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ABSTRACT 

Informational Cascades Elicit Private Information*

by Olivier Gossner and Nicolas Melissas 

We introduce cheap talk in a dynamic investment model with information 
externalities. We first show how social learning adversely affects the credibility 
of cheap talk messages. Next, we show how an informational cascade makes 
thruthtelling incentive compatible. A separating equilibrium only exists for high 
surplus projects. Both an investment subsidy and an investment tax can 
increase welfare. The more precise the sender’s information, the higher her 
incentives to truthfully reveal her private information. 
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ZUSAMMENFASSUNG 

Informationskaskaden bei Investitionsentscheidungen 

Wir modellieren eine zweistufige dynamische Investitionsentscheidung mit 
Informationsexternalitäten und ‚Cheap Talk’. Dabei können wir zunächst zeigen, 
dass die Glaubwürdigkeit von ‚Cheap Talk’-Aussagen darunter leidet, wenn die 
Investitionsentscheidung von solchen Informationen beeinflusst wird, die sich 
eher aus dem Handeln der Mitakteure als durch ihre verbalen Bekundungen 
ableiten. Dann zeigen wir, dass Informationskaskaden, die alle Akteure dieselbe 
Handlung aufgrund öffentlicher Information ohne Berücksichtigung ihrer 
privaten Informationen ausführen lassen, dazu führen, das Offenbaren der 
wahren Präferenzen der Investoren – optimistisch oder pessimistisch - 
anreizkompatibel zu machen. Vergleicht man Projekte mit niedrigen und hohen 
Überschüssen, existiert ein Trenngleichgewicht nur bei letzteren, so dass 
glaubwürdige Kommunikation eher über Worte als über Taten funktioniert. Will 
ein sozialer Planer die Investitionsentscheidungen beeinflussen, kann er sowohl 
durch eine Subventionierung als auch durch eine Besteuerung der Investitionen 
die Wohlfahrt vergrößern. 
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1 Introduction

A decision maker typically faces a lot of uncertainty when deciding over a course

of action. For example, investors know they face the risk of losing all their money.

Students do not know which University degree maximises their future job market

prospects. Consumers do not know which product offers the best price/quality ratio...

To be more specific, suppose someone has the opportunity to invest in a project whose

returns are positively correlated with the “general future health of the U.S. economy”.

Obviously, assessing the future state of the U.S. economy is a hard task and no human

being is smart enough to make an errorless prediction about it. However, investors

do not live like Robinson Crusoe - isolated on an island. Instead, they realise that

the economy is populated by many other potential investors who all face the same

type of risk. Moreover, they know that if they were to meet and exchange opinions,

this would enable them to reduce their forecasting error. But if investors really care

about one another’s opinions, how will this information be disseminated throughout

the economy?

Casual observation of everyday life suggests there are two different channels through

which investors may learn about one another’s opinions: one may learn through words

or one may learn through actions. With the former, we have in mind a situation in

which one investor simply tells her opinion to (possibly many) other investors. For

example, every now and then managing directors of important companies appear in

the media and express their opinions on a wide range of issues such as future techno-

logical developments, future oil prices, future market growth, etc... Some institutions

are even specialised in collecting and summarising the opinions of a large number

of market participants. For example, the Munich-based IFO institute for economic

research releases a quarterly index reflecting the business confidence of the average

German investor. With learning through actions, we mean that if someone invests in

a one-million-dollar project in the U.S., this reveals her confidence in the American

business climate.

In this paper, we analyse the interaction between both communication channels.

More specifically, we consider the following set-up: N players must take an investment

decision and possess a private, imperfect signal concerning the future state of the

world. Investment is only profitable in the good state. For the sake of simplicity,

we assume that the returns of the investment project only depend on the state of

the world. Hence, for efficiency reasons one would want to have all players truthfully

exchanging their signals. Players can invest in two periods. In the second period,

everyone observes how many agents invested at time one. One randomly drawn
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player (the sender) is asked to divulge her private information (i.e. her signal) to the

other players (the receivers) prior to the first investment period, and we compute all

monotone equilibria1 of our game.

We first show that both communication channels do not co-exist peacefully, in the

sense that there does not exist a monotone equilibrium in which the sender truthfully

announces her private information and in which subsequently a lot of information

is generated through actions. This tension between both communication channels

manifests itself differently depending on the surplus generated by the project: for low

surplus projects the unique monotone equilibrium is the pooling one2, while for high

surplus projects there also exists an equilibrium in which the sender truthfully re-

veals her private information but in which “little” information is transmitted through

actions.

The intuition behind this result goes as follows: in our model expected payoffs are

driven by the relative number of optimists in the economy (the higher the proportion

of optimists in the population, the higher the probability that the world is in the good

state). At time two all players observe the number of period-one investments and use

this knowledge to get an “idea” of the proportion of optimists in the economy. This

updating process depends on the period-one investment strategies3 (which are affected

by the sender’s message). If the investment only generates a low surplus, pessimists

will - independently of the sender’s message - never invest in the first period. Both

sender’s types then want to send the message which makes the optimists invest with as

large a probability as possible4. Thus both sender’s types share the same preferences

over the receivers’ actions, and therefore no information can be transmitted through

cheap talk. For high surplus projects, however, this intuition is incomplete. In that

case all players face a positive gain of investing after receiving the message “I am

an optimist”. If a player then believes that everyone will invest at time one, it’s

optimal for her to do so too (i.e. an informational cascade5 in which everyone invests

1Bluntly stated, in a monotone equilibrium we rule out the (unintuitive) possibility that pes-
simistic players are more likely to invest (at time one) than optimistic ones.

2In this equilibrium no credible information is transmitted through words, but “a lot” of infor-
mation is transmitted through actions.

3For example, upon observing k period-one investments, players compute different posteriors if
pessimists invested (at time one) with zero probability and optimists with a probability equal to
one, than if pessimists invested with the same probability as the optimists.

4If the sender succeeds for example in making the optimistic receivers invest with probability
one, she perfectly learns the proportion of optimists in the population.

5All players - irrespective of their private information - rely on the public information (i.e. the
message of the sender) and take the same action at time one. By definition, this is an informational
cascade.
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is ignited by the arrival of a favourable message). In our model this informational

cascade induces a pessimist to send the message “I am a pessimist”: if she were to

deviate and sent instead the message “I am an optimist”, she wouldn’t be able to

learn anything about the proportion of optimists in the population and would never

invest. An optimist faces a high opportunity cost of waiting, and independently of

her message, invests at time one. Hence, she cannot gain by sending the message “I

am a pessimist”.6

We next argue that our analysis allows us to draw some positive and norma-

tive conclusions. In particular, we show that an investment subsidy, by artificially

increasing the surplus generated by the project, promotes truthful revelation of pri-

vate information. However, this does not mean that an investment subsidy always

increases welfare: a social planner knows that if the subsidy induces truthful reve-

lation, this comes at the cost of less information transmission through actions. In

the paper we show that a social planner may even want to tax investments to cause

information to be revealed through actions instead of words. Finally, we also show

that a more able sender (i.e. a sender possessing a more precise signal) has more

incentives to truthfully reveal her private information than a less able one.

This paper belongs to the literature on informational cascades (see among oth-

ers Banerjee (1992), Bikhchandani, Hirschleifer and Welch (1992) (BHW hereafter),

Chamley and Gale (1994), Chamley (2004a), for an excellent overview and introduc-

tion to this literature see Chamley (2004b). Those papers assume away any preplay

communication and study the efficiency properties of social learning (learning takes

place through actions only). Our results provide a justification for this approach:

for low surplus projects, no information can be transmitted through words because

players want to influence their future learning capabilities. In those papers the public

information is the consequence of some costly actions undertaken by the early movers:

for example a second mover knows that the first mover is an optimist because she

spent money to undertake a new investment project. Hence, in those papers the

credibility of the public information is not an issue. In this paper it is costless to send

public information, and its credibility must therefore be carefully checked. Those

papers show how an informational cascade develops as a consequence of the arrival

of some early (and credible) information. In this paper, we show that the causality

can also be reversed: it is the informational cascade, by reducing the gain of sending

6Note that in the separating equilibrium information only gets transmitted through actions when
the sender announces “I am a pessimist”. As will become clear below, the amount of information
produced after the arrival of an unfavourable message is always lower than the one that would have
been produced in the absence of cheap talk (or in the pooling equilibrium).
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the message “I am an optimist”, which causes the public information to be credible.

Doyle (2002) also introduces a social planner in a dynamic investment model with

information externalities but without cheap talk. In contrast to our paper, pessimistic

players do not possess an investment option and therefore never invest. Hence, Doyle’s

model does not feature an equilibrium in which pessimistic players invest at time one

and consequently blur the information contained in all players’ time-one investment

decisions. Therefore, in his model one would never want to tax investments.

Gill and Sgroi (2003) analyse a set-up in which a, possibly “optimistic”, “pes-

simistic” or “unbiased”, sender is asked whether or not to endorse a product. Upon

hearing the sender’s message, receivers decide sequentially whether or not to buy the

product. Hence, in their model receivers also learn through other receivers’ actions

and through the sender’s message. In contrast to our paper, the authors assume that

the sender does not want to learn about the receivers’ types (because, for instance,

she already consumed the product and received her payoff). Therefore, she cannot

gain by misrepresenting her private information.7

Obviously, this is not the first paper to investigate the credibility of cheap talk

statements. In a seminal paper, Crawford and Sobel (1982) already analysed the

issue of information transmission through cheap talk. However, in their model the

receiver chooses an action which influences both player’s payoffs after having received

a message from the informed sender. In our model the sender first sends a message

and then plays a (waiting) game with the receivers. Farrell (1987, 1988), Farrell and

Gibbons (1989) and Baliga and Morris (2002) also assume that both players play a

game after having received or sent a message. However, they consider a very different

game: in Farrel (1987, 1988) and Baliga and Morris (2002), the communication stage

is followed by a coordination game, while in Farrell and Gibbons (1989) both players

engage in a bargaining game after the communication stage. As we consider a (very)

different game, we also get very different results: Crawford and Sobel (1982) have

shown how the credibility of cheap talk statements are undermined when the sender

and the receiver have different preferences over the optimal action, Baliga and Morris

(2002) argued that positive spillovers impede information exchange, while we show

how social learning may destroy incentives for truthtelling (and how informational

cascades help in restoring these incentives).

This paper is organised as follows. In section two, we present our two-stage

game. In the third section, we take the players’ posteriors as given and solve for

all monotone stable continuation equilibria. The proofs of the results stated in this

7Sgroi (2002) analyses a similar set-up and computes the optimal number of senders. As in Gill
and Sgroi (2003) the senders are not interested in the receivers’ signals.
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section tend to be quite lengthy and we therefore decided not to include them in

this paper. We refer the interested reader to Gossner and Melissas (2003). We next

compute equilibrium strategies in the sender-receiver game (section four). We first

show how the credibility of cheap talk may be undermined when players can postpone

their investment decisions (Proposition 4). Next, we show how this credibility can be

restored by an informational cascade (Proposition 5). In section 5, we discuss some

normative and positive implications of our theory. Final comments are summarised

in the sixth and final section.

2 The Model

Assume that a population of N ≥ 5 risk neutral players must decide whether to invest

in a risky project or not. V ∈ {1, 0} denotes the value of the investment project. The

state of the economy is described by Θ ∈ {G, B}. If Θ = G the good state prevails

and V = 1 whereas if Θ = B, the economy is in a bad state and V = 0. The prior

probability that Θ = G equals 1/2. The cost of the investment project is denoted

by c. Each player receives a private, conditionally independent signal concerning the

realised state of the world. Formally, player l’s signal sl ∈ {g, b} (l = 1, ..., N) where

Pr(g|G) = Pr(b|B) = p > 1/2. We assume that:

A1: 1 − p < c < p.

A1 implies that a player who received signal g is, a priori, willing to invest (Pr(G|g) =

p > c), and that a player who received a signal b is, a priori, not willing to invest

(Pr(G|b) = 1− p < c). Henceforth, we call a player who received a good (bad) signal

an optimist (pessimist)8. If c ≤ 1/2 (c > 1/2), we call the investment opportunity a

high (low) surplus project. We analyse the stage game that unfolds as follows:

-1 The state of nature is realised and players receive signals,

0 A randomly selected player i is asked to report her signal. Her message, ŝi ∈
{g, b}, is made public to all the other players,

1 All players make investment decisions,

8Observe that in our model all players are Bayesian rational: optimists (pessimists) do not
overestimate (underestimate) the probability that Θ = G. Hence, our definitions differ from the
ones that are used by behavioural economists. However, these definitions are intuitive and should
not confuse the reader.
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2 All players observe who invested at time one, and those who haven’t invested

yet make new investment decisions,

3 All players learn the true state of the world. Payoffs are received and the game

ends.

In the first stage (time zero) player i (the sender) influences the time-one posteriors of

the remaining players (the receivers). Henceforth, we call the second stage the waiting

game (or the continuation game). At time one, player l must choose an action, al,

from the set {invest, wait}. At time two all players who waited at time one must

choose an action from the set {invest, not invest}. Each player only possesses one

investment opportunity, so a period-one investor cannot invest in a second project

at time two. Investments are irreversible. If a player does not invest in any of the

two periods, she gets zero. Investment decisions at period one are represented by a

N -vector x where the l-th coordinate equals 1 if player l invested at time one and

zero otherwise. δ denotes the discount factor.

We let ht (t = 0, 1, 2) denote the history of the game at time t. Thus h0 = {∅},
h1 = ŝi and h2 = (ŝi, x). Ht denotes the set of all possible histories at time t, and the

set of histories is H =
⋃2

t=0 Ht. A symmetric behavioural strategy for the receivers

is a function ρ : {g, b} × H → [0, 1] with the interpretation that ρ(sj, ht) represents

the probability of investing at date t given sj and ht (j = 1, ..., N and j 6= i). For

instance, ρ(g, b) is the probability that an optimistic receiver invests at time one given

that ŝi = b, and ρ(b, g) is the probability that a pessimistic receiver invests at time

one given that ŝi = g. Since each player can only invest once, ρ(sj, h2) = 0 if player

j invested at time one, and ρ(sj, h0) = 0 since no one can invest at time zero. A

behavioural strategy for the sender is a function σ : {g, b} × H → [0, 1]. σ(g, h0)

(σ(b, h0)) represents the probability with which an optimistic (pessimistic) sender

sends ŝi = g. σ(·, h1) (σ(·, h2)) represents the probability that player i invests at date

one (two). As before, σ(·, h2) = 0 if the sender invested in the first period.

When solving our game, we rely on four equilibrium selection criteria. First,

we require a candidate equilibrium to belong to the class of the perfect Bayesian

equilibria. Henceforth, σ∗(·) (ρ∗(·)) denotes the value taken by σ(·) (ρ(·)) in a perfect

Bayesian equilibrium (PBE). In a PBE strategies and beliefs (concerning the other

players’ types) must be such that (i) the sender cannot gain by choosing a σ 6= σ∗ given

her beliefs and given ρ∗, (ii) receivers cannot gain by choosing a ρ 6= ρ∗ given their

beliefs and given σ∗ and (iii) beliefs must be computed using Bayes’s rule whenever

possible. As usual, a pooling equilibrium is a PBE in which σ∗(g, h0) = σ∗(b, h0).

In that case the message ŝi = g is as likely to come from an optimistic as from a
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pessimistic sender. Hence, in that case messages have no informational content and

do not affect posteriors. For the sake of concreteness (and without loss of generality),

we assume that σ∗(g, h0) ≥ σ∗(b, h0). This assumption merely defines message ŝi = g

as the one which influences posteriors in a (weakly) favourable way. Under this

assumption, a separating equilibrium is a PBE in which σ∗(g, h0) = 1 and σ∗(b, h0) =

0. Note that at time one the posterior of the receivers may differ from the sender’s.

Therefore, we do not impose σ∗(g, h1) to be equal to ρ∗(g, h1). Similarly, we allow

σ∗(b, h1) to be different from ρ∗(b, h1).

Second, we restrict ourselves to the class of the monotone strategies. Consider

players l and l′ (where l or l′ may be the sender). Let q ≡ Pr(G|sl, ŝi) (respec-

tively q′ ≡ Pr(G|sl′, ŝi)) denote player l’s (respectively player l′’s) time-one posterior.

Strategies are said to be monotone if they possess the following two properties: 1) if

q = q′, then Pr(l invests at time one) = Pr(l′ invests at time one), 2) if Pr(l invests

at time one) > Pr(l′ invests at time one), then q > q′. Remark that from the first

property, monotone strategies are symmetric. Note also that the first property im-

plies that whenever the sender’s message is uninformative, the sender invests at time

one with the same probability as a receiver of the same type, which need not hold

in symmetric strategies. Property two implies that the time-one investment proba-

bilities (weakly) increase in the time-one posteriors. Below, we will explain in more

detail our need to focus on monotone strategies.

Third, we discard unstable equilibria. With “unstable” we refer to the traditional

notion according to which an equilibrium is unstable if a small change in the invest-

ment probability of the other players induces a change in player l’s optimal investment

probability with the same sign and with a greater magnitude. This equilibrium se-

lection criterion has also been used in the study of coordination problems (see, for

example, Cooper and John (1988) and Chamley (2003)). Chamley (2004a) already

noted their existence in games with social learning. This requirement will also be

explained in more detail below.

Finally, we require every candidate equilibrium to be robust to the introduction

of an ε-reputational cost. More specifically, we assume that with probability ε1 re-

ceivers detect any “lie” (i.e. the optimistic sender who sends message ŝi = b, or the

pessimistic sender who sends message ŝi = g) from the sender, in which case she

suffers a reputational cost equal to ε2. It is important to note that ε1 is unrelated to

the sender’s behaviour in the continuation game. This assumption ensures that the

sender’s behaviour in the continuation game is only driven by informational reasons

(and not by her desire to “mask” a past lie). Let ε ≡ ε1.ε2 and we assume that ε

represents an arbitrary small, but strictly positive, number. With this reputational
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cost, an optimistic sender prefers to send a favourable to an unfavourable message

(as will become clear below, in the absence of this ε, she would be indifferent between

the two messages).

A monotone stable perfect Bayesian equilibrium (MSPBE) is a tuple of strategies

and beliefs which satisfy our four equilibrium selection criteria.

3 Strategic Waiting

Before proving the existence of a PBE in our game, we analyse equilibrium behaviour

in the continuation game. We restrict ourselves to the class of the monotone stable

continuation equilibria (MSCE). Henceforth, σ̃(·) (ρ̃(·)) denotes the value taken by

σ(·) (ρ(·)) in a MSCE. A MSCE is identical to a MSPBE except that we do not

require the sender to choose σ̃(g, h0) and σ̃(b, h0) optimally given her beliefs and

given equilibrium behaviour in the continuation game. Stated differently, in a MSCE

we do not endogenise the receivers’ time-one posteriors. Instead, we just treat them as

if they were exogenous and analyse equilibrium behaviour in the continuation game

given players’ posteriors. Note that every MSPBE is a MSCE, while the contrary

need not hold.

In the appendix we characterise the set of MSCE’s for all possible time-one pos-

teriors. To avoid a lengthy and technical exposition, below we “only” intuitively

explain our most important results. Moreover, when providing an intuition we of-

ten restrict attention to the limit case in which (i) the sender is an optimist who

truthfully reports her private information and (ii) receivers compute their posteriors

under the assumption of truthful revelation. In this limit case optimistic receivers

possess two favourable pieces of information and compute Pr(G|sj = g, ŝi = g) =

p2/(p2 + (1 − p)2) ≡ q. Pessimistic receivers possess two contradictory pieces of

information and compute Pr(G|sj = b, ŝi = g) = 1/2.

Our model is void of any competition effects or positive network externalities.

Hence, a player’s expected gain of investing is solely determined by the relative num-

ber of optimists (as compared to the number of pessimists) in the population. Denote

by n the random number of optimists in our population. The higher n, the higher

Pr(G|n) and the higher the expected gain of investing. Unfortunately, by postponing

one’s investment decision, players observe x, the vector of time-one investment deci-

sions, instead of n. Hence, at time two all players who waited at time one face an

inference problem: on the basis of x they must try to get “as precise an idea” about

n.

As we only consider symmetric strategies, player i does not care about who invests,
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but rather in how many players invest. Therefore, from the sender’s point of view

all information contained in x can be summarised by ks (the number of receivers

who invest at time one).9 Similarly, from a receiver’s point of view all information

contained in x can be summarised by k (the number of remaining receivers who invest

at time one) and ai (the time-one action of the sender).

We thus continue our analysis by working with k, ks and ai. If player j waits,

she observes k and ai and invests if Pr(G|q, k, ai) ≥ c. Hence, for a given k and ai

player j’s payoff equals max{0, Pr(G|q, k, ai)− c}. Of course, player j cannot ex ante

know the realization of k and ai. Therefore, player j’s ex ante gain of waiting (net of

discounting costs), W (q, σ1, ρ1), equals

W (q, σ1, ρ1) =
∑

ai

∑

k

max{0, Pr(G|q, k, ai) − c}Pr(k|q, ai) Pr(ai|q),(1)

where ρ1 ≡ (ρ(b, h1), ρ(g, h1)) and σ1 ≡ (σ(b, h1), σ(g, h1)). Similarly, player i’s gain

of waiting, W (q, ρ1), equals

W (q, ρ1) =
∑

ks

max{0, Pr(G|q, ks) − c}Pr(ks|q).(2)

To gain some insight behind equations (1) and (2) it is useful to consider equation

(1) when q = q (i.e. when player j is an optimist who believes the sender to be

optimistic as well), σ1 = (0, 0) (i.e. when the sender invests with probability zero),

and ρ1 = (0, ρ(g, g)) (i.e. pessimistic receivers wait, while the optimistic ones invest

with probability ρ(·)). Equation (1) can then be rewritten as

W (q, (0, 0), (0, ρ(g, g))) =
∑

k

max{0, Pr(G|q, k, wait) − c}Pr(k|q, wait).(3)

Suppose that ρ(g, g) = 0. If player j waits, she will then observe zero investments

and compute Pr(G|q, 0, wait) = q. This is intuitive: player j, independently of n,

always observes zero period-one investments. Stated differently, if ρ(g, g) = 0, it’s as

if she doesn’t receive any additional information concerning the realised state of the

world. Therefore she has no reason to change her posterior and Pr(G|q, 0, wait) = q.

Hence,

W (q, (0, 0), (0, 0)) = q − c.

Suppose now that ρ(g, g) = 1. Then, in the next period player j learns how many

optimists are present in the economy (i.e. n = k+2)10. At time two player j computes

9In mathematical terms, we mean that Pr(n|x, si) = Pr(n|ks, si), ∀n.
10By assumption, player j is an optimist who waited at time one. Moreover, we analyse a case in

which player j learned (through the sender’s message) that si = g. Therefore, n = k + 2.
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Pr(G|n), and invests if Pr(G|n) ≥ c. As before, player j cannot ex ante know how

many optimists are present in the economy, and therefore

W (q, (0, 0), (0, 1)) =
∑

n

max{0, Pr(G|n) − c}Pr(n|q).(4)

Lemma 1 ∀σ1, W (q, σ1, (0, 1)) > q − c.

Proof: See appendix. To gain some intuition behind Lemma 1, we explain why

∀c ∈ (1 − p, p), W (q, (0, 0), (0, 1)) > q − c whenever our economy consists of at least

five players. We can rewrite player j’s gain of investing as follows:

q − c =
∑

n

Pr(G|n) Pr(n|q) − c.

Suppose ρ1 = (0, 1) and assume that player j decides to wait at time one and then

to invest unconditionally (i.e. to invest at time two independently of n). The above

equality merely states that investing at time one is payoff-equivalent (net of discount-

ing costs) to unconditionally investing at time two. Equation (4) learns us that wait-

ing (when ρ1 = (0, 1)) is equivalent to making an optimal conditional second-period

investment decision. Observe that n cannot take a value lower than two because

both players j and i are assumed to be optimists. If Pr(G|n = 2) is higher or equal

than c, then the optimal conditional second-period investment decision always coin-

cides with unconditionally investing at time two. This means that q − c is equal to

W (q, (0, 0), (0, 1)). Hence, W (q, (0, 0), (0, 1)) is strictly greater than q− c if (and only

if) Pr(G|n = 2) < c. In this model all players possess a signal of the same precision.

Therefore, ∀ c ∈ (1 − p, p), it takes three pessimistic receivers to refrain an optimist,

who learned through the sender’s message that si = g, from investing (and therefore

N must be greater or equal than five).

To focus on the interesting parameter range, we assume:

A2: q−c
W (q,(0,0),(0,1))

< δ < 1.

The first inequality of A2 puts a lower bound on the discount factor δ such that an

optimistic receiver, who learned (through the sender’s message) that si = g, faces a

positive option value of waiting (i.e. if player j expects all the optimistic receivers to

invest and all the other players to wait, then she rather waits). The first inequality

ensures thus that ρ̃(g, g) < 1. The second inequality ensures that ρ̃(g, g) > 0.

Lemma 2 ∀ρ′(g, h1) > ρ(g, h1), W (q, σ1, (0, ρ
′(g, h1))) ≥ W (q, σ1, (0, ρ(g, h1))), and

there exists a value ρc(q) such that the inequality becomes strict whenever ρ′(g, h1) >

ρc(q) (ρc(q) ∈ [0, 1)).
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Proof: See appendix. From Lemma 2 follows:

Corollary 1 ∀ρ′(g, h1) > ρ(g, h1),

1) W (p, (0, ρ′(g, h1))) ≥ W (p, (0, ρ(g, h1))), where the inequality becomes strict when-

ever ρ′(g, h1) > ρc(p) (ρc(p) ∈ (0, 1)),

2) W (1 − p, (0, ρ′(g, h1))) > W (1 − p, (0, ρ(g, h1))).

Proof: See appendix. A slightly different version of Corollary 1 was already proven in

Chamley and Gale (1994, Proposition 2). To understand the intuition behind Lemma

2 and Corollary 1, compare the following two “scenarios”. In scenario one all opti-

mistic receivers randomise with probability ρ′(g, g), in scenario two all optimistic re-

ceivers randomise with probability ρ(g, g) < ρ′(g, g). Denote by nr the number of op-

timistic receivers. Call k′ (respectively k) the number of players investing at time one

when nr − 1 optimistic receivers invest with probability ρ′(g, g) (respectively ρ(g, g)).

Now, having nr − 1 players investing with probability ρ(g, g) is ex ante equivalent to

the following two-stage experiment: first let all nr − 1 players invest with probability

ρ′(g, g), next let all k′ investors re-randomise with probability ρ(g,g)
ρ′(g,g)

. Therefore the

statistic k is generated by adding noise to the statistic k′. Therefore k′ is a sufficient

statistic for k. From Blackwell’s value of information theorem (1951) we know that

this implies that W (q, (0, 0), (0, ρ′(g, g))) ≥ W (q, (0, 0), (0, ρ(g, g))). Lemma 2 states

that the inequality becomes strict once ρ′(g, g) passes a critical threshold level.

Stated differently, ρ(g, g) captures the ex ante amount of information produced by

the optimistic receivers. The higher ρ(g, g), the easier one can infer n out of k (this

can best be seen by comparing the two polar cases where ρ(g, g) = 0 and ρ(g, g) = 1

(see above)) and thus the higher the ex ante gain of waiting.

Proposition 1 If the investment generates a low surplus and if Pr(G|sj = g, ŝi =

g) > p, there exists a unique MSCE in which the sender and the pessimistic receivers

wait while the optimistic receivers invest with probability ρ̃(g, g) ∈ (0, 1).

Proof: See appendix. To understand the intuition behind Proposition 1 we focus on

our limit case in which Pr(G|g, g) = q. As c > 1/2 = Pr(G|b, ŝi = g), no pessimist

wants to invest at time one. Suppose the optimistic receivers anticipate that the

optimistic sender waits. On the basis of A2 and Lemma 2, it is easy to see that

there exists then a unique ρ̃(g, g) which makes them indifferent between investing

and waiting. This is depicted in Graph 1.
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6

ρc(q) ρ̃(g, g)

q − c

δ(q − c)

δW (q, (0, 0), (0, 1)) δW (q, (0, 0), (0, ρ(g, g)))

10 ρ(g, g)

Graph 1: Existence of a MSCE in which ρ̃(g, g) ∈ (0, 1).

We now explain why the optimistic sender wants to wait given that the remaining

optimistic receivers invest with probability ρ̃(g, g). Consider therefore the following

Lemma (and its first Corollary).

Lemma 3 ∀(σ1, ρ1), δW (q, σ1, ρ1) − (q − c) is decreasing.

Proof: See appendix. Lemma 3 is illustrated in Graph 2.

-

6

ρ̃(·) ρ̃
′
(·)

q − c

q′ − c
δW (q, ·)
δW (q′, ·)

0 ρ(g, h1)

Graph 2: The effect of a change in q on q − c and W (·).

Suppose player j anticipates that Θ = G with some probability q. As before, Graph

2 shows the existence of a unique ρ̃(·) where the gain of investing equals the gain

of waiting. Suppose now that for some exogenous reason player j becomes “more

optimistic” in the sense that she now anticipates that Θ = G with probability q′ > q.

An increase in q shifts the gain of waiting upwards for two different reasons: (i) it

increases the likelihood that Pr(G|q, k, ai) > c and thus that player j will get a non-

zero expected utility and (ii) it increases her expected gain of investing whenever
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player j does so. However, the presence of δ in front of W (q, ·) (and not in front of

q − c) dampens this increase in δW (q, ·), which explains Lemma 3.

Corollary 2 Suppose the sender and the pessimistic receivers wait (i.e. σ(b, ŝi) =

σ(g, ŝi) = ρ(b, ŝi) = 0). Then, ρ̃(g, ŝi) is increasing in Pr(G|g, ŝi).

The Corollary is also illustrated on Graph 2: as the upward shift of the gain of

investing dominates the one of the gain of waiting, ρ̃(·) must increase to make an

optimistic receiver indifferent between investing and waiting.

We now know enough to understand why the optimistic sender wants to wait given

that Pr(G|g, g) = q and that all optimistic receivers invest with probability ρ̃(g, g).

Two different reasons lie at the root of this finding: the first one is due to the fact

that the sender observes ks instead of k, the second one is due to the fact that p < q.

To illustrate the first reason suppose the sender’s posterior probability that Θ = G

equals the one of the optimistic receivers. One can think of the statistics k and ks as

follows. Let the nr optimistic receivers invest with probability ρ̃(·). Next, construct k

as follows: if player j invested11, k = ks−1, otherwise k = ks. Hence, ks is a sufficient

statistic for k and, thus, player i’s gain of waiting cannot be lower than player j’s. To

illustrate the second reason, suppose that if the sender waits, she observes k instead

of ks. Call a the probability with which the optimistic receivers must invest such

that p − c = δW (p, (0, a)) (i.e. such that an optimistic sender is indifferent between

investing and waiting). As q > p, from Corollary 2 we know that ρ̃(g, g) > a. From

Corollary 1 this implies that p − c < δW (p, (0, ρ̃(g, g))).

Corollary 3 Under A2, q − c < δW (q, (0, 0), (0, 1)).

Proof: A2 states, among others, that q − c < δW (q, (0, 0), (0, 1)). From Lemma 3 we

know that the downward shift of the gain of investing dominates the one of the gain

of waiting. Q.E.D.

In words, Corollary 3 states that if a player who possesses the highest possible

posterior faces a positive option value of waiting, then this will also be true for all

less optimistic ones.

Proposition 2 There does not exist a MSCE in which the optimistic sender, after

having sent an unfavourable message, gets a payoff strictly higher than p − c − ε.

11Remind that player j is an optimistic receiver who is indifferent between investing and waiting
and who, therefore, invests with probability ρ̃(·).
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Proof: See appendix. As the optimistic sender “lied”, she suffers an ε-reputational

cost. Thus, if she invests, she gets p − c − ε. If she waits, she gets δW (p, ρ̃1) − ε.

Hence, if her payoff strictly exceeds p − c − ε, this means that she strictly prefers to

wait. Suppose there exists a MSCE in which σ̃(g, b) = 0. As she sent an unfavourable

message, she is the most “optimistic” player in our economy (i.e. Pr(G|b, ŝi = b) <

Pr(G|g, ŝi = b) ≤ p). As we restrict attention to monotone strategies (in particular

this implies that time-one investment probabilities must weakly increase in time-one

posteriors) ρ̃(g, b) ≤ σ̃(g, b) = 0. Clearly, this cannot be a MSCE as the optimistic

sender, anticipating that no receiver will invest at time one, then strictly prefers to

invest. In our companion paper we prove that if the optimistic sender sends ŝi = b,

there exists a unique MSCE in which σ̃(g, b) > 0. This implies that her payoff can

then not exceed p − c − ε.

The explanation above also underscores our need to focus on monotone strate-

gies. Lemma 3 and Corollary 2 already establish that, in equilibrium, the time-one

investment probabilities of the receivers (weakly) increase in their time-one posteri-

ors. However, consider a candidate continuation equilibrium in which ρ̃(g, b) ∈ (0, 1)

and in which the optimistic sender, despite being the most “optimistic” player in the

economy, strictly prefers to wait on the grounds that she observes ks instead of k.

Lemma 3 and Corollary 2 are not sufficient to rule out those kind of non-monotone

candidate continuation equilibria. We decided not to study non monotone equilibria

in this paper as we would not expect them to constitute a natural focal point of

our game. More research is needed to investigate their existence and their welfare

properties.

Proposition 3 If the investment generates a high surplus and if Pr(G|sj = b, ŝi =

g) = 1/2, there exist two (and only two) MSCE’s. In the first one the optimistic

receivers invest with probability ρ̃(g, g) ∈ (0, 1), while the other players wait. In

the second one, the optimistic sender together with all (optimistic and pessimistic)

receivers invest at time one.

Proof: See appendix. As mentioned above, if Pr(G|b, g) = 1/2, this means that (i)

the sender truthfully announced that she is an optimist and (ii) receivers compute

their posteriors under the assumption of truthful revelation. For the same reasons as

the ones explained above, there exists a MSCE in which only the optimistic receivers

randomise at time one. As the investment generates a high surplus, at time one

both the optimistic and the pessimistic receivers face a positive gain of investing.

Suppose player j anticipates that everyone invests at time one. Player j knows that

the sender is an optimist. Thus, she does not expect to learn something about the
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sender’s type by observing her time-one action. Hence, player j only wants to wait

to learn something about the other receivers’ types. However, the other receivers,

independently of their types, also invest at time one. Hence, player j cannot learn by

waiting and, due to discounting, prefers to invest at time one.

Note that in this MSCE all receivers possess some public (i.e. the favourable

message sent by player i) and some private information (i.e. their signals). All

receivers, independently of their signals, rely on the public information by investing

at time one. This behaviour is identical to the one followed by the players inside

an informational cascade in BHW’s (1992) and Banerjee’s (1992) models. In those

models all players also possess some public (i.e. the action(s) of the first mover(s))

and private information (i.e. their signals) and, independently of their signals, adopt

the same action. Therefore, we call the MSCE in which all receivers invest at time

one an informational cascade. Chamley (2004a) has shown that this informational

cascade does not hinge on our use of a binomial distribution. Rather, it can be

recovered under a wide range of distributional assumptions.

The reader may wonder why there does not exist a third MSCE in which only the

pessimistic receivers randomise. The answer is simple: that continuation equilibrium

is not stable. To understand this, consider Graph 3.

-

6

a

1/2 − c

δ(1
2
− c) δW (1

2
, (0, 1), (ρ(b, g), 1))

10 ρ(b, g)

Graph 3: An unstable continuation eq. when only pessimistic receivers randomise.

Suppose player j is a pessimistic receiver who believes the sender to be optimistic.

Graph 3 depicts player j’s gain of investing and her gain of waiting as a function

of ρ(b, g). If ρ(b, g) = 0, at time two player j will learn how many optimists are

present in the economy and her gain of waiting is maximal. If ρ(b, g) = ρ(b, g) = 1,

all receivers, independently of their types, invest at time one and player j’s gain of
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waiting is minimal. Graph 3 reveals the existence of a continuation equilibrium in

which all pessimistic receivers invest with probability a. More importantly, the graph

also shows that player j’s gain of waiting is decreasing in ρ(b, g). This is intuitive:

when only pessimistic receivers randomise (while the optimistic receivers invest), the

act of waiting becomes informative. The higher ρ(b, g), the harder it is to infer n on

the basis of k, and the lower a player’s gain of waiting. As player j’s gain of waiting

is decreasing in ρ(b, g), from Graph 4 it is clear that a small increase (decrease) in

ρ(b, g) induces player j to increase (decrease) her equilibrium investment probability

from a to one (a to zero). Hence, that equilibrium is unstable.

4 Cheap Talk

We now analyse player i’s incentives to truthfully reveal her private information at

time zero. One may think about player i in two ways. First, one may interpret

player i as a “guru” whose opinion concerning investment matters is often asked by

the media. Second, given our assumptions one would want to introduce an opinion

poll (instead of just interviewing one player) at time zero. Unfortunately, analytical

results are harder to get when one introduces other players at time zero. Therefore

one can also interpret our model as one explaining “the economics of opinion polls”

under the simplifying assumption that the size of the opinion poll equals one. We

first state and prove the following “negative” result.

Proposition 4 For low surplus projects, there exists a unique MSPBE. In that equi-

librium the optimistic and the pessimistic sender send ŝi = g. This MSPBE is sup-

ported by the out-of-equilibrium belief that if ŝi = b, the sender is a pessimist.

Proof: The Proposition is proven in two different steps. First, we prove that σ∗(b, h0)

must be equal to σ∗(g, h0). Next, we explain why σ∗(b, h0) = σ∗(g, h0) = 1. The proof

of the first step appears below. The proof of the second step, which is less insightful,

can be found in the appendix. We decided to follow this “two-step procedure” to

better highlight the role played by the ε-reputational cost in our model.

Suppose there exists a MSPBE in which σ∗(g, h0) > σ∗(b, h0). This can only be

an equilibrium if the pessimistic sender does not want to deviate, i.e. if

E(Ui|si = b, ŝi = b) ≥ E(Ui|si = b, ŝi = g).

If the sender sends “I am a pessimist”, in our companion paper we have proven that

our continuation game is then characterised by a unique MSCE in which σ∗(g, b) = 1
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and ρ∗(g, b) ∈ [0, 1). If the sender sends “I am an optimist”, Pr(G|g, g) > p and from

Proposition 1 we know that in the continuation game the sender and the pessimistic

receivers wait while the optimistic receivers invest with probability ρ∗(g, g) ∈ (0, 1).

We now argue that ρ∗(g, b) < ρ∗(g, g). If ρ∗(g, b) = 0, it trivially follows that ρ∗(g, b) <

ρ∗(g, g). Therefore, suppose that ρ∗(g, b) > 0. In that case both probabilities are

solutions of the following system of two equations:

δW (Pr(G|g, b), (0, 1), (0, ρ∗(g, b))) − (Pr(G|g, b) − c) = 0,(5)

δW (Pr(G|g, g), (0, 0), (0, ρ∗(g, g))) − (Pr(G|g, g)− c) = 0.

Suppose equality (5) is satisfied. From Lemma 3 then follows that

δW (Pr(G|g, g), (0, 1), (0, ρ∗(g, b))) − (Pr(G|g, g)− c) < 0.

In the appendix it is proven that

δW (Pr(G|g, g), (0, 0), (0, ρ∗(g, b))) ≤ δW (Pr(G|g, g), (0, 1), (0, ρ∗(g, b))).

This is intuitive: a receiver’s gain of waiting cannot decrease if the sender chooses a

more informative time-one strategy. Hence,

δW (Pr(G|g, g), (0, 0), (0, ρ∗(g, b))) − (Pr(G|g, g)− c) < 0,

and from Lemma 2 then follows that ρ∗(g, b) < ρ∗(g, g). From Corollary 1 we know

that this implies that

δW (1 − p, (0, ρ∗(g, b))) < δW (1 − p, (0, ρ∗(g, g))).

The left-hand side of the inequality above represents E(Ui|si = b, ŝi = b), while the

right-hand side represents E(Ui|si = b, ŝi = g) + ε. Hence, in the absence of an ε-

reputational cost, E(Ui|g, b) < E(Ui|g, g), which contradicts the necessary condition

we identified earlier. As ε is sufficiently close to zero, the pessimistic sender still

strictly prefers to send “I am an optimist” to “I am a pessimist”, and, thus, for low

surplus projects no information can be transmitted through words. Q.E.D.

Intuitively, there does not exist a MSPBE in which σ∗(b, h0) < σ∗(g, h0) because if

player i were to send an unfavourable message, this reduces the optimistic receivers’

gain of investing and consequently the equilibrium probability ρ∗(g, ·). As it becomes

then more difficult for the sender to infer n out of k, this reduces the sender’s gain of

waiting.
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The intuition why σ∗(b, h0) = σ∗(g, h0) = 1 is based on our ε-reputational cost.

As messages do not affect posteriors, the optimistic sender cannot influence her gain

of waiting. To avoid paying ε, she thus strictly prefers to send ŝi = g. The pessimistic

sender knows that σ∗(g, h0) = 1. As argued above, if she sends ŝi = g, she learns

more (about the receivers’ types) than by sending ŝi = b (note, however, that this

will be at the expense of her reputation). As ε → 0, she also strictly prefers to send

ŝi = g instead of ŝi = b.

Note that Proposition 4 fundamentally relies on the assumption that players can

wait and observe the period-one investment decisions. If players were not allowed

to observe past investment decisions, our game would be characterised by a unique

PBE in which σ∗(g, h0) = 1 and σ∗(b, h0) = 0. The intuition is simple: if the sender

is optimistic she will, independently of her message, invest in the first period. If she

is pessimistic she will, independently of her message, not invest. Hence, to save on

the ε-reputational cost, a sender strictly prefers to truthfully report her type. Hence,

Proposition 4 shows how the credibility of cheap talk statements can be adversely

affected when players can learn through actions. As we mentioned in our intro-

duction, the literature on social learning (see among others Banerjee (1992), BHW

(1992), Chamley and Gale (1994), Chamley (2004a),...) assumes that information

only gets revealed through actions. As those models are void of any competition

effects, some economists wonder why information should not be revealed through

words.12 Proposition 4 thus provides a justification for the “ad-hoc” omission of a

cheap-talk communication channel in many herding models. This paper also possesses

a more “positive” result which is summarised below.

Proposition 5 For high surplus projects our game is characterised by two MSPBE’s:

a pooling and a separating one. In the separating equilibrium all receivers, indepen-

dently of their types, invest at time one if ŝi = g. If ŝi = b, the optimistic receivers

invest with probability ρ∗(g, b), while the remaining players wait. In the pooling equi-

librium both sender’s types send ŝi = g. The pooling equilibrium is supported by the

out-of-equilibrium belief that if ŝi = b, the sender is a pessimist.

Proof: The existence of a separating equilibrium is proven below. The existence of a

pooling equilibrium is proven in the appendix. Finally, in the appendix we also prove

the nonexistence of a MSPBE in which σ∗(b, h0) < σ∗(g, h0).

12For example, Zwiebel (1995, p.16) wrote:

Relative performance evaluation also justify agents’ unwillingness to share information,
an issue that is problematic in many herding models.

18



Suppose the investment project is a high surplus one (i.e. c ≤ 1/2) and that

all receivers revise their posteriors under the assumption that σ∗(b, h0) = 0 and

that σ∗(g, h0) = 1. Consider first the optimistic sender. From Proposition 2, we

know that if she deviates and sends ŝi = b, her payoff cannot exceed p − c − ε.

If she sends ŝi = g, from Proposition 3 we know that there exists a continuation

equilibrium in which all receivers, along with the optimistic sender, invest at time

one. Hence, absent the ε-reputational cost, an optimistic sender is indifferent between

the two messages. If she prefers not to be caught “lying”, she strictly prefers to

truthfully report her signal. Consider now the pessimistic sender. If she sends ŝi = b,

c ≤ Pr(G|g, ŝi = b) = 1/2. We now argue that ρ∗(g, b) > 0 if c < 1/2. As all

receivers know si at time one, no additional information (about the sender’s type)

can be learned through the observation of ai. Therefore, a receiver’s gain of waiting

is independent of σ1.
13 Hence, if Pr(G|g, b) = 1/2 > c,

δW (
1

2
, (0, 1), (0, 0)) = δW (

1

2
, (0, 0), (0, 0)) = δ(

1

2
− c) <

1

2
− c.

From Graph 1, we know there exists then a unique ρ∗(g, b) > 0 such that an optimistic

receiver is indifferent between investing and waiting. From Corollary 1 follows that

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))) > 0, ∀c <
1

2
.

If the pessimistic sender deviates and sends ŝi = g, all receivers, independently of

their types, invest at time one. As the sender does not receive any payoff relevant

information she will not invest and E(Ui|si = b, ŝi = g) = −ε. As

E(Ui|si = b, ŝi = b) > 0 > E(Ui|si = b, ŝi = g) whenever c <
1

2
,

a pessimist strictly prefers to reveal her unfavourable information. Q.E.D.

The intuition behind our pooling equilibrium (in which both sender’s types send

the message ŝi = g) is identical to the one we explained above. In words, a separating

equilibrium is fundamentally driven because: (i) both sender’s types face different

opportunity costs of waiting and (ii) sending a favourable message creates an infor-

mational cascade. An optimist believes the investment project is good. For her “time

is money” and she is only willing to postpone her investment plans (with probability

one) if pessimists don’t invest and if optimists invest with a relatively high probabil-

ity. Unfortunately these two aims cannot be simultaneously achieved by any of the

13See appendix (Lemma 11) for a formal proof.
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two messages. Therefore, in the presence of an ε-reputational cost, she strictly prefers

to send ŝi = g. A pessimist believes the investment project is bad. She is unwilling

to invest unless she observes “relatively many” optimists investing at time one. If the

pessimist were to deviate and sent a favourable message, an informational cascade

would occur, she wouldn’t receive any payoff-relevant information and she would get

zero. Hence, it is the informational cascade which ultimately induces a pessimist

to send an unfavourable message. If ρ∗(b, h1) would always be equal to zero (as is

the case for low surplus projects), a pessimist would never want to send a negative

message because - if this message were to be believed - this would reduce ρ∗(g, h1).

Observe that Proposition 5 also stresses the importance of the informational cas-

cade to elicit private information. There only exist two MSPBE’s. There does thus not

exist a MSPBE in which σ∗(b, h0) < σ∗(g, h0) and in which (ρ∗(b, g), ρ∗(g, g)) 6= (1, 1).

So far we assumed that the sender always possesses private information. In Goss-

ner and Melissas (2003), we allowed for an uninformed sender, in the sense that

si ∈ {b, φ, g}. If si = φ, the sender’s signal is completely uninformative. We as-

sumed that Pr(si = φ|·) = ε (where ε > 0 and ε → 0) and showed the existence

of a semi-separating equilibrium in which the pessimistic and the uninformed sender

send the same message (say, message ŝi = φ) and the optimistic one sends message

si = g. The intuition is similar to the one behind Proposition 5: the pessimistic

and the uninformed sender do not want to send the message ŝi = g as this triggers

an informational cascade. The optimistic sender - independently of her message -

invests at time one and prefers to report truthfully for reputational reasons. Hence,

one should not interpret Proposition (5) as follows: “informational cascades induce

all possible types of players to truthfully reveal their private information”. Instead,

Proposition (5) should be interpreted as: “informational cascades put an upper limit

above which some types of players don’t want to misrepresent their information”.

5 Some normative and positive implications of our

theory

5.1 Should we subsidise investments?

Denote by sub an investment subsidy granted to each period-one investor. Call c′ ≡
c − sub. A social planner can, by appropriately choosing sub, alter the amount of

learning in two different ways. First, by making it relatively more attractive to invest

at time one, she can influence all players’ gain of waiting in a favourable way. Second,

by setting sub such that c′ ≤ 1/2 < c, she changes the sender’s incentives to truthfully
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reveal her private information (and thus the nature (separating versus pooling) of the

equilibrium played in our game). In a full-fledged welfare study, one should compute

the value of sub which maximises expected welfare. This exercise, however, is lengthy

and outside the scope of this paper. Rather, in this subsection we assume that

sub ∈ [−ε, sub) and highlight some advantages and disadvantages of setting sub 6= 0.

If sub = −ε (where, as above, ε represents an arbitrary small, but strictly positive

number) this means that the social planner taxes first-period investments. Note that

we only allow for a “low” subsidy14 in the sense that

sub < sub ≡ min{sub1, sub2}, where

sub1 ≡ δW (q, (0, 0), (0, 1))− (q − c) and

sub2 ≡ c + p − 1.

If sub < sub1, this means that the most optimistic type in our model still faces a

positive option value of waiting. If sub < sub2, this means that 1 − p < c′. In the

appendix we show that ∀sub ∈ [−ε, sub), Propositions 4 and 5 are unaffected by the

introduction of a first-period subsidy, i.e. if c′ > 1/2, the unique MSPBE is the

pooling one, if c′ ≤ 1/2 there exists a separating and a pooling equilibrium.

We first analyse the case in which the first-period subsidy does not change the

nature of the played equilibrium. To illustrate our way of working, suppose the in-

vestment project is a high surplus one and that players always focus on the separating

equilibrium. As mentioned above, in this equilibrium the message of the sender reveals

her type, and strategies of period one are given by: after a good message, everyone

invests in period 1, after a bad message, optimistic receivers invest with probability

ρ∗(g, b), and the remaining players do not invest.

Lemma 4 ∀sub ∈ [0, sub), ρ∗(g, b) is strictly increasing in sub and ρ∗(g, b) < 1.

Proof: See appendix. The intuition behind Lemma 4 is straightforward. We are con-

sidering a separating equilibrium. Thus, after the arrival of an unfavourable message,

optimistic receivers know they are the only players in the economy who face a positive

gain of investing. If an optimistic receiver waits, she forfeits the investment subsidy.

Hence, the higher sub, the higher a player’s cost of waiting. However, in equilibrium

14We consider an investment subsidy which may be paid to a potentially very large number of
firms. In comparison to the investment cost, it is then unlikely that the subsidy would be very
important. We do not have in mind a situation in which a government offers a generous subsidy
to attract an important investment project (e.g. the subsidy offered by the French Government to
attract Eurodisney).
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the gain of waiting must equal the cost of waiting, and, thus, the higher sub, the

higher a player’s gain of waiting (and from Graph 1 we know that this requires a

higher ρ∗(g, b)).

Wel(g, sub, sep) (Wel(b, sub, sep)) denotes the expected payoffs (net of the sub-

sidies received) of the optimistic (pessimistic) players given the first-period subsidy

and given that all players focus on the separating equilibrium. For the optimistic

players, one has

Wel(g, sub, sep) =
N

2
(p − c + sub) − (

1

2
2p(1 − p)(N − 1)ρ∗(g, b)

+
1

2
[(p2 + (1 − p)2)(N − 1) + 1])sub.

The first term is given by the expected number of optimists multiplied by their ex-

pected utilities. The second is the expected number of optimistic players who invest in

period one15 times the subsidy which is paid to them. This last expression simplifies

to

Wel(g, sub, sep) =
N

2
(p − c) + (N − 1)p(1 − p)(1 − ρ∗(g, b))sub.(6)

Observe that the second term is strictly positive whenever sub > 0. This finding

implies that, from a welfare point of view, a strictly positive subsidy is better (insofar

as the optimistic players are concerned) than no subsidy at all. From Lemma 4 we

know that (1−ρ∗(g, b))sub (and thus also Wel(g, sub, sep)) need not be monotonic in

sub. This is intuitive: an increase in sub increases an optimist’s gain of waiting, but

also reduces the probability that an optimist will wait and effectively benefit from a

more informative signal. For pessimists, one has

Wel(b, sub, sep) = (N − 1)p(1 − p)(
1

2
− c) +

1

2
[(p2 + (1 − p)2)(N − 1)(7)

δW (Pr(G|b, si = b), (0, 1), (0, ρ∗(g, b))) + δW (1 − p, (0, ρ∗(g, b)))].

The first term corresponds to the expected welfare for pessimistic receivers given an

optimistic sender. Similarly, the first term between square brackets corresponds to

the expected welfare of all pessimistic receivers given a pessimistic sender. The second

term between square brackets corresponds to the expected utility of the pessimistic

sender. From Lemmas 2 and 4 and Corollary 1 follows that Wel(b, sub, sep) cannot

15With probability 1/2, the sender is pessimistic, in which case 2p(1−p)(N−1) optimistic receivers
invest at time one with probability ρ∗(g, b); with probability 1/2, the sender is optimistic, in which
case (p2 + (1 − p)2)(N − 1) + 1 optimistic players (= conditional expected number of optimistic
receivers plus the optimistic sender) invest at time one with probability one.
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decrease in sub. This is also intuitive: the higher sub, the higher ρ∗(g, b), and, as

explained in section 3, this cannot decrease the expected utilities of the pessimistic

players. Total social welfare equals

Wel(sub, sep) = Wel(g, sub, sep) + Wel(b, sub, sep).

Suppose now that all players, independently of the surplus generated by the

project, focus on the pooling equilibrium. From above, we know that both sender’s

types then send the message ŝi = g, that optimists invest with probability ρ∗(g, g)

and that pessimists do not invest. Note that receiving the message ŝi = g in the

pooling equilibrium is informationally different from receiving the same message in

the separating one (and, more importantly, leads to a different behaviour in the

continuation game). To avoid confusion, in this subsection we denote by ρ∗(g, h1)

(respectively ρ∗(g, g)) the probability with which all optimists invest at time one in

the pooling (respectively separating) equilibrium after having received a favourable

message. Here again, we estimate the social welfare separately for optimists and for

pessimists (total welfare is denoted by Wel(sub, pool)). For optimists, this writes:

Wel(g, sub, pool) =
N

2
(p − c) +

N

2
(1 − ρ∗(g, h1))sub.(8)

For pessimists, we have:

Wel(b, sub, pool) =
N

2
δW (1 − p, (0, ρ∗(g, h1))).(9)

Lemma 5 ∀sub ∈ [0, sub), ρ∗(g, h1) is strictly increasing in sub and ρ∗(g, h1) < 1.

Proof: See appendix. The intuition is similar to the one behind Lemma 4. As

above, Wel(g, sub, pool) need not be monotonic in sub, while Wel(b, sub, pool) cannot

decrease in sub. Our main result is summarised below.

Proposition 6 If the subsidy does not alter the nature of the played equilibrium, any

sub ∈ (0, sub) is (strictly) better (for welfare) than no subsidy at all. The relationship

between welfare and sub need, however, not be monotonic.

Proposition 6 is not very surprising: because of the information externality the

social benefit of investing at time one exceeds the private one. Hence, a social planner

fixes sub > 0 to close the gap between both benefits. A similar result is also present

in Doyle (2002). However, it would be premature to conclude that - in the presence

of information externalities - investments must always be subsidised as the example

below suggests.
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Suppose c = 1/2 and that our players focus on the separating equilibrium. We now

show that the social planner can increase welfare by imposing an arbitrarily small,

but strictly positive, investment tax (i.e. sub = −ε). We first compute Wel(0, sep).

Observe that in the separating equilibrium Pr(G|sj = g, ŝi = b) = 1/2 = c, and thus

there exists a PBE in which ρ∗(g, b) = 0. Hence, from equation (6) follows that

Wel(g, 0, sep) =
N

2
(p − c).(10)

As ρ∗(g, b) = 0,

δW (Pr(G|b, si = b), (0, 1), (0, 0)) = δW (1 − p, (0, 0)) = 0,

and from equation (7) we know that

Wel(b, 0, sep) = (N − 1)p(1 − p)(
1

2
− c) = 0.(11)

Adding (10) and (11), one has

Wel(0, sep) =
N

2
(p − c).(12)

This is intuitive: if ŝi = g, pessimists invest at time one and get a zero payoff. If

ŝi = b, ρ∗(g, b) = 0 and our pessimistic players also get a zero payoff. Hence, if

c = 1/2 total welfare is only determined by the expected utilities of the optimistic

players. If ŝi = g, all optimists invest at time one. If ŝi = b, optimistic receivers do

not invest, but nonetheless obtain the same payoff (i.e. zero) as the one they would

obtain if they were to invest at time one. Stated differently, unconditionally investing

at time one is - for an optimist - payoff equivalent to the alternative strategy in which

she only invests if ŝi = g. Thus, an optimist gets p − c and, in expected terms, half

of the population is optimistic. Thus, welfare equals N/2(p − c).

If sub = −ε, c′ > 1/2 and the unique MSPBE is the pooling one. As ε → 0,

Wel(g,−ε, pool) → N

2
(p − c) and Wel(b,−ε, pool) = δW (1 − p, (0, ρ∗(g, h1))).

As ρ∗(g, h1) > ρ∗(g, b) = 0, pessimists benefit from a more informative statistic in

the pooling equilibrium and thus Wel(0, sep) < Wel(−ε, pool). Our main insight is

summarised below.

Proposition 7 An investment tax can - by altering the nature of the played equilib-

rium - (strictly) increase welfare.
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In the analysis above, we restricted ourselves to the case in which c = 1/2. However,

it should be clear that Proposition 7 is crucially driven by the fact that when c is

close to 1/2 (and c ≤ 1/2) the expected utility of a pessimist hardly exceeds zero in

the separating equilibrium. In our introduction we explained why our last insight is

not present in Doyle (2002).

5.2 How does the sender’s ability influence her incentives for

truthful revelation?

So far we assumed that the sender was “as able” as the receivers in the sense that

all players possess a signal of the same precision. One may find it more natural

to endow player i with a more precise signal. After all, in our model she can be

interpreted as a guru and people typically think of them as being better informed.

There is a straightforward way to allow for a better informed sender. Let’s assume

that player i’s signal is drawn from the distribution: Pr(g|G) = Pr(b|B) = r and

Pr(b|G) = Pr(g|B) = 1 − r (where 1 > r > p). The higher r, the “smarter” or the

better informed the sender. Our main result is summarised below.

Proposition 8 ∀c ∈ (1 − p, min{p, (1−p)r
(1−p)r+p(1−r)

}), ∃ a separating equilibrium. This

range of parameter values cannot decrease in the precision of the sender’s signal.

Proof: A MSCE in which ρ̃(b, g) = ρ̃(g, g) = 1 exists only if Pr(G|b, ŝi = g) ≥ c. This

posterior probability is now computed as:

Pr(G|b, ŝi = g) =
Pr(G, ŝi = g|b)
Pr(ŝi = g|b) =

(1 − p)r

(1 − p)r + p(1 − r)
>

1

2
.

Using a reasoning identical to the one we outlined above, one can check that, if

c ∈ (1 − p, (1−p)r
(1−p)r+p(1−r)

), there exists a separating equilibrium. Q.E.D.

The intuition behind proposition 8 is simple. As we showed in Proposition 5, a

separating equilibrium only exists if the sender can make the pessimists change their

minds. Proposition 8 therefore rests on the intuitive idea that the “smarter” the

sender (or the more precise her private information), the “easier” it will be for her to

make the pessimists change their minds. If the sender cannot convince the remaining

pessimists to invest at time one (either because the sender is commonly perceived

to be “stupid” or because the investment project only generates a low surplus) then

she doesn’t want to reveal any unfavourable information because this will worsen her

second-period inference problem.
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6 Conclusions

In this paper we introduced cheap talk in an investment model with information ex-

ternalities. We first showed that for low surplus projects, the unique MSPBE is the

pooling one. This is because a pessimist is reluctant to divulge her bad informa-

tion as this worsens her second-period inference problem. For high surplus projects,

however, there exists a separating equilibrium: as a pessimist doesn’t learn anything

upon observing an informational cascade (which occurs whenever the sender sends

a favourable message) revelation of bad information is compatible with maximising

behaviour. A subsidy on low-surplus projects increases welfare, provided the subsidy

does not turn a low-surplus project into a high-surplus one. Without an adequate

equilibrium selection theory, one cannot appraise the welfare consequences of a policy

aimed at subsidising high-surplus projects. Finally, we argued that “smart” people

have more incentives to truthfully reveal their private information than “stupid” ones.

The reader must bear in mind that we only introduced cheap talk in an endogenous-

queue set-up. More research is thus needed to check the robustness of exogenous-

queue herding models to the introduction of cheap talk. In our model one should

think about the sender as a famous investor who’s being interviewed by the media.

We believe it would be equally interesting to consider a set-up in which many players

have access to the communication channel through words. In particular, we have

two interpretations in mind. First, one could model “the economics of opinion polls”

in which a subset of the population is asked to simultaneously send a message to

all players in the economy.16 Second, one could model “the economics of business

lunches” in which a subset of the population meet and discuss the investment climate

prior to the first investment date (the outcome of the discussion is not divulged to

the other players in the economy). We also believe this to constitute an interesting

topic for future research.

Appendix

1 Some Definitions and Useful Lemmas

Let q ∈ {qω, qπ, 1 − p, p}, where qω ≡ Pr(G|sj = g, ŝi) and qπ ≡ Pr(G|sj = b, ŝi). Let

ρ1 ≡ (ρ(b, h1), ρ(g, h1)), ρ̃1 ≡ (ρ̃(b, h1), ρ̃(g, h1)), and

σ1 ≡ (σ(b, h1), σ(g, h1)), σ̃1 ≡ (σ̃(b, h1), σ̃(g, h1)).

∆r(q, σ1, ρ1) ≡ δW (q, σ1, ρ1) − (q − c′),(13)

16In contrast to Sgroi (2002) we have in mind a situation in which the sender wants to learn the
receivers’ private information.
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where c′ = c − sub, and

W (q, σ1, ρ1) =
∑

ai

∑

k

max{0, Pr(G|q, k, ai) − c}Pr(k|q, ai) Pr(ai|q).(14)

Similarly,
∆s(q, ρ1) ≡ δW (q, ρ1) − (q − c′),

where,
W (q, ρ1) ≡

∑

ks

max{0, Pr(G|si, k
s) − c}Pr(ks|si).

In words, ∆r(q, σ1, ρ1) denotes a receiver’s difference between her gain of waiting and her gain of
investing given her posterior, σ1, ρ1 and sub. ∆s(p, ρ1) denotes the difference between an optimistic
sender’s gain of waiting and her gain of investing. Note that the sender, when observing k invest-
ments, computes her posterior by explicitly taking into account the fact that N − 1 (and not N − 2)
players were investing with probability ρ(b, h1) if they were pessimists and with probability ρ(g, h1)
if they were optimists. Observe that, as sub ∈ [−ε, sub) (ε > 0 and ε → 0 and the definition of sub
can be found in the body of our paper), 1 − p < c′ < p.

Lemma 6 ∆r(q, σ1, ρ1) is (weakly) increasing in (σ(g, h1) − σ(b, h1)).

Proof: As we are focusing on monotone strategies σ(g, h1) − σ(b, h1) ≥ 0. We prove the Lemma in
two different steps. First, we show that ∆r(·) is weakly increasing in σ(g, h1) for any given σ(b, h1) ≤
σ(g, h1). Next, we show that ∆r(·) is weakly decreasing in σ(b, h1) for any given σ(b, h1) ≤ σ(g, h1).

Step 1: Fix an arbitrary σ(b, h1) ≤ σ(g, h1), and consider two investment probabilities σ(g, h1) <
σ′(g, h1). Call ai (a′

i) the time-one action taken by the sender when σ1 = (σ(b, h1), σ(g, h1)) (σ1 =
(σ(b, h1), σ′(g, h1))). Having the optimistic sender randomize with probability σ(g, h1) is ex ante
identical to the following two-stage experiment: let the optimistic sender invest with probability
σ′(g, h1). Construct ai then in the following way:

if a′
i = invest,

{
ai = invest with probability σ(g,h1)

σ′(g,h1)
,

ai = wait with probability 1 − σ(g,h1)
σ′(g,h1)

,

if a′
i = wait, ai = wait with probability 1.

Hence, a′
i is a sufficient statistic for ai and from Blackwell’s theorem follows that ∀σ(b, h1) ≤ σ(g, h1),

W (q, (σ(b, h1), σ(g, h1)), ρ1) ≤ W (q, (σ(b, h1), σ′(g, h1)), ρ1).
Step 2: Fix an arbitrary σ(g, h1) ≥ σ(b, h1), and consider two investment probabilities σ′(b, h1) <

σ(b, h1). Call ai (a′
i) the time-one action taken by the sender when σ1 = (σ(b, h1), σ(g, h1)) (σ1 =

(σ′(b, h1), σ(g, h1))). As above, one can construct ai on the basis of a′
i in the following way: let the

pessimistic sender wait with probability 1 − σ′(b, h1).

If a′
i = wait,

{
ai = wait with probability 1−σ(b,h1)

1−σ′(b,h1)
,

ai = invest with probability 1 − 1−σ(b,h1)
1−σ′(b,h1)

,

if a′
i = invest, ai = invest with probability 1.

As before, a′
i is a sufficient statistic for ai and from Blackwell’s theorem follows that ∀σ(b, h1) ≤

σ(g, h1), W (q, (σ(b, h1), σ(g, h1)), ρ1) ≤ W (q, (σ′(b, h1), σ(g, h1)), ρ1). Q.E.D.
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Lemma 7 ∆r(q, σ1, ρ1) is strictly decreasing in q, ∀ρ1, ∀σ1.

Proof: Consider player l and player l′. Both players received the same message from the sender
but player l anticipates that Θ = G with probability q, while player l′ anticipates that Θ = G with
probability q′. Suppose, without loss of generality, that q′ > q. Observe that equation (14) can be
rewritten as:

W (q, σ1, ρ1) = q
∑

x

Pr(x|G, ŝi)(1 − c)I{Pr(G|q,x)≥c}(15)

+(1 − q)
∑

x

Pr(x|B, ŝi)(−c)I{Pr(G|q,x)≥c},

where I{·} represents the indicator function. Remind that x denotes a (1 × N) vector where the
l-th element equals one if player l invested at time one and zero otherwise. We start by proving the
following inequality:

q′ − q ≥ W (q′, σ1, ρ1) − W (q, σ1, ρ1).(16)

Note that
W (q′, σ1, ρ1) − W (q, σ1, ρ1) ≤ W (q′, σ1, ρ1) − W ′(q, σ1, ρ1),

where,
W ′(q, σ1, ρ1) ≡ q

∑

x

Pr(x|G, ŝi)(1 − c)I{Pr(G|q′,x)≥c}

+(1 − q)
∑

x

Pr(x|B, ŝi)(−c)I{Pr(G|q′,x)≥c}.

Hence, a sufficient condition for (16) to hold is that

q′ − q ≥ W (q′, σ1, ρ1) − W ′(q, σ1, ρ1).(17)

Note that the RHS of (17) can be written as:

W (q′, σ1, ρ1) − W ′(q, σ1, ρ1) = (q′ − q)
∑

x

Pr(x|G, ŝi)(1 − c)I{Pr(G|q′,x)≥c}(18)

−(q′ − q)
∑

x

Pr(x|B, ŝi)(−c)I{Pr(G|q′,x)≥c}.

Note also that the LHS of (17) can be rewritten as:

q′ − q = (q′ − q)
∑

x

Pr(x|G, ŝi)(1 − c) − (q′ − q)
∑

x

Pr(x|B, ŝi)(−c).(19)

Using (18) and (19), inequality (17) can be rewritten as

(q′ − q)
∑

x

Pr(x|G, ŝi)(1 − c)(1 − I{Pr(G|q′,x)≥c})

+(q′ − q)
∑

x

Pr(x|B, ŝi)c(1 − I{Pr(G|q′,x)≥c}) ≥ 0,

which is obviously satisfied. Using (13), one has

∆r(q′, σ1, ρ1) − ∆r(q, σ1, ρ1) = δ(W (q′, σ1, ρ1) − W (q, σ1, ρ1)) − (q′ − q).

From above (+ using the fact that δ < 1), it follows that

∆r(q′, σ1, ρ1) < ∆r(q, σ1, ρ1),

which proves the Lemma. Q.E.D.
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Lemma 8 ∆s(p, ρ1) = ∆r(p, ρ1, ρ1) and ∆s(1 − p, ρ1) = ∆r(1 − p, ρ1, ρ1).

Proof: Suppose sj = g (the argument if sj = b is fully symmetric). Observe that, as qω = p, player j
did not learn anything about the sender’s type after the communication stage. Observe also that the
sender invests with the same probability as the receivers. Both observations imply that observing
ai = invest is informationally equivalent to observing al = invest (where l 6= j and l 6= i). Hence,
if player j waits she has access to an information service that is ex ante identical to the one of the
optimistic sender. Thus, player j and the optimistic sender face the same gain of waiting and the
same gain of investing, which implies the Lemma. Q.E.D.

Lemma 9 ∆s(p, ρ1) is strictly decreasing in p, ∀ρ1.

Proof: From Lemma 8, we know that ∆s(p, ρ1) = ∆r(p, ρ1, ρ1). But then it follows from Lemma 7
that ∆r(p, ρ1, ρ1) is strictly decreasing in p. Q.E.D.

Lemma 10 ∀ρ′(g, h1) > ρ(g, h1), ∆r(q, σ1, (0, ρ(g, h1)) ≤ ∆r(q, σ1, (0, ρ′(g, h1)), where the inequal-
ity becomes strict whenever ρ′(g, h1) > ρc ≥ 0.

Proof: First observe that whenever Pr(G|q, k, ai) is well defined, one has:

Remark 1: Pr(G|q, k = 0, ai) < Pr(G|q, k = 1, ai) < ... < Pr(G|q, k = N − 2, ai).

Remark 2: Pr(G|q, k = 0, ai) is strictly decreasing in ρ(g, h1).

Remark 3: Pr(G|q, k = 0, ai = wait) ≤ Pr(G|q, k = 0, ai = invest).

Remark 3 rests on the observation that, as 1 − p < c′, σ∗(b, h1) = 0. Before defining ρc we must
make a distinction between the following two cases: (1) Pr(G|q, 0, wait) is well defined and (2)
Pr(G|q, 0, wait) is not well defined. Observe that whenever ρ′(g, h1) > 0, (2) only happens if -
after the communication stage - all players learned that si = g and that σ(g, g) = 1. In (1) we
must make the following distinction: (a) Pr(G|q, wait) > c and (b) Pr(G|q, wait) ≤ c. In (a) we
define ρc as the probability with which N − 2 receivers must invest (if they are optimists) such that
Pr(G|q, 0, wait) = c. Observe that in (a)

Pr(G|q, 0, wait, ρ(g, h1) = 1) < c < Pr(G|q, wait) = Pr(G|q, 0, wait, ρ(g, h1) = 0),

and, thus, in (a) 0 < ρc < 1. In (b) there does not exist a ρ(g, h1) > 0 such that Pr(G|q, 0, wait) = c.
Hence, in (b) we define ρc as being equal to zero. In (2) we make the following distinction: (c)
Pr(G|q, invest) > c and (d) Pr(G|q, invest) ≤ c. As before, in (c) we define ρc as the probability
with which the N − 2 receivers must invest (if they are optimists) such that Pr(G|q, 0, invest) = c.
In this case 0 < ρc < 1. In (d) we define ρc as being equal to zero.

Call k′ (k) the number of time-one investors when N−2 receivers invest with probability ρ′(g, h1)
(ρ(g, h1))if they are optimists, and with probability zero if they are pessimists. From the explanation
given in the text we know that k′ is a sufficient statistic for k. Consider two receivers: player 1 and
player 2. Both players anticipate that Θ = G with probability q. If player 1 (2) waits, she observes
statistic k′ (k).

If ρ(g, h1) < ρ′(g, h1) ≤ ρc, from Remarks 1, 2 and 3 we know that both players always invest
at time two and ∆r(q, σ1, (0, ρ(g, h1)) = ∆r(q, σ1, (0, ρ′(g, h1)). If ρc ≤ ρ(g, h1) < ρ′(g, h1), with
strictly positive probability

Pr(G|q, k = 0, ai) ≤ c < Pr(G|q, k′ = N − 2, ai),
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in which case player two (wrongly) doesn’t invest and loses Pr(G|q, k′ = N − 2, ai) − c > 0. Hence,
whenever ρ′(g, h1) > ρ(g, h1) ≥ ρc,

∆r(q, σ1, (0, ρ(g, h1)) < ∆r(q, σ1, (0, ρ′(g, h1)).

Q.E.D.
Lemma 10 gives rise to the following Corollary.

Corollary 4 ∀ρ′(g, h1) > ρ(g, h1),
1) ∆s(p, (0, ρ′(g, h1))) ≥ ∆s(p, (0, ρ(g, h1))) where the inequality becomes strict whenever W (p, (0, ρ(g, h1))) >
p − c,
2) ∆s(1 − p, (0, ρ′(g, h1))) > ∆s(1 − p, (0, ρ(g, h1))).

Proof: This Corollary was already proven in Chamley and Gale (1994) (see their Proposition 2). In
our set-up the Corollary follows from our previous Lemmas as the argument below shows.

Suppose that q ∈ {1 − p, p} and that σ1 = ρ1. From Lemma 8, we know that player j’s gain
of waiting is then identical to player i’s. Define ρc in a similar way as in the proof of Proposition
10. Observe that 0 < ρc < 1 ⇔ W (p, ρ1, ρ1) > p − c. The Corollary then follows from the proof of
Lemma 10. Q.E.D.

Lemma 11 ∆r( 1
2 , σ1, ρ1) and ∆r(qω, σ1, ρ1) are independent of σ1.

Proof: Observe that W (q, σ1, ρ1) can also be rewritten as

W (q, σ1, ρ1) = Pr(ai = invest|sj , ŝi)W r(q′, ρ1)(20)

+ Pr(ai = wait|sj , ŝi)W r(q′′, ρ1), where

q′ = Pr(G|sj , ŝi, ai = invest), q′′ = Pr(G|sj , ŝi, ai = wait),

W r(q′, ρ1) =
∑

k

max{0, Pr(G|sj , ŝi, k, invest) − c}Pr(k|sj , ŝi, ai = invest) and

W r(q′′, ρ1) =
∑

k

max{0, Pr(G|sj , ŝi, k, wait) − c}Pr(k|sj , ŝi, ai = wait).

If q = 1
2 or if q = qω, this means that the receivers learned si through the sender’s message. Hence,

if q′ and q′′ are well defined, q′ = q′′ and

W (q, σ1, ρ1) = W r(q′, ρ1) = W r(q′′, ρ1) =
∑

k

max{0, Pr(G|sj , k, si) − c}Pr(k|sj , si),

which is independent of σ1.
If either q′ or q′′ are not well defined (because Pr(ai = invest|sj , ŝi) equals one or zero), this

means that W (q, σ1, ρ1) either equals W r(q′, ρ1) or W r(q′′, ρ1). In both cases, W (·) is independent
of σ1. Q.E.D.

Lemma 12 ∀ρ(b, h1) < ρ′(b, h1), ∆r(q, σ1, (ρ(b, h1), 1)) ≥ ∆r(q, σ1, (ρ′(b, h1), 1)), where the inequal-
ity becomes strict whenever ρ(b, h1) < ρc ≤ 1.
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Proof: The proof mirrors the one we outlined in Proposition 10. Whenever ρ(b, h1) < 1 and
ρ(g, h1) = 1, the act of waiting becomes informative and the probability with which each pessimist
decides to take the informative action equals (1 − ρ(b, h1)). Take any two waiting probabilities
1− ρ(b, h1) > 1− ρ′(b, h1). Call z (z′) the number of players who waited when pessimistic receivers
randomised with probability 1−ρ(b, h1) (1−ρ′(b, h1)) and optimistic receivers with probability zero.
Having N−2 players randomising with probability ρ(b, h1) (if they are pessimists) is ex ante identical
to the following two-stage experiment: take N − 2 players and let them wait (if they are pessimists)
with probability (1 − ρ(b, h1)). Next, take the z non-investors and let them invest with probabil-
ity 1−ρ′(b,h1)

1−ρ(b,h1) . Hence, the statistic z′ can be constructed by adding noise to the statistic z. In the
rest of the proof we always assume that ρ(b, h1) < 1. Whenever Pr(G|q, z, ai) is well defined one has:

Remark 1: Pr(G|q, z = 0, ai) > Pr(G|q, z = 1, ai) > ... > Pr(G|q, z = N − 2, ai).

Remark 2: Pr(G|q, z = 0, ai) is strictly decreasing in ρ(b, h1).

Remark 3: Pr(G|q, z, wait) ≤ Pr(G|q, z, invest).

As above, we must distinguish among different cases. If Pr(G|q, z = 0, invest) is well defined and
if Pr(G|q, invest) < c, we define ρc as the probability with which N − 2 receivers must invest (if
they are pessimists) such that Pr(G|q, 0, invest) = c. If Pr(G|q, 0, invest) is not well defined and if
Pr(G|q, wait) < c, we define ρc as the probability with which N − 2 receivers must invest (if they
are pessimists) such that Pr(G|q, 0, wait) = c. In all the other cases we define ρc as being equal to
one.

If ρc ≤ ρ(b, h1) < ρ′(b, h1) from Remarks 1, 2 and 3 we know that both players never invest
at time two and ∆r(q, σ1, (ρ(b, h1), 1)) = ∆r(q, σ1, (ρ′(b, h1), 1)). If ρ(b, h1) < ρ′(b, h1) ≤ ρc with a
strictly positive probability

Pr(G|q, z = N − 2, ai) < c ≤ Pr(G|q, z′ = 0, ai),

in which case player 2 wrongly invests (at time two) and loses c−Pr(G|q, z = N −2, ai) > 0. Hence,
∀ρ(b, h1) < ρ′(b, h1) ≤ ρc,

∆r(q, σ1, (ρ(b, h1), 1)) > ∆r(q, σ1, (ρ′(b, h1), 1)).

Q.E.D.

Lemma 13 ∆r(qω, (0, 0), (0, 0)) < 0 < ∆r(qω , (0, 0), (0, 1)).

Proof: The fact that ∆r(qω, (0, 0), (0, 0)) < 0 trivially follows from our assumption that δ < 1. The
second inequality rests on A2 and on the fcat that sub < sub1. Q.E.D.

Lemma 14 ∆r(q, (0, 0), (0, 1)) > 0, ∀q and ∀sub ∈ [−ε, sub).

Proof: From Lemmas 13 and 7 follows that ∀q and ∀sub ∈ [−ε, sub),

0 < ∆r(qω, (0, 0), (0, 1)) < ∆r(q, (0, 0), (0, 1)).

Q.E.D.

2 Proof of all Lemmas and Propositions in our Paper

The proofs of Lemmas 2, 3 and Corollary 1 can be found above.
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Proof of Lemma 1

Call nr the number of optimistic receivers in the economy. Observe that Pr(G|q, nr) is increasing in
nr. As explained in the paper if Pr(G|qω, nr = 1) = Pr(G|n = 2) < c, then Pr(G|q, nr = 1) < c and
W (q, σ1, (0, 1)) > q − c ∀q. Hence, we just focus on the question: “How high must N be such that
Pr(G|qω, nr = 1) < c?” The posterior qω = qω can only be generated if (i) player i sent a favourable
message and (ii) σ(g, h0) = 1 and σ(b, h0) = 0. Therefore if qω = qω, n cannot take a value lower
than two. Now:

Pr(G|n = 2) =
C2

Np2(1 − p)N−2

C2
Np2(1 − p)N−2 + C2

N (1 − p)2pN−2

where C2
N represents the number of possible combinations of two players out of a population of N

players. It can easily be shown that ∀N1 > N2 ≥ 2:

p2(1 − p)N1−2

p2(1 − p)N1−2 + (1 − p)2pN1−2
<

p2(1 − p)N2−2

p2(1 − p)N2−2 + (1 − p)2pN2−2

From statistical textbooks (see e.g. De Groot (1970)) we know that in our set-up Pr(G|n) is driven
by the difference between the good and the bad signals in the population.17 Therefore if N ≥ 5,
Pr(G|n = 2) ≤ 1 − p which is strictly lower than c by A1. Q.E.D.

Proofs of Propositions 1, 2 and 3

We characterise the set of MSCE by proving the following 6 points.

Point 1: If qπ < 1 − p < c′ < qω < p, ∃ a unique MSCE in which ρ̃(b, b) = σ̃(b, b) = 0 and
ρ̃(g, b) ∈ [0, 1), σ̃(g, b) = 1.

Proof: Observe that qπ < 1− p, which means that the sender sent message ŝi = b. As qπ < 1− p <
c′, this implies that ρ̃(b, b) = σ̃(b, b) = 0. We first show that there does not exist a monotone
continuation equilibrium in which 0 < ρ̃(g, b) ≤ σ̃(g, b) < 1. As both types are willing to randomise
this means that

∆r(qω, (0, σ̃(g, b)), ρ̃1) = 0,

∆s(p, ρ̃1) = 0.

Both equalities cannot be simultaneously satisfied as we can successively apply Lemmas 6, 7 and 8
to construct the following contradiction:

0 = ∆r(qω, (0, σ̃(g, b)), ρ̃1)) ≥ ∆r(qω , ρ̃1, ρ̃1) > ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1) = 0.

Next, observe that there does not exist a monotone continuation equilibrium in which σ̃(g, b) < 1
and ρ̃(g, b) = 0, because the optimistic sender, knowing that ρ̃(g, b) = 0, then strictly prefers to
invest at time one with probability one.

We now prove the existence of a monotone continuation equilibrium in which σ̃(g, b) = 1 and
ρ̃(g, b) ∈ [0, 1). Consider the optimistic receiver. She knows that σ̃(g, b) = 1. There are then two
possibilities: (i) ∆r(qω, (0, 1), (0, 0)) ≥ 0 and (ii) ∆r(qω, (0, 1), (0, 0)) < 0. In case (i), ρ̃(g, b) = 0.

17For example, Pr(G|n = 1, N = 3) = Pr(G|n = 2, N = 5) = 1 − p. In both cases: #pessimists
−# optimists = N − n − n = 1.
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The optimistic sender knows that ρ̃(g, b) = 0 and thus stictly prefers to invest at time one with
probability one (i.e. σ̃(g, b) = 1). In case (ii), from Lemmas 6 and 14, one has

∆r(qω, (0, 1), (0, 1)) ≥ ∆r(qω, (0, 0), (0, 1)) > 0.

From Lemma 10, there exists a unique ρ̃(g, b) ∈ (0, 1) such that ∆r(qω , (0, 1), (0, ρ̃(g, b))) = 0.
Successively applying Lemmas 7, 6 and 8, one has

0 = ∆r(qω, (0, 1), ρ̃1) > ∆r(p, (0, 1), ρ̃1) ≥ ∆r(p, (0, ρ̃(g, b)), ρ̃1) = ∆s(p, ρ̃1),

and the optimistic sender, knowing that ρ̃(g, b) is fixed such that ∆r(qω, (0, 1), ρ̃1) = 0, strictly
prefers to invest at time one (i.e. σ̃(g, b) = 1). Q.E.D.

Point 2: If qπ < 1− p < qω ≤ c′ < p, ∃ a unique MSCE in which ρ̃(b, b) = σ̃(b, b) = ρ̃(g, b) = 0 and
σ̃(g, b) = 1.

Proof: In this case the sender also sent message ŝi = b. As qπ < 1 − p < c′, ρ̃(b, b) = σ̃(b, b) = 0.
Observe also that if qω ≤ c′, ∀ρ(g, b) > 0, ∆r(qω , σ1, (0, ρ(g, b))) > 0. Hence, ρ̃(g, b) = 0. The
optimistic sender, knowing that ρ̃(b, b) = ρ̃(g, b) = 0, strictly prefers to invest at time one with
probability one. Q.E.D.

Point 3: If 1− p < qπ < c′ < p < qω, ∃ a unique MSCE in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and
ρ̃(g, g) ∈ (0, 1).

Proof: In this case the sender sent message ŝi = g. As 1−p < qπ < c′, σ̃(b, g) = ρ̃(b, g) = 0. Suppose
there exists a continuation equilibrium in which 0 < σ̃(g, g) ≤ ρ̃(g, g) < 1. As both types of players
are willing to randomize, this means that

∆r(qω , (0, σ̃(g, g)), (0, ρ̃(g, g))) = 0,

∆s(p, (0, ρ̃(g, g))) = 0.

Both equalities cannot be simultaneously satisfied as we can successively apply Lemmas 6, 7 and 8
to construct the following contradiction:

0 = ∆r(qω , (0, σ̃(g, g)), ρ̃1) ≤ ∆r(qω, ρ̃1, ρ̃1) < ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1) = 0.

Note also that there cannot exist continuation equilibria in which σ̃(g, g) = ρ̃(g, g) = 0 or in which
σ̃(g, g) = ρ̃(g, g) = 1 (both candidate continuation equilibria contradict our assumption that δ < 1
and Lemma 14).

Suppose σ̃(g, g) = 0. From Chamley and Gale, we know that there exists then a unique ρ̃(g, g) ∈
(0, 1) such that ∆r(qω , (0, 0), (0, ρ̃(g, g))) = 0. Successively applying Lemmas 7, 6 and 8, one has

0 = ∆r(qω, (0, 0), ρ̃1) < ∆r(p, (0, 0), ρ̃1) ≤ ∆r(p, (0, ρ̃(g, g)), ρ̃1) = ∆s(p, ρ̃1),

and the pessimistic sender, knowing that ρ̃(g, g) is fixed such that ∆r(qω, (0, 0), ρ̃1) = 0, strictly
prefers to wait at time one (i.e. σ̃(g, g) = 0). Q.E.D.

Point 4: If 1 − p < c′ ≤ qπ < 1
2 < p < qω, ∃ a MSCE in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0

and ρ̃(g, g) ∈ (0, 1). Depending on the values of our exogenous parameters, there may also exist one
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(and only one) other MSCE in which σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.

Proof: In this case the sender sent message ŝi = g. As 1 − p < c′, σ̃(b, g) = 0. We prove this
point in seven different steps. Steps 1, 2 and 3 show that there does not exist a monotone contin-
uation equilibrium in which more than one type of player randomizes. Steps 4, 5 and 6 show that
there exists a unique monotone continuation equilibrium in which only one type of player (i.e. the
optimistic receiver) randomises (while the optimistic sender and the pessimistic receiver wait with
probability 1). Step 7 investigates the existence of monotone continuation equilibria in which none
of our players randomize.

Step 1: There does not exist a monotone continuation equilibrium in which 0 < ρ̃(b, g) ≤ σ̃(g, g) ≤
ρ̃(g, g) < 1. Suppose the statement is true. Then one can apply Lemma 7 to construct the following
contradiction

0 = ∆r(qπ , σ̃1, ρ̃1) > ∆r(qω , σ̃1, ρ̃1) = 0.

Step 2: There does not exist a monotone continuation equilibrium in which 0 = ρ̃(b, g) < σ̃(g, g) ≤
ρ̃(g, g) < 1. Suppose the statement is true. Successively applying Lemmas 8, 7 and 6 we can
construct then the following contradiction

0 = ∆s(p, (0, ρ̃(g, g))) = ∆r(p, (0, ρ̃(g, g)), ρ̃1) >

∆r(qω, (0, ρ̃(g, g)), ρ̃1) ≥ ∆r(qω, (0, σ̃(g, g)), ρ̃1) = 0.

Step 3: There does not exist a monotone continuation equilibrium in which 0 < ρ̃(b, g) ≤ σ̃(g, g) <
1 = ρ̃(g, g). Suppose the statement is true. This implies that

∆r(qπ , (0, σ̃(g, g)), (ρ̃(b, g), 1)) = 0,(21)

∆s(p, (ρ̃(b, g), 1)) = 0.(22)

Applying Lemmas 7 and 11 to equality (21), one has

0 = ∆r(qπ, σ̃1, ρ̃1) ≥ ∆r(
1
2
, σ̃1, ρ̃1) = ∆r(

1
2
, (0, 1), ρ̃1).(23)

Applying Lemmas 8 and 6 to equality (22), one has

0 = ∆s(p, ρ̃1) = ∆r(p, (ρ̃(b, g), 1), (ρ̃(b, g), 1)) ≤ ∆r(p, (0, 1), ρ̃1).(24)

Inequalities (23) and (24) cannot be simultaneously satisfied as we run into the following contradic-
tion (after applying Lemma 7)

0 ≥ ∆r(
1
2
, (0, 1), ρ̃1) > ∆r(p, (0, 1), ρ̃1) ≥ 0.

Step 4: There does not exist a monotone continuation equilibrium in which 0 = ρ̃(b, g) < σ̃(g, g) <
1 = ρ̃(g, g). This is easy to see: if ρ̃1 = (0, 1), from Lemmas 2, 6 and 8, follows that

0 < ∆r(p, (0, 0), (0, 1)) ≤ ∆r(p, (0, 1), ρ̃1) = ∆s(p, ρ̃1),

and thus the optimistic sender is not indifferent between investing and waiting.
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Step 5: There does not exist a monotone continuation equilibrium in which 0 < ρ̃(b, g) < σ̃(g, g) =
ρ̃(g, g) = 1. Consider a pessimistic receiver. There are two different possibilities: (i) ∆r(qπ , (0, 1), (1, 1)) ≥
0 or (ii) ∆r(qπ, (0, 1), (1, 1)) < 0. In case (i), a pessimistic receiver, knowing that by waiting she
will perfectly learn the sender’s type, prefers to wait and is thus unwilling to randomize. In case (ii)
from Lemmas 6 and 2 we know that

∆r(qπ, (0, 1), (0, 1)) ≥ ∆r(qπ, (0, 0), (0, 1)) > 0.

From Lemma 12 we know that there exists a unique ρ̃(b, g) such that

∆r(qπ, (0, 1), (ρ̃(b, g), 1)) = 0.

In this case c′ < 1
2 and thus ∀sub ∈ [−ε, sub), c ∈ (1 − p, 1

2 ). In particular this implies that
Pr(G|qπ ,invest) = 1

2 > c and thus that ρc = 1 (for the definition of ρc, see Lemma 12). From
Lemma 12 we know that W (qπ , (0, 1), (ρ(b, g), 1)) is strictly decreasing in ρ(b, g): this implies that
a pessimistic receiver’s best response is increasing in ρ(b, g): if ρ(b, g) > (<)ρ̃(b, g), player j strictly
prefers to invest (wait). It is well-known that this implies that the candidate continuation equilib-
rium in which 0 < ρ̃(b, g) < σ̃(g, g) = ρ̃(g, g) = 1 is unstable.

Step 6: There exists a unique monotone continuation equilibrium in which 0 = ρ̃(b, g) = σ̃(g, g) <
ρ̃(g, g) < 1. From Lemma 14, we know that ∆r(qω, (0, 0), (0, 0)) < 0 < ∆r(qω , (0, 0), (0, 1)). From
Chamley and Gale we know that there exists a unique ρ̃(g, g) ∈ (0, 1) such that ∆r(qω, (0, 0), (0, ρ̃(g, g))) =
0. As qπ < qω, from Lemma 7 follows that

0 = ∆r(qω , (0, 0), (0, ρ̃(g, g))) < ∆r(qπ , (0, 0), (0, ρ̃(g, g))),

and thus ρ̃(b, g) = 0. Similarly, using Lemmas 7, 6 and 8, one has

0 = ∆r(qω, (0, 0), (0, ρ̃(g, g))) < ∆r(p, (0, 0), ρ̃1) ≤ ∆r(p, ρ̃1, ρ̃1) = ∆s(p, ρ̃1),

and thus σ̃(g, g) = 0.

Step 7: A continuation equilibrium in which 0 = ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) or in which 0 = ρ̃(b, g) =
σ̃(g, g) < 1 = ρ̃(g, g) or in which 0 = ρ̃(b, g) < 1 = σ̃(g, g) = ρ̃(g, g) cannot exist because they
contradict A2. As qπ < 1

2 , this means that the receivers, upon receiving the message ŝi = g, still face
some uncertainty concerning the sender’s type. Depending on the values of our exogenous parameters
there are two possibilities: (i) ∆r(qπ, (0, 1), (1, 1)) > 0 and (ii) ∆r(qπ, (0, 1), (1, 1)) ≤ 0. In case (i)
a pessimistic receiver, knowing that by waiting she learns the sender’s type, strictly prefers to wait
and, hence, there does not exist a continuation equilibrium in which ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.
In case (ii) using Lemmma 7 we know that

∆r(qω, (0, 1), (1, 1)) < ∆r(qπ , (0, 1), (1, 1)) ≤ 0,

and thus ρ̃(b, g) = ρ̃(g, g) = 1. The optimistic sender, knowing that ρ̃(b, g) = ρ̃(g, g) = 1, strictly
prefers to invest as well and thus σ̃(g, g) = 1. Q.E.D.

Point 5: If 1 − p < c′ ≤ qπ = 1
2 < p < qω, ∃ two MSCE’s. In the first one σ̃(b, g) = ρ̃(b, g) =

σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). In the second one σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1.

Proof: In this proof q ∈ {qπ, qω}. Observe that point 5 is identical to point 4, except that qπ = 1
2 ,

which means that the receivers perfectly inferred the sender’s type out of her message. From
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the analysis in point 4, we know that there exists a stable monotone continuation equililbrium
in which σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = 0 and ρ̃(g, g) ∈ (0, 1). From Lemma 11 we know that
∆r( 1

2 , (0, 1), (1, 1)) = ∆r( 1
2 , (1, 1), (1, 1)) and that ∆r(qω, (0, 1), (1, 1)) = ∆r(qω, (1, 1), (1, 1)). Con-

sider a receiver who anticipates that σ̃(b, g) = ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1. In that case there
is no informational gain of waiting. As δ < 1, δW (q, (1, 1), (1, 1)) < q − c. Hence, there exists an
ε > 0 such that ∀sub ∈ [−ε, sub), δW (q, (1, 1), (1, 1)) < q − c′, and all receivers prefer to invest with
probability one. Similarly, the optimistic sender, knowing that ρ̃(b, g) = ρ̃(g, g) = 1, strictly prefers
to invest at time one. Hence, in case 5 there always exists a monotone continuation equilibrium in
which σ̃(b, g) = 0 and ρ̃(b, g) = σ̃(g, g) = ρ̃(g, g) = 1. Q.E.D.

Point 6: If qπ = 1 − p < c′ < qω = p, ∃ a unique MSCE in which σ̃(b, h1) = ρ̃(b, h1) = 0 and
σ̃(g, h1) = ρ̃(g, h1) ∈ (0, 1).

Proof: In this case qπ = 1 − p, which means that the receivers did not learn anything about
the sender’s type through her message. As qπ = 1 − p < c′, σ̃(b, h1) = ρ̃(b, h1) = 0. As ex-
plained in our paper, in this case we impose the restriction that σ̃(g, h1) = ρ̃(g, h1). But then
from Proposition 2 of Chamley and Gale follows that there exists a unique ρ̃(g, h1) such that
∆r(p, (0, ρ̃(g, h1)), (0, ρ̃(g, h1))) = ∆s(p, (0, ρ̃(g, h1))) = 0. Q.E.D.

Proof of Proposition 4

Proposition 4 only considers the case in which c′ = c, while we provide a proof ∀c′. In particular, we
prove that ∀c′ > 1

2 , there exists a unique MSPBE in which σ∗(b, h0) = σ∗(g, h0) = 1. This MSPBE
is supported by the out-of-equilibrium belief that if ŝi = b, the sender is a pessimist.

First we show that σ∗(g, h0) = 1. Suppose there exists a monotone PBE in which 0 ≤ σ∗(b, h0) ≤
σ∗(g, h0) < 1. σ∗(g, h0) can only be strictly lower than one if E(Ui|si = g, ŝi = b) ≥ E(Ui|si =
g, ŝi = g). As σ∗(b, h0) ≤ σ∗(g, h0), this means that if the optimistic sender “lies” and sends ŝi = b,
qω ≤ p. From points 1,2 and 6 above, we know that her payoff (net of the ε-reputational cost) can
then not exceed p − c′. Hence,

E(Ui|si = g, ŝi = b) = p − c′ − ε < E(Ui|si = g, ŝi = g) = max{p− c′, δW (·)},

a contradiction.
As σ∗(g, h0) = 1, the message ŝi = b can only come from a pessimistic sender (if σ∗(b, h0)

also equals one, then we assume that in the out-of-equilibrium event that ŝi = b, receivers believe
with probability one that the sender is a pessimist). Hence, Pr(G|sj = g, ŝi = b) = 1

2 . Suppose
ŝi = b. Then, qπ < 1 − p < qω = 1

2 < c′ < p and from point 2 of Proposition 1, we know that
ρ∗(b, b) = ρ∗(g, b) = 0. Suppose that ŝi = g. Then, 1 − p < qπ ≤ 1

2 < c′ < p ≤ qω and from points 3
and 6 above, we know that ρ∗(b, g) = 0 and that ρ∗(g, g) ∈ (0, 1). Hence,

E(Ui|si = b, ŝi = b) = 0,

E(Ui|si = b, ŝi = g) = δW (1 − p, (0, ρ∗(g, g))) − ε.

As ρ∗(g, g) > 0, this means that Pr(k = N − 1|si = b) > 0, in which case the sender invests
and gets a strictly positive payoff. Hence, δW (1 − p, (0, ρ∗(g, g))) > 0. As ε → 0, it follows that
E(Ui|si = b, ŝi = b) < E(Ui|si = b, ŝi = g), and thus σ∗(b, h0) = 1. Q.E.D.

Proof of Proposition 5
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Proposition 5 only considers the case in which c′ = c, while we provide a proof ∀c′. In particular,
we prove that ∀c′ ≤ 1

2 , our game is characterised by two MSPBE’s: a pooling and a separating one.
In the separating equilibrium, ρ∗(b, g) = ρ∗(g, g) = 1. The pooling equilibrium is supported by the
out-of-equilibrium belief that if ŝi = b, the sender is a pessimist.

From the proof of Proposition 2, we know that σ∗(g, h0) = 1. Below we show that there does not
exist a MSPBE in which 0 < σ∗(b, h0) < σ∗(g, h0) = 1 (Step 1). Next, we show that there exists a
pooling equilibrium in which σ∗(b, h0) = σ∗(g, h0) = 1 (Step 2).

Step 1: Suppose there exists a monotone PBE in which 0 < σ∗(b, h0) < σ∗(g, h0) = 1. σ∗(b, h0) can
only be ∈ (0, 1) if E(Ui|si = b, ŝi = b) = E(Ui|si = b, ŝi = g). If the pessimistic sender sends ŝi = b,
qπ < 1 − p < c′ ≤ qω = 1

2 < p, and from points 1 and 2 of Proposition 1, we know that ρ∗(b, b) = 0
and that ρ∗(g, b) ∈ [0, 1). If she sends ŝi = g, there are two possibilities: (a) 1−p < qπ < c′ < p < qω

and (b) 1 − p < c′ ≤ qπ < 1
2 < p < qω.

In case (a), from point 3 above we know that ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1). Hence,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))), and

E(Ui|si = b, ŝi = g) = δW (1 − p, (0, ρ∗(g, g))) − ε.

We now prove that ρ∗(g, g) > ρ∗(g, b). If ρ∗(g, b) = 0, it trivially follows that ρ∗(g, g) > ρ∗(g, b).
Therefore, suppose that ρ∗(g, b) > 0. In that case from points 1, 2 and 3 above we know that ρ∗(g, b)
and ρ∗(g, g) were “generated” by the following two equalities:

∆r(Pr(G|g, b), (0, 1), (0, ρ∗(g, b)) = 0,(25)

∆r(Pr(G|g, g), (0, 0), (0, ρ∗(g, g)) = 0.

As Pr(G|g, b) = 1
2 , from Lemma 11 we know that

∆r(Pr(G|g, b), (0, 0), (0, ρ∗(g, b)) = ∆r(Pr(G|g, b), (0, 1), (0, ρ∗(g, b)).

As Pr(G|g, b) < Pr(g, g), from Lemma 7 we know that

∆r(Pr(G|g, g), (0, 0), (0, ρ∗(g, b)) < ∆r(Pr(G|g, b), (0, 0), (0, ρ∗(g, b)) = 0.

Hence, for equality 25 to be respected it follows from Lemma 10 that ρ∗(g, g) > ρ∗(g, b). But then it
follows from Corollary 4 that δW (1 − p, (0, ρ∗(g, g))) > δW (1− p, (0, ρ∗(g, b))). As ε → 0, it follows
that in case (a) E(Ui|si = b, ŝi = b) < E(Ui|si = b, ŝi = g), a contradiction.

In case (b), from point 4 above we know that there always exists a MSCE in which ρ∗(b, g) = 0
and ρ∗(g, g) ∈ (0, 1). Depending on the values of the exogenous parameters there may also exist
another monotone continuation equilibrium in which ρ∗(b, g) = ρ∗(g, g) = 1. If players focus on the
continuation equilibrium in which ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1), using a reasoning identical to the
one of the paragraph above, we know that the pessimistic sender cannot be indifferent between the
two messages. Therefore, suppose players focus on the continuation equilibrium in which ρ∗(b, g) =
ρ∗(g, g) = 1 (provided this continuation equilibrium exists). In that case,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))), and

E(Ui|si = b, ŝi = g) = −ε.
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As δW (1 − p, (0, ρ∗(g, b))) ≥ 0 > −ε, in case (b) the sender cannot be indifferent between the two
messages.

Step 2: Suppose receivers update their posteriors under the assumption that σ∗(b, h0) = σ∗(g, h0) =
1. In the out-of-equilibrium event that ŝi = b, we assume that receivers believe that the sender is a
pessimist (with probability one). Therefore,

E(Ui|si = b, ŝi = b) = δW (1 − p, (0, ρ∗(g, b))).

If she sends ŝi = g, qπ = 1 − p < c < qω = p, and from point 6 of Proposition 1 we know that
ρ∗(b, g) = 0 and ρ∗(g, g) ∈ (0, 1). Using a reasoning identical to the one we outlined in step 1,
ρ∗(g, g) > ρ∗(g, b). From Corollary 4 (+ the fact that ε → 0) follows that the pessimistic sender
strictly prefers to “lie” and send ŝi = g. Q.E.D.

Proof of Lemma 4

Define ρ∗(g, b, sub) as the probability which ensures the following equality

1
2
− c + sub = δW (

1
2
, (0, 1), (0, ρ∗(g, b, sub))).

From the paper we know that

sub < δW (qω, (0, 0), (0, 1))− (qω − c).(26)

We now show that ∀sub ∈ [0, sub), ρ∗(g, b, sub) < 1. ρ∗(g, b, sub) = 1 only if

1
2
− c + sub ≥ δW (

1
2
, (0, 1), (0, 1)),

⇔ sub ≥ δW (
1
2
, (0, 1), (0, 1))− (

1
2
− c).(27)

Inequalities 26 and 27 cannot both be satisfied as we can use Lemmas 7 and 11 to construct the
following contradiction

sub ≥ δW (
1
2
, (0, 1), (0, 1)) − (

1
2
− c) > δW (qω, (0, 1), (0, 1)) − (qω − c)

= δW (qω, (0, 0), (0, 1))− (qω − c) > sub.

As ρ∗(g, b, sub) < 1 it trivially follows from Lemma 10 that ρ∗(g, b, sub) is strictly increasing in sub.
Q.E.D.

Proof of Lemma 5

The proof is similar to the one of Lemma 4. Define ρ∗(g, h1, sub) as the probability which ensures
the following equality

p − c + sub = δW (p, (0, ρ∗(g, h1, sub)), (0, ρ∗(g, h1, sub))).

∀sub ∈ [0, sub), ρ∗(g, h1, sub) < 1 as we otherwise run into the following contradiction

sub ≥ δW (p, (0, 1), (0, 1)) − (p − c) > δW (qω, (0, 1), (0, 1))− (qω − c)

= δW (qω, (0, 0), (0, 1))− (qω − c) > sub.

As ρ∗(g, h1, sub) is always strictly lower than one, it trivially follows from Lemma 10 that ρ∗(g, h1, sub)
is strictly increasing in sub. Q.E.D.
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Proof of Proposition 6

From Corollary 4, we know that δW (1−p, (0, ρ∗(·))) is strictly increasing in ρ∗(·). If qπ = (1−p)2

p2+(1−p)2 ,

this means that the pessimistic receivers learned that si = b. Hence, Pr(G|qπ ,wait) < c and ρc = 0

(for the definition of ρc, see Lemma 10). From Lemma 10 then follows that δW ( (1−p)2

p2+(1−p)2 , (0, 1), (0, ρ∗(g, b)))

is also strictly increasing in ρ∗(·). This insight - combined with our results summarised in Lemmas

4 and 5 - allows us to conclude that equations 7 and 9 are strictly increasing in sub. The remainder

of the proof can be found in the body of our paper. Q.E.D.
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