))) < \Delta^{r}(q_{\pi}, (0, 0), (0, \tilde{\rho}(g, g))),$$ and thus $\tilde{\rho}(b, g) = 0$. Similarly, using Lemmas 7, 6 and 8, one has $$0 = \Delta^{r}(q_{\omega}, (0, 0), (0, \tilde{\rho}(g, g))) < \Delta^{r}(p, (0, 0), \tilde{\rho}_{1}) \leq \Delta^{r}(p, \tilde{\rho}_{1}, \tilde{\rho}_{1}) = \Delta^{s}(p, \tilde{\rho}_{1}),$$ and thus $\tilde{\sigma}(g,g) = 0$. Step 7: A continuation equilibrium in which $0 = \tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g)$ or in which $0 = \tilde{\rho}(b,g) = \tilde{\sigma}(g,g) < 1 = \tilde{\rho}(g,g)$ or in which $0 = \tilde{\rho}(b,g) < 1 = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g)$ cannot exist because they contradict A2. As $q_{\pi} < \frac{1}{2}$, this means that the receivers, upon receiving the message $\hat{s}_i = g$, still face some uncertainty concerning the sender's type. Depending on the values of our exogenous parameters there are two possibilities: (i) $\Delta^r(q_{\pi},(0,1),(1,1)) > 0$ and (ii) $\Delta^r(q_{\pi},(0,1),(1,1)) \leq 0$. In case (i) a pessimistic receiver, knowing that by waiting she learns the sender's type, strictly prefers to wait and, hence, there does not exist a continuation equilibrium in which $\tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$. In case (ii) using Lemmma 7 we know that $$\Delta^r(q_\omega, (0,1), (1,1)) < \Delta^r(q_\pi, (0,1), (1,1)) \le 0,$$ and thus $\tilde{\rho}(b,g) = \tilde{\rho}(g,g) = 1$. The optimistic sender, knowing that $\tilde{\rho}(b,g) = \tilde{\rho}(g,g) = 1$, strictly prefers to invest as well and thus $\tilde{\sigma}(g,g) = 1$. Q.E.D. **Point 5:** If $1 - p < c' \le q_{\pi} = \frac{1}{2} < p < q_{\omega}$, \exists two MSCE's. In the first one $\tilde{\sigma}(b, g) = \tilde{\rho}(b, g) = \tilde{\sigma}(g, g) = 0$ and $\tilde{\rho}(g, g) \in (0, 1)$. In the second one $\tilde{\sigma}(b, g) = 0$ and $\tilde{\rho}(b, g) = \tilde{\sigma}(g, g) = \tilde{\rho}(g, g) = 1$. Proof: In this proof $q \in \{q_{\pi}, q_{\omega}\}$. Observe that point 5 is identical to point 4, except that $q_{\pi} = \frac{1}{2}$, which means that the receivers perfectly inferred the sender's type out of her message. From the analysis in point 4, we know that there exists a stable monotone continuation equilibrium in which $\tilde{\sigma}(b,g) = \tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = 0$ and $\tilde{\rho}(g,g) \in (0,1)$. From Lemma 11 we know that $\Delta^r(\frac{1}{2},(0,1),(1,1)) = \Delta^r(\frac{1}{2},(1,1),(1,1))$ and that $\Delta^r(\overline{q}_{\omega},(0,1),(1,1)) = \Delta^r(\overline{q}_{\omega},(1,1),(1,1))$. Consider a receiver who anticipates that $\tilde{\sigma}(b,g) = \tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$. In that case there is no informational gain of waiting. As $\delta < 1$, $\delta W(q,(1,1),(1,1)) < q - c$. Hence, there exists an $\epsilon > 0$ such that $\forall sub \in [-\epsilon, \overline{sub})$, $\delta W(q,(1,1),(1,1)) < q - c'$, and all receivers prefer to invest with probability one. Similarly, the optimistic sender, knowing that $\tilde{\rho}(b,g) = \tilde{\rho}(g,g) = 1$, strictly prefers to invest at time one. Hence, in case 5 there always exists a monotone continuation equilibrium in which $\tilde{\sigma}(b,g) = 0$ and $\tilde{\rho}(b,g) = \tilde{\sigma}(g,g) = \tilde{\rho}(g,g) = 1$. Q.E.D. **Point 6:** If $q_{\pi} = 1 - p < c' < q_{\omega} = p$, \exists a unique MSCE in which $\tilde{\sigma}(b, h_1) = \tilde{\rho}(b, h_1) = 0$ and $\tilde{\sigma}(g, h_1) = \tilde{\rho}(g, h_1) \in (0, 1)$. Proof: In this case $q_{\pi}=1-p$, which means that the receivers did not learn anything about the sender's type through her message. As $q_{\pi}=1-p < c', \ \tilde{\sigma}(b,h_1)=\tilde{\rho}(b,h_1)=0$. As explained in our paper, in this case we impose the restriction that $\tilde{\sigma}(g,h_1)=\tilde{\rho}(g,h_1)$. But then from Proposition 2 of Chamley and Gale follows that there exists a unique $\tilde{\rho}(g,h_1)$ such that $\Delta^r(p,(0,\tilde{\rho}(g,h_1)),(0,\tilde{\rho}(g,h_1)))=\Delta^s(p,(0,\tilde{\rho}(g,h_1)))=0$. Q.E.D. ### **Proof of Proposition 4** Proposition 4 only considers the case in which c' = c, while we provide a proof $\forall c'$. In particular, we prove that $\forall c' > \frac{1}{2}$, there exists a unique MSPBE in which $\sigma^*(b, h_0) = \sigma^*(g, h_0) = 1$. This MSPBE is supported by the out-of-equilibrium belief that if $\hat{s}_i = b$, the sender is a pessimist. First we show that $\sigma^*(g, h_0) = 1$. Suppose there exists a monotone PBE in which $0 \le \sigma^*(b, h_0) \le \sigma^*(g, h_0) < 1$. $\sigma^*(g, h_0)$ can only be strictly lower than one if $E(U_i|s_i = g, \hat{s}_i = b) \ge E(U_i|s_i = g, \hat{s}_i = g)$. As $\sigma^*(b, h_0) \le \sigma^*(g, h_0)$, this means that if the optimistic sender "lies" and sends $\hat{s}_i = b$, $q_{\omega} \le p$. From points 1,2 and 6 above, we know that her payoff (net of the ϵ -reputational cost) can then not exceed p - c'. Hence, $$E(U_i|s_i = q, \hat{s}_i = b) = p - c' - \epsilon < E(U_i|s_i = q, \hat{s}_i = q) = \max\{p - c', \delta W(\cdot)\},\$$ a contradiction. As $\sigma^*(g,h_0)=1$, the message $\hat{s}_i=b$ can only come from a pessimistic sender (if $\sigma^*(b,h_0)$ also equals one, then we assume that in the out-of-equilibrium event that $\hat{s}_i=b$, receivers believe with probability one that the sender is a pessimist). Hence, $\Pr(G|s_j=g,\hat{s}_i=b)=\frac{1}{2}$. Suppose $\hat{s}_i=b$. Then, $q_\pi<1-p< q_\omega=\frac{1}{2}< c'< p$ and from point 2 of Proposition 1, we know that $\rho^*(b,b)=\rho^*(g,b)=0$. Suppose that $\hat{s}_i=g$. Then, $1-p< q_\pi\leq \frac{1}{2}< c'< p\leq q_\omega$ and from points 3 and 6 above, we know that $\rho^*(b,g)=0$ and that $\rho^*(g,g)\in(0,1)$. Hence, $$E(U_i|s_i = b, \hat{s}_i = b) = 0,$$ $$E(U_i|s_i = b, \hat{s}_i = g) = \delta W(1 - p, (0, \rho^*(g, g))) - \epsilon.$$ As $\rho^*(g,g) > 0$, this means that $\Pr(k = N - 1 | s_i = b) > 0$, in which case the sender invests and gets a strictly positive payoff. Hence, $\delta W(1 - p, (0, \rho^*(g,g))) > 0$. As $\epsilon \to 0$, it follows that $E(U_i | s_i = b, \hat{s}_i = b) < E(U_i | s_i = b, \hat{s}_i = g)$, and thus $\sigma^*(b, h_0) = 1$. Q.E.D. #### **Proof of Proposition 5** Proposition 5 only considers the case in which c'=c, while we provide a proof $\forall c'$. In particular, we prove that $\forall c' \leq \frac{1}{2}$, our game is characterised by two MSPBE's: a pooling and a separating one. In the separating equilibrium, $\rho^*(b,g) = \rho^*(g,g) = 1$. The pooling equilibrium is supported by the out-of-equilibrium belief that if $\hat{s}_i = b$, the sender is a pessimist. From the proof of Proposition 2, we know that $\sigma^*(g, h_0) = 1$. Below we show that there does not exist a MSPBE in which $0 < \sigma^*(b, h_0) < \sigma^*(g, h_0) = 1$ (Step 1). Next, we show that there exists a pooling equilibrium in which $\sigma^*(b, h_0) = \sigma^*(g, h_0) = 1$ (Step 2). Step 1: Suppose there exists a monotone PBE in which $0 < \sigma^*(b,h_0) < \sigma^*(g,h_0) = 1$. $\sigma^*(b,h_0)$ can only be $\in (0,1)$ if $E(U_i|s_i=b,\hat{s}_i=b) = E(U_i|s_i=b,\hat{s}_i=g)$. If the pessimistic sender sends $\hat{s}_i=b$, $q_\pi < 1-p < c' \le q_\omega = \frac{1}{2} < p$, and from points 1 and 2 of Proposition 1, we know that $\rho^*(b,b) = 0$ and that $\rho^*(g,b) \in [0,1)$. If she sends $\hat{s}_i=g$, there are two possibilities: (a) $1-p < q_\pi < c' < p < q_\omega$ and (b) $1-p < c' \le q_\pi < \frac{1}{2} < p < q_\omega$. In case (a), from point 3 above we know that $\rho^*(b,g) = 0$ and
$\rho^*(g,g) \in (0,1)$. Hence, $$E(U_i|s_i = b, \hat{s}_i = b) = \delta W(1 - p, (0, \rho^*(q, b))),$$ and $$E(U_i|s_i = b, \hat{s}_i = g) = \delta W(1 - p, (0, \rho^*(g, g))) - \epsilon.$$ We now prove that $\rho^*(g,g) > \rho^*(g,b)$. If $\rho^*(g,b) = 0$, it trivially follows that $\rho^*(g,g) > \rho^*(g,b)$. Therefore, suppose that $\rho^*(g,b) > 0$. In that case from points 1, 2 and 3 above we know that $\rho^*(g,b)$ and $\rho^*(g,g)$ were "generated" by the following two equalities: (25) $$\Delta^{r}(\Pr(G|g,b), (0,1), (0,\rho^{*}(g,b)) = 0,$$ $$\Delta^r(\Pr(G|g,g), (0,0), (0,\rho^*(g,g)) = 0.$$ As $Pr(G|g,b) = \frac{1}{2}$, from Lemma 11 we know that $$\Delta^r(\Pr(G|g,b),(0,0),(0,\rho^*(g,b)) = \Delta^r(\Pr(G|g,b),(0,1),(0,\rho^*(g,b)).$$ As Pr(G|g, b) < Pr(g, g), from Lemma 7 we know that $$\Delta^r(\Pr(G|g,g),(0,0),(0,\rho^*(g,b)) < \Delta^r(\Pr(G|g,b),(0,0),(0,\rho^*(g,b)) = 0.$$ Hence, for equality 25 to be respected it follows from Lemma 10 that $\rho^*(g,g) > \rho^*(g,b)$. But then it follows from Corollary 4 that $\delta W(1-p,(0,\rho^*(g,g))) > \delta W(1-p,(0,\rho^*(g,b)))$. As $\epsilon \to 0$, it follows that in case (a) $E(U_i|s_i=b,\hat{s}_i=b) < E(U_i|s_i=b,\hat{s}_i=g)$, a contradiction. In case (b), from point 4 above we know that there always exists a MSCE in which $\rho^*(b,g) = 0$ and $\rho^*(g,g) \in (0,1)$. Depending on the values of the exogenous parameters there may also exist another monotone continuation equilibrium in which $\rho^*(b,g) = \rho^*(g,g) = 1$. If players focus on the continuation equilibrium in which $\rho^*(b,g) = 0$ and $\rho^*(g,g) \in (0,1)$, using a reasoning identical to the one of the paragraph above, we know that the pessimistic sender cannot be indifferent between the two messages. Therefore, suppose players focus on the continuation equilibrium in which $\rho^*(b,g) = \rho^*(g,g) = 1$ (provided this continuation equilibrium exists). In that case, $$E(U_i|s_i = b, \hat{s}_i = b) = \delta W(1 - p, (0, \rho^*(g, b))), \text{ and}$$ $E(U_i|s_i = b, \hat{s}_i = g) = -\epsilon.$ As $\delta W(1-p,(0,\rho^*(g,b))) \geq 0 > -\epsilon$, in case (b) the sender cannot be indifferent between the two messages. Step 2: Suppose receivers update their posteriors under the assumption that $\sigma^*(b, h_0) = \sigma^*(g, h_0) = 1$. In the out-of-equilibrium event that $\hat{s}_i = b$, we assume that receivers believe that the sender is a pessimist (with probability one). Therefore, $$E(U_i|s_i = b, \hat{s}_i = b) = \delta W(1 - p, (0, \rho^*(g, b))).$$ If she sends $\hat{s}_i = g$, $q_{\pi} = 1 - p < c < q_{\omega} = p$, and from point 6 of Proposition 1 we know that $\rho^*(b,g) = 0$ and $\rho^*(g,g) \in (0,1)$. Using a reasoning identical to the one we outlined in step 1, $\rho^*(g,g) > \rho^*(g,b)$. From Corollary 4 (+ the fact that $\epsilon \to 0$) follows that the pessimistic sender strictly prefers to "lie" and send $\hat{s}_i = g$. Q.E.D. #### Proof of Lemma 4 Define $\rho^*(g, b, sub)$ as the probability which ensures the following equality $$\frac{1}{2} - c + sub = \delta W(\frac{1}{2}, (0, 1), (0, \rho^*(g, b, sub))).$$ From the paper we know that $$(26) sub < \delta W(\overline{q}_{\omega}, (0,0), (0,1)) - (\overline{q}_{\omega}, -c).$$ We now show that $\forall sub \in [0, \overline{sub}), \, \rho^*(g, b, sub) < 1. \, \rho^*(g, b, sub) = 1$ only if $$\frac{1}{2}-c+sub \geq \delta W(\frac{1}{2},(0,1),(0,1)),$$ (27) $$\Leftrightarrow sub \ge \delta W(\frac{1}{2}, (0, 1), (0, 1)) - (\frac{1}{2} - c).$$ Inequalities 26 and 27 cannot both be satisfied as we can use Lemmas 7 and 11 to construct the following contradiction $$\begin{split} sub & \geq \delta W(\frac{1}{2},(0,1),(0,1)) - (\frac{1}{2}-c) > \delta W(\overline{q}_{\omega},(0,1),(0,1)) - (\overline{q}_{\omega}-c) \\ & = \delta W(\overline{q}_{\omega},(0,0),(0,1)) - (\overline{q}_{\omega}-c) > sub. \end{split}$$ As $\rho^*(g, b, sub) < 1$ it trivially follows from Lemma 10 that $\rho^*(g, b, sub)$ is strictly increasing in sub. Q.E.D. #### Proof of Lemma 5 The proof is similar to the one of Lemma 4. Define $\rho^*(g, h_1, sub)$ as the probability which ensures the following equality $$p - c + sub = \delta W(p, (0, \rho^*(g, h_1, sub)), (0, \rho^*(g, h_1, sub))).$$ $\forall sub \in [0, \overline{sub}), \, \rho^*(g, h_1, sub) < 1$ as we otherwise run into the following contradiction $$sub \ge \delta W(p, (0, 1), (0, 1)) - (p - c) > \delta W(\overline{q}_{\omega}, (0, 1), (0, 1)) - (\overline{q}_{\omega} - c)$$ $$= \delta W(\overline{q}_{\omega}, (0, 0), (0, 1)) - (\overline{q}_{\omega} - c) > sub.$$ As $\rho^*(g, h_1, sub)$ is always strictly lower than one, it trivially follows from Lemma 10 that $\rho^*(g, h_1, sub)$ is strictly increasing in sub. Q.E.D. ### **Proof of Proposition 6** From Corollary 4, we know that $\delta W(1-p,(0,\rho^*(\cdot)))$ is strictly increasing in $\rho^*(\cdot)$. If $q_{\pi} = \frac{(1-p)^2}{p^2+(1-p)^2}$, this means that the pessimistic receivers learned that $s_i = b$. Hence, $\Pr(G|q_{\pi},\text{wait}) < c$ and $\rho^c = 0$ (for the definition of ρ^c , see Lemma 10). From Lemma 10 then follows that $\delta W(\frac{(1-p)^2}{p^2+(1-p)^2},(0,1),(0,\rho^*(g,b)))$ is also strictly increasing in $\rho^*(\cdot)$. This insight - combined with our results summarised in Lemmas 4 and 5 - allows us to conclude that equations 7 and 9 are strictly increasing in sub. The remainder of the proof can be found in the body of our paper. Q.E.D. ### **References:** Baliga, S. and Morris, S., "Co-ordination, Spillovers and Cheap Talk," <u>Journal of Economic Theory</u> 105 (2002), 450-468 Banerjee, A., "A Simple Model of Herd Behavior," Quarterly Journal of Economics 57 (1992), 797-817. Bikhchandani, S., Hirshleifer, D. and Welch, I., "A Theory of Fads, Fashion, Custom, and Cultural Change as Informational Cascades," <u>Journal of Political Economy</u> 100 (1992), 992-1026. Blackwell, D., "The Comparison of Experiments," in <u>Proceedings, Second Berkeley Symposium on Mathematical Statistics and Probability</u> (Berkeley: Univ. of California Press, 1951), 93-102. Chamley, C., "Delays and Equilibria with Large and Small Information in Social Learning," <u>European Economic Review</u>, 48 (2004a), 477-501 Chamley, C., <u>Rational Herds</u>, (Cambridge: Cambridge University Press, 2004b). Chamley, C., "Dynamic Speculative Attacks," <u>American Economic Review</u>, 93 (2003), 603-621 Chamley, C. and Gale, D., "Information Revelation and Strategic Delay in a Model of Investment," <u>Econometrica</u> 62 (1994), 1065-1085. Cooper, R. and John, A., "Coordinating Coordination Failures in Keynesian Models," Quarterly Journal of Economics, 103 (1988), 441-463 Crawford, V. and Sobel, J., "Strategic Information Transmission," <u>Econometrica</u> 50 (1982), 1431-51. Doyle, M., "Informational Externalities, Strategic Delay, and the Search for Optimal Policy," ISU Economics Working Paper 02012, Iowa State University, September 2002. Farrell, J., "Cheap Talk, Coordination, and Entry," <u>Rand Journal of Economics</u> 18 (1987), 34-39. Farrell, J., "Communication, Coordination and Nash Equilibrium," Economics Letters 27 (1988), 209-214. Farrell, J. and Gibbons, R., "Cheap Talk Can Matter in Bargaining" <u>Journal of Economic Theory</u> 48 (1989), 221-237. Gill, D. and Sgroi, D., "Product Launches with Biased Reviewers: The Importance of not Being Earnest," Working Papers in Economics 0334, Cambridge University, 2003. Gossner, O. and Melissas, N., "Informational Cascades Elicit Private Information," Economics Discussion Paper 03/6, University of Leicester, 2003. Sgroi, D., "Optimizing Information in the Herd: Guinea Pigs, Profits and Welfare," <u>Games and Economic Behavior</u>, 39 (2002), 137–166. Zwiebel, J., "Corporate Conservatism and Relative Compensation," <u>Journal of</u> Political Economy 103 (1995), 1-25. # Bücher des Forschungsschwerpunkts Markt und politische Ökonomie Books of the Research Area Markets and Political Economy Pablo Beramendi **Decentralization and Income Inequality** 2003, Madrid: Juan March Institute **Thomas Cusack** A National Challenge at the Local Level: Citizens, Elites and Institutions in Reunified Germany 2003, Ashgate Sebastian Kessing Essays on Employment Protection 2003, Freie Universität Berlin, http://www.diss.fu-berlin.de/2003/202 Daniel Krähmer On Learning and Information in Markets and Organizations 2003, Shaker Verlag Bob Hancké Large Firms and Institutional Change. Industrial Renewal and Economic Restructuring in France 2002, Oxford University Press Andreas Stephan Essays on the Contribution of Public Infrastructure to Private: Production and its Political Economy 2002, dissertation.de Peter A. Hall, David Soskice (Eds.) Varieties of Capitalism 2001, Oxford University Press Hans Mewis **Essays on Herd Behavior and Strategic Delegation** 2001, Shaker Verlag Andreas Moerke Organisationslernen über Netzwerke – Die personellen Verflechtungen von Führungsgremien japanischer Aktiengesellschaften 2001, Deutscher Universitäts-Verlag Silke Neubauer **Multimarket Contact and Organizational Design** 2001, Deutscher Universitäts-Verlag Lars-Hendrik Röller, Christian Wey (Eds.) Die Soziale Marktwirtschaft in der neuen Weltwirtschaft, WZB Jahrbuch 2001 2001, edition sigma Michael Tröge Competition in Credit Markets: A Theoretic Analysis 2001, Deutscher Universitäts-Verlag Torben Iversen, Jonas Pontusson, David Soskice (Eds.) Unions, Employers, and Central Banks 2000, Cambridge University Press **Tobias Miarka** Financial Intermediation and Deregulation: A Critical Analysis of Japanese Bank-Firm-Relationships 2000, Physica-Verlag Rita Zobel Beschäftigungsveränderungen und organisationales Lernen in japanischen Industriengesellschaften 2000. Humboldt-Universität zu Berlin http://dochost.rz.hu-berlin.de/dissertationen/zobel-rita-2000-06-19 Jos Jansen Essays on Incentives in Regulation and Innovation 2000, Tilburg University Ralph Siebert **Innovation,
Research Joint Ventures, and Multiproduct Competition** 2000, Humboldt-Universität zu Berlin http://dochost.rz.hu-berlin.de/dissertationen/siebert-ralph-2000-03-23/ Damien J. Neven, Lars-Hendrik Röller (Eds.) The Political Economy of Industrial Policy in Europe and the Member States 2000, edition sigma Jianping Yang Bankbeziehungen deutscher Unternehmen: Investitionsverhalten und Risikoanalyse 2000, Deutscher Universitäts-Verlag Christoph Schenk Cooperation between Competitors – Subcontracting and the Influence of Information, Production and Capacity on Market Structure and Competition 1999, Humboldt-Universität zu Berlin http://dochost.rz.hu-berlin.de/dissertationen/schenk-christoph-1999-11-16 Horst Albach, Ulrike Görtzen, Rita Zobel (Eds.) Information Processing as a Competitive Advantage of Japanese Firms 1999, edition sigma Dieter Köster Wettbewerb in Netzproduktmärkten 1999, Deutscher Universitäts-Verlag Christian Wey Marktorganisation durch Standardisierung: Ein Beitrag zur Neuen Institutionenökonomik des Marktes 1999, edition sigma # **DISCUSSION PAPERS 2003** | Annette Boom | Investments in Electricity Generating Capacity under Different Market Structures and with Endogenously Fixed Demand | SP II 2003 – 01 | |---|---|-----------------| | Kai A. Konrad
Wolfram F. Richter | Zur Berücksichtigung von Kindern bei umlagefinanzierter Alterssicherung | SP II 2003 – 02 | | Stergios Skaperdas | Restraining the Genuine Homo Economicus:
Why the Economy cannot be divorced from its
Governance | SP II 2003 – 03 | | Johan Lagerlöf | Insisting on a Non-Negative Price: Oligopoly,
Uncertainty, Welfare, and Multiple Equilibria | SP II 2003 – 04 | | Roman Inderst
Christian Wey | Buyer Power and Supplier Incentives | SP II 2003 – 05 | | Sebastian Kessing
Robert Nuscheler | Monopoly Pricing with Negative Network Effects:
The Case of Vaccines | SP II 2003 – 06 | | Lars Frisell | The Breakdown of Authority | SP II 2003 – 07 | | Paul Heidhues
Nicolas Melissas | Equilibria in a Dynamic Global Game: The Role of Cohort Effects | SP II 2003 – 08 | | Pablo Beramendi | Political Institutions and Income Inequality: The Case of Decentralization | SP II 2003 – 09 | | Daniel Krähmer | Learning and Self-Confidence in Contests | SP II 2003 – 10 | | Ralph Siebert | The Introduction of New Product Qualities by Incumbent Firms: Market Proliferation versus Cannibalization | SP II 2003 – 11 | | Vivek Ghosal | Impact of Uncertainty and Sunk Costs on Firm
Survival and Industry Dynamics | SP II 2003 – 12 | | Vivek Ghosal | Endemic Volatility of Firms and Establishments: Are Real Options Effects Important? | SP II 2003 – 13 | | Andreas Blume
Paul Heidhues | Private Monitoring in Auctions | SP II 2003 – 14 | | Sebastian Kessing | Delay in Joint Projects | SP II 2003 – 15 | | Tomaso Duso
Astrid Jung | Product Market Competition and Lobbying Coordination in the U.S. Mobile Telecommunications Industry | SP II 2003 – 16 | | Thomas R. Cusack
Pablo Beramendi | Taxing Work: Some Political and Economic Aspects of Labor Income Taxation | SP II 2003 – 17 | | Kjell Erik Lommerud
Frode Meland
Odd Rune Straume | Globalisation and Union Opposition to
Technological Change | SP II 2003 – 18 | | Joseph Clougherty | Industry Trade-Balance and Domestic Merger Policy: Some Empirical Evidence from the U.S. | SP II 2003 – 19 | | Dan Anderberg
Fredrik Andersson | Stratification, Social Networks in the Labour
Market, and Intergenerational Mobility | SP II 2003 – 20 | | Eugenio J. Miravete
Lars-Hendrik Röller | Estimating Markups under Nonlinear Pricing Competition | SP II 2003 – 21 | |--|--|-----------------| | Talat Mahmood
Klaus Schömann | On the Migration Decision of IT-Graduates:
A Two-Level Nested Logit Model | SP II 2003 – 22 | | Talat Mahmood
Klaus Schömann | Assessing the Migration Decision of Indian IT-Graduates: An Empirical Analysis | SP II 2003 – 23 | | Suchan Chae
Paul Heidhues | Buyers Alliances for Bargaining Power | SP II 2003 – 24 | | Sigurt Vitols | Negotiated Shareholder Value: The German Version of an Anglo-American Practice | SP II 2003 – 25 | | Michal Grajek | Estimating Network Effects and Compatibility in Mobile Telecommunications | SP II 2003 – 26 | | Kai A. Konrad | Bidding in Hierarchies | SP II 2003 – 27 | | Helmut Bester
Kai A. Konrad | Easy Targets and the Timing of Conflict | SP II 2003 – 28 | | Kai A. Konrad | Opinion Leaders, Influence Activities and
Leadership Rents | SP II 2003 – 29 | | Kai A. Konrad | Mobilität in mehrstufigen Ausbildungsturnieren | SP II 2003 – 30 | | Steffen Huck
Kai A. Konrad | Moral Cost, Commitment and Committee Size | SP II 2003 – 31 | # **DISCUSSION PAPERS 2004** | Jos Jansen | Partial Information Sharing in Cournot Oligopoly | SP II 2004 – 01 | |---|--|-----------------| | Johan Lagerlöf
Lars Frisell | Lobbying, Information Transmission, and Unequal Representation | SP II 2004 – 02 | | Sigurt Vitols | Changes in Germany's Bank Based Financial System: A Varieties of Capitalism Perspective | SP II 2004 – 03 | | Lutz Engelhardt | Entrepreneurial Business Models in the German Software Industry: Companies, Venture Capital, and Stock Market Based Growth Strategies of the ,Neuer Markt' | SP II 2004 – 04 | | Antonio Guarino
Steffen Huck
Thomas D. Jeitschko | Can Fear Cause Economic Collapse? Insights from an Experimental Study | SP II 2004 – 05 | | Thomas Plümper
Vera E. Troeger | External Effects of Currency Unions | SP II 2004 – 06 | | Ulrich Kaiser¤ | An Estimated Model of the German Magazine
Market | SP II 2004 – 07 | | Pablo Beramendi
Thomas R. Cusack | Diverse Disparities: The Politics and Economics of Wage, Market and Disposable Income Inequalities | SP II 2004 – 08 | | Joseph Clougherty | Antitrust Holdup Source, Cross-National
Institutional Variation, and Corporate Political
Strategy Implications for Domestic Mergers in a
Global Context | SP II 2004 – 09 | | Joseph Clougherty
Anming Zhang | Export Orientation and Domestic Merger Policy: Theory and Some Empirical Evidence | SP II 2004 – 10 | | Roel C.A. Oomen | Modelling Realized Variance when Returns are
Serially Correlated | SP II 2004 – 11 | | Robert J. Franzese,Jr.
Jude C. Hays | Modeling International Diffusion: Inferential
Benefits and Methodological Challenges, with an
Application to International Tax Competition | SP II 2004 – 12 | | Albert Banal-Estañol
Inés Macho-Stadler
Jo Seldeslachts | Mergers, Investment Decisions and Internal Organisation | SP II 2004 – 13 | | Oz Shy
Rune Stenbacka | Price Competition, Business Hours, and Shopping Time Flexibility | SP II 2004 – 14 | | Jonathan Beck | Fixed, focal, fair? Book Prices Under Optional resale Price Maintenance | SP II 2004 – 15 | | Michal Grajek | Diffusion of ISO 9000 Standards and International Trade | SP II 2004 – 16 | | Paul Heidhues
Botond Kőszegi | The Impact of Consumer Loss Aversion on Pricing | SP II 2004 – 17 | | Chiara Strozzi | Citizenship Laws and International Migration in Historical Perspective | SP II 2004 – 18 | | Olivier Gossner
Nicolas Melissas | Informational Cascades Elicit Private Information | SP II 2004 – 19 | Bei Ihren Bestellungen von WZB-Papers schicken Sie bitte unbedingt einen an Sie adressierten Aufkleber mit sowie je paper eine Briefmarke im Wert von 0,51 Euro oder einen "Coupon Reponse International" (für Besteller aus dem Ausland) Please send a self addressed label and postage stamps in the amount of 0.51 Euro or a "Coupon-Reponse International" (if you are ordering from outside Germany) for each WZB-paper requested Bestellschein Order Form **Absender / Return Address:** Wissenschaftszentrum Berlin für Sozialforschung Presse- und informationsreferat Reichpietschufer 50 D-10785 Berlin-Tiergarten Hiermit bestelle ich folgende(s) Please send me the following **Discussion paper(s):** Discussion paper(s): Bestell-Nr. / Order no. Autor/in, Kurztitel /Author(s) / Title(s) in brief