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1 Introduction

Many issues in finance, including asset pricing, portfolio allocation and risk management,

require the analysis of the variances and covariances of a large number of security returns.

Traditionally, these issues were considered in a static framework, but the emphasis has gradually

shifted to intertemporal models in which agents’ actions are based on the distribution of returns

conditional on their information set. Parallel to these theoretical developments, a large family of

statistical models for the time variation in conditional variances has grown up following Engle’s

(1982) work on arch processes, and numerous applications have already appeared. By and

large, though, most applied work in this area has been on univariate series, as the application of

these models in a multivariate context has been hampered by the sheer number of parameters

involved. In this sense, it is worth mentioning that even with the massive computational power

economists have available to them nowadays, the multivariate vec analogue of the ubiquitous

univariate garch(1,1) model has been hardly ever estimated for more than two series at a

time, often with many additional restrictions to ensure that the resulting conditional covariance

matrices are positive definite (see Bauwens, Laurent and Rombouts (2006) for a recent survey).

Given the strong commonality in the volatility movements of different financial assets, it is

not surprising that one of the most popular approaches to multivariate dynamic heteroskedastic-

ity employs the same idea as traditional factor analysis to obtain a parsimonious representation

of conditional second moments. That is, it is assumed that each of N observed variables is a lin-

ear combination of k (k ¿ N) common factors plus an idiosyncratic term, but with conditional

heteroskedasticity in the underlying variables. Such models are particularly appealing in finance,

as the concept of factors plays a fundamental role in major asset pricing theories, such as the

Arbitrage Pricing Theory of Ross (1976) (see King, Sentana and Wadhwani (1994)). In addition,

they automatically guarantee a positive definite conditional covariance matrix for the observed

series, once we ensure that the variances of common and specific factors are non-negative.

If the conditional variances of the latent variables are measurable functions of observed

variables, as in Engle, Ng and Rothschild (1990), maximum likelihood (ML) estimation is time-

consuming, but straightforward. However, one has to exercise care in dealing with conditional

variances that depend on past values of the common or idiosyncratic factors, as their true

values do not necessarily belong to the econometrician’s information set (see Harvey, Ruiz and

Sentana (1992)) (HRS). The original latent factor model with arch effects on the common

factors introduced by Diebold and Nerlove (1989) is the best known example. In such models,

the distribution and moments of the observed variables conditional on their past values alone

are unknown. To some degree, this has prompted interest in other parameter driven models
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(see Andersen (1994) or Shephard (1996)), in which the volatility of the latent factors evolves

according to discrete-time stochastic volatility processes (see Pitt and Shephard (1999), Aguilar

and West (2000), Meddahi and Renault (2004), Chib, Nardari and Shephard (2006) and Doz

and Renault (2006)), or discrete-state Markov chains (see Carter and Kohn (1994), Shephard

(1994), Kim and Nelson (1999), and the references therein).

Despite the attractive features of these alternative models, one should not necessarily aban-

don the use of garch processes in latent variable models, especially if one takes into account that

many macro and finance theories are often specified using conditional moments, although those

moments are defined with respect to the agents’ information set, not the econometrician’s. For

that reason, Fiorentini, Sentana and Shephard (2004) develop computationally feasible Markov

Chain Monte Carlo (MCMC) simulation algorithms that can be used to obtain exact likelihood-

based estimators of factor models with garch structures in the common factors, thereby avoiding

the inconsistencies associated with the Kalman filter approximations to the log-likelihood func-

tion proposed by Diebold and Nerlove (1989) and HRS. However, they maintain the assumption

of constant idiosyncratic variances, which seems at odds with the empirical evidence.

In this paper, we drop that assumption, and analyse alternative simulation-based estima-

tion methods belonging to the class of indirect estimation procedures proposed by Gallant and

Tauchen (1996), Gouriéroux, Monfort and Renault (1993) and Smith (1993). In fact, Gouriéroux,

Monfort and Renault (1993) explicitly considered conditionally heteroskedastic factor models as

one of their examples, and suggested a first order, discrete-state Markov chain as auxiliary model

for the case of arch(1) dynamics (see also Billio and Monfort (2003), who use non-parametric

auxiliary models when N is small). Our approach is more closely related to Dungey, Martin

and Pagan (2000), who also developed indirect estimators for such models. Specifically, they

considered two auxiliary parametric models: a “dual” var model for the levels and squares (but

not cross products) of the observed series (see also Zhumabekova and Dungey (2001)), and the

Kalman filter-based approximation to the log-likelihood function used by Diebold and Nerlove

(1989). Although Dungey, Martin and Pagan (2000) found in a limited Monte Carlo exercise

that the latter yields indirect estimators with substantially smaller root mean square errors than

the former, they did not use it in their empirical application. Another problem with their var

approach is that the number of parameters of the auxiliary model increases with the square of

the number of asset returns, which rules out its application to large models.

In this context, our methodological contribution is twofold. First, we show that the HRS

approximation is an ideal auxiliary model because (a) it has exactly the same number of pa-

rameters as the model of interest, and with the same meaning, and it is also easy to estimate;
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and (b) it spans the score of the model of interest in some important limiting cases, providing a

very good approximation to it in more general situations. Second, we derive an alternative joint

indirect estimator on the basis of the sequential estimators of the HRS approximation in Sentana

and Fiorentini (2001) (SF), which can be applied to situations with rather large cross-sectional

dimensions if we add the empirically plausible assumption that the dynamic variance coefficients

of the idiosyncratic terms are common. In addition, we conduct an empirically realistic Monte

Carlo experiment to assess the finite sample performance of our two proposed indirect estimators

relative to the approximate methods of HRS and SF. We also compare them to the Bayesian

estimators of Fiorentini, Sentana and Shephard (2004) in their restricted case.

Importantly, we explain how our proposed estimators can be easily adapted to handle any

state space model with garch disturbances, which includes many examples that have been

used in the empirical economic and finance literatures, such as structural time series models, or

regression models with time-varying coefficients (see Harvey (1989) and Kim and Nelson (1999)).

Finally, we apply our estimators to weekly excess returns on the 30 components of the

Dow Jones Industrial Average. We also gauge the importance of allowing for time-variation in

conditional correlations and idiosyncratic volatilities, as well as for non-normality of returns.

In addition, our empirical results shed some light on whether the increase in idiosyncratic risk

documented by Campbell et al (2001) continued after the dot-com bubble burst.

In section 2, we define the model of interest and the HRS approximation, and study their

relationship in detail. Then in section 3 we introduce our two indirect estimators, and explain

how they can be extended to deal with more general models. Our Monte Carlo evidence is

included in section 4. Finally, the results of the empirical application are presented in section 5,

and our conclusions in section 6. Proofs and auxiliary results can be found in appendices.

2 Conditionally Heteroskedastic Factor Models
2.1 Definition

Consider the following multivariate model:

xt = Bf t + ut, (1)µ
ft
ut

¶
|It−1 ∼ N

∙µ
0
0

¶
,

µ
∆t 0
0 Ψt

¶¸
, (2)

where xt is a N × 1 vector of observable random variables, ft is a k × 1 vector of unobserved
common factors, B is the N × k matrix of factor loadings, with N ≥ k (typically N À k) and

rank (B) = k, ut is a N × 1 vector of idiosyncratic noises, which are conditionally orthogonal to
ft, ∆t is a k × k diagonal positive definite (p.d.) matrix of time-varying factor variances, Ψt is

3
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a N ×N diagonal positive semidefinite (p.s.d.) matrix of time-varying idiosyncratic variances,

and It−1 is an information set that contains the values of xt and ft up to t − 1. Thus, the
distribution of xt conditional on It−1 is N(0,Σt), where Σt = B∆tB

0 +Ψt has the usual exact

factor structure. For this reason, we shall refer to the data generation process specified by

(1) and (2) as a multivariate conditionally heteroskedastic exact factor model. To simplify the

exposition, we maintain the normality assumption until the empirical application in section 5.

Such a formulation nests several models for asset returns widely used in the empirical finance

literatures on asset pricing, portfolio selection, hedging and risk management. Those applications

typically assume that ft and ut follow dynamic heteroskedastic processes, but differ in the

particular specification of their conditional variances δjt = V (fjt|It−1) (j = 1, . . . , k) and ψit =

V (uit|It−1) (i = 1, . . . ,N). For instance, Diebold and Nerlove (1989) parametrised the common
factors as univariate strong arch models, in the sense of Drost and Nijman (1993). For the

sake of concreteness, in this paper we study in detail the more realistic covariance stationary

garch(1,1) formulation:

δjt = ςj + φjf
2
jt−1 + ρjδjt−1, (j = 1, . . . , k) (3)

ψit = ς∗i + φ∗iu
2
it−1 + ρ∗iψit−1, (i = 1, . . . , N) (4)

with ςj = (1 − φj − ρj)δj , δj = E(δjt|%) = V (fjt|%), ς∗i = (1 − φ∗i − ρ∗i )ψi and ψi =

E(ψit|%) = V (uit|%), where E(.|%) denotes expected values taken with respect to model (1)-
(4) evaluated at the parameter values % = (b0,ψ0, δ0,ν0,ν∗)0, b = vec(B0) = (b01, . . . ,b0N)

0,

b0i = (bi1, . . . , bik), ψ = vecd(Ψ) = (ψ1, . . . , ψN)
0, δ = vecd(∆) = (δ1, . . . , δk)

0, ν = (ν01, . . . ,ν0k)
0

and ν∗ = (ν∗01 , . . . ,ν∗0N)
0, with ν0j = (φj , ρj) and ν

∗0
i = (φ∗i , ρ∗i ). To eliminate the usual scale

indeterminacy of the common factors, it is necessary to impose restrictions on either B or ∆.

For instance, we could impose either δj = 1,1 or bjj = 1 (j = 1, . . . , k). As a result, the total

number of parameters to estimate, d say, will be Nk +N + 2k + 2N .

A non-trivial advantage of the multivariate model (1)-(2) is that it automatically guarantees

a p.d. covariance matrix for xt when both ∆t and Ψt are p.s.d.2 In fact, the rank of Ψt is

related to the observability of the factors. If rank(Ψt) = N − k, then the factors would be

fully revealed by the xt variables, otherwise they are only partially revealed (see King, Sentana

and Wadhwani (1994)). In this second case, note that if we premultiply xt by ΥB0Ψ−1, where

Υ =
¡
B0Ψ−1B

¢−1, then we end up with
yt = ft +ΥB

0Ψ−1ut = ft + ²t, (5)
1See Fiorentini, Sentana and Shephard (2004) for symmetric scaling assumptions for integrated models.
2Sufficient conditions for the positivity of δjt in the garch(1,1) model (3) are ςj > 0, φj ≥ 0 and ρj ≥ 0 (see

Nelson and Cao (1992) for other higher order models), while the stationarity condition is φj + ρj < 1. The same
conditions apply to ς∗i , φ

∗
i and ρ∗i in (4).

4
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so that V (²t|%) = Υ. Therefore, the “signal-to-noise ratio” depends on B and Ψ through the

magnitude of Υ relative to the unconditional variance of the factors, ∆.

Finally, notice that if ft and ut are conditionally homoskedastic, the model in (1)-(2) reduces

to the standard (i.e. static) factor analysis model (see e.g. Lawley and Maxwell (1971)). But

even if ft or ut are conditionally heteroskedastic, provided that they are covariance stationary,

it also implies an unconditional exact k factor structure for xt. That is, the unconditional

covariance matrix, Σ, can be written as:

Σ = E(Σt|%) = B∆B0 +Ψ. (6)

This property makes the models considered here compatible with traditional factor analysis.

From the estimation point of view, it is important to distinguish between It−1 = {xt−1, ft−1,
xt−2, ft−2, . . .}, and the econometrician’s information set Xt−1 = {xt−1,xt−2, . . .}, which only
includes lagged values of xt. When the elements of ∆t are functions of lagged values of ft, as in

(3), or the elements of Ψt are functions of lagged values of ut, as in (4), the exact form of the

conditional density of xt given Xt−1 alone, p(xt|Xt−1;%) say, is generally unknown. As a result,

the log-likelihood function of the sample cannot be obtained explicitly (see HRS).

In the special case in which Ψt is time-invariant, we can employ the MCMC methods men-

tioned in the introduction, which allow the calculation of ML estimators via the simulated EM

algorithm, as well as a Bayesian approach. However, the assumption of constant idiosyncratic

variances implies that the time variation of Σt is of reduced rank (see Engle, Ng and Rothschild

(1990), and Engle and Susmel (1993) for a discussion in terms of the common features litera-

ture). Therefore, all static trading strategies whose weights are orthogonal to B, a Hilbert space

of dimension N − k, will have constant volatility, which does not seem empirically plausible.

2.2 HRS alternative

Consider now the closely related model proposed by HRS as a user-friendly version of (1)-(4):

xt = Cgt + vt (7)µ
gt
vt

¶
|It−1 ∼ N

∙µ
0
0

¶
,

µ
Λt 0
0 Γt

¶¸
(8)

where gt is an alternative k × 1 vector of unobserved common factors, C is the corresponding

N × k matrix of factor loadings, with N ≥ k and rank (C) = k, vt is another N × 1 vector of
idiosyncratic noises, which are conditionally orthogonal to gt, Λt is a k×k diagonal p.d. matrix

of time-varying factor variances, and Γt is the N × N diagonal p.s.d. matrix of time-varying

idiosyncratic variances. By analogy with (3) and (4), HRS assumed that

λjt(θ) = 'j + αj [g
2
jt−1|t−1(θ) + ωjjt−1|t−1(θ)] + βjλjt−1(θ), (9)

γit(θ) = '∗i + α∗i [v
2
it−1|t−1(θ) + ξiit−1|t−1(θ)] + β∗i γit−1(θ), (10)

5
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with 'j = (1 − αj − βj)λj , λj = E[λjt(θ)|θ] = V (gjt|θ), '∗i = (1 − α∗i − β∗i )γi and γi =

E[γit(θ)|θ] = V (vit|θ), where E(.|θ) represents expected values taken with respect to the model
(7)-(10) evaluated at the parameter values θ = (c0,γ0,λ0,π0,π∗0)0, c = vec(C0) = (c01, . . . , c0N)

0,

ci = (ci1, . . . , cik)
0, γ =vecd(Γ) = (γ1, . . . , γN)0, λ = (λ1, . . . , λk)0, π = (π01, . . . ,π0k)

0 and π∗ =

(π∗01 , . . . ,π∗0N)
0, with πj = (αj , βj)

0, π∗i = (α∗i , β
∗
i )
0, and where gjt|t(θ), vit|t(θ), ωjlt|t(θ) and

ξilt|t(θ) are typical elements of the outputs of the Kalman filter updating equations (see Appendix

B). Intuitively, the HRS trick is to replace the squares of the lag unobserved factors in (3) and

(4) with their conditional expectations given the observables.

Not surprisingly, models (1)-(4) and (7)-(10) share many important features, including that

the number of parameters to estimate after setting the scaling of gt will also be Nk+N +2k+

2N = d. Similarly, the positive definiteness of the conditional covariance of xt is guaranteed if

λjt(θ) ≥ 0 ∀j and γit(θ) ≥ 0 ∀i. But if we rewrite (9) as an infinite distributed lag, then it is
clear that 'j > 0, αj ≥ 0, βj ≥ 0 and αj + βj < 1 ensure positivity and stationarity of λjt(θ).

Likewise, '∗i > 0, α
∗
i ≥ 0, β∗i ≥ 0, and α∗i + β∗i < 1 achieve the same goals for γit(θ).

The crucial difference with the model discussed in the previous section is that the distribution

of xt conditional in Xt−1 is normal, with conditional covariance matrix CΛtC
0+Γt. As a result,

the log-likelihood function for a sample of size T based on the model (7)-(10) can be written in

closed form. However, we must use constrained optimisation algorithms to obtain the pseudo-ML

estimators θ̂T because of the inequality restrictions on γ and the garch parameters π and π∗

mentioned above. An additional complication that (9) shares with more standard garch(1,1)

formulations is that if αj = 0, then λjt = λj irrespective of βj , which means that ∂lt(θ)/∂βj = 0

for all t, so that βj cannot be identified. Similarly, β
∗
i cannot be identified either when α∗i = 0.

2.3 Relationship between the original model and the HRS alternative

Both processes yield exactly the same log-likelihood function when φj = αj = 0 ∀j and
φ∗i = α∗i = 0 ∀i, and when there are exactly as many Heywood cases as common factors, so that
the factors are fully revealed by the observable variables. In addition, Sentana (2004) shows that

gt|t(θ) converges in mean square to gt as N increases, which means that the two models become

arbitrarily close in practice for large enough N because in that case Υ will be very small.

The similarity between the two models is stronger than what the preceding discussion may

suggest, as the HRS model smoothly embeds (in the sense used by Gallant and Tauchen (1996)

in their Theorem 2) the original model in those circumstances:

Proposition 1 Let st(θ) = ∂lt(θ)/∂θ denote the log-likelihood score of the model for xt given
by (7)-(10). Similarly, let qt(%) = ∂p(xt|Xt−1;%)/∂% denote the exact log-likelihood score of the
model (1)-(4). Then st(θ) = qt(%) when θ = %, ν = π = 0 and ν∗ = π∗ = 0.

6
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In other words, the HRS model provides a first-order approximation to the original model

when δjt and ψit do not vary much. In contrast, Proposition 1 does not hold if we consider

instead the approximation put forward by Diebold and Nerlove (1989) and used by Dungey,

Martin and Pagan (2000), which omits the terms ωjjt−1|t−1(θ) and ξiit−1|t−1(θ) from (9) and

(10), respectively, even though its log-likelihood function at π = π∗ = 0 coincides.

We conjecture that an analogous result holds when the factors are fully revealed by the

observable variables. Unfortunately, we have been unable to obtain analytical expressions for

the elements of qt(%) corresponding to the zero idiosyncratic variances for the reasons explained

at the end of the proof of Proposition 1. Nevertheless, extensive numerical simulations suggest

that the scores are identical in that situation too.3

In other cases, the exact relationship between the two models can only be assessed by sim-

ulation. For practical purposes, the relevant comparison is between model (7)-(10) evaluated

at the pseudo-true ML values, θ(%0) say (see e.g. White (1982)), and model (1)-(4) evaluated

at the true values %0. To find out the (asymptotic) binding functions θ(%), we have simulated

400 samples of size 50,000 of the trivariate single factor model xit = bift + uit, (i = 1, 2, 3). We

assume that φ∗i = ρ∗i = 0 to concentrate on the dynamic variance parameters of the common

factor. Given that the effect of b and Ψ is mostly through the scalar υ = (b0Ψ−1b)−1, we set

b = (1, 1, 1)0, Ψ = ψI and δt = (1 − φ − ρ) + φf2t−1 + ρδt−1. To minimise experimental error,

we use the same underlying random numbers in all designs. For scaling purposes, we set c3 = 1

and unrestrict λ, the unconditional variance of gt. We used the NAG library E04JBL routine to

maximise the log-likelihood of the auxiliary model with respect to θ = (c1,c2, γ1, γ2, γ3, λ, α, β).

Although we combined ten different values of ψ with ten different pairs of (φ, ρ), we only

report the results of four selected configurations, namely: (.2,.6), (.4,.4), (.1,.85) and (.2,.75).

The first one corresponds roughly to the values obtained by estimating univariate garch models

on the basis of monthly data, while the third one to the values obtained with weekly observations.

The relevant response surfaces for φ and ρ are depicted in the two panels of Figure 1, respectively.

Our results suggest that α(%) is bigger than φ and β(%) lower than ρ in an attempt to match

the static and dynamic fourth moments generated by the HRS approximate model with the

true static and dynamic fourth moments of the process, and in this way, provide a better

approximation to the true but unknown V (xt|Xt−1;%0).4 At the same time, the asymptotic

3Specifically, we have numerically checked the information matrix equality-type efficiency condition
∂E[st(θ)|(]/∂(0 = V [st(θ)|(] when θ = ( and the factors are effectively observed, where E[st(θ)|(] and V [st(θ)|(]
refer to the first two moments of the pseudo-score with respect to the true distribution of the data.

4These biases contrast with those in Nijman and Sentana (1996). Given that yt is the sum of a strong garch
process, ft, whose squares follow an arma(1,1) process with ar coefficient φ + ρ and ma coefficient ρ, and an
independent white noise process, ηt, their results show that y2t will also follow an arma(1,1) process with the
same ar coefficient, but with an ma coefficient which is an explicit function of φ, ρ, and the unconditional

7
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bias [α(%) + β(%)] − (φ + ρ), although not exactly zero, is fairly small. However, this bias

can be substantial for other parameter configurations. The most important determinant of the

asymptotic biases α(%)−φ and β(%)−ρ is the noise to signal ratio, as measured by the variance
of �t relative to the variance of ft. However, the second most important determinant of the

biases is not the so-called persistence parameter, φ+ ρ, but rather, the unconditional coefficient

of variation of the unobserved conditional variance δjt, i.e.

κ2(%) =
V (δt|%)

δ2
=

2φ2

(1− 3φ2 − 2φρ− ρ2)
,

(cf. Jacquier, Polson and Rossi (1994)).

In order to assess how closely the HRS model approximates the model of interest, we have

generated realisations of the portfolio yt in (5) for the trivariate single factor models discussed

above, and compared the Gaussian distribution of yt given Yt−1 and %0 implied by the HRS model

with the true conditional distribution. The former is simply N{0, λt[θ(%0)]+ tr[Γ(%0)]/N2}. To
obtain the latter, we have simulated yt|Yt−1;%0 by drawing 100,000 random numbers from a

Gaussian distribution with 0 mean and variance δt + υ0, where δt had been previously drawn

from its distribution conditional on Yt−1 and %0 by using an exact MCMC sampler. Although

the resulting distribution will be necessarily leptokurtic because it is a scale mixture of normals,

the degree of leptokurtosis will depend on the variability of δt + υ0 given Yt−1 and %0, which

would be 0 if either δt is constant or υ0 = 0. The results of such a comparison clearly show that

the approximate Kalman filter provides extremely reliable results.

We have also computed the probability integral transform (PIT) with respect to the approx-

imate model N{0, λt[θ(%0)] + tr[Γ(%0)]/N2} of the aforementioned realisations of the equally
weighted portfolio yt. If the conditional distribution of yt given Yt−1 and %0 were indeed

Gaussian, such PIT sequences would be independently and identically distributed uniformly

between 0 and 1 (see e.g. Diebold, Gunther and Tay (1998)). We find that the maximum differ-

ence between the empirical cumulative distribution of 4,000,000-long PIT sequences and the 45◦

degree line are very small (<.005), with the approximate Kalman filter providing more reliable

results the closer the unconditional distribution of the latent factors is to the normal (φ = .2,

ρ = .6), and the larger the signal to noise ratio (υ0 = 1/9). Therefore, given that in many

empirical applications the signal to noise ratio is likely to be high, and the conditional variance

a fairly smooth process, we would expect the model proposed by HRS to provide a very accurate

approximation to the conditional distribution of the observations given their past values.

variances of ft and ηt. Given that the size of the ma coefficient of f
2
t unequivocally increases as a result of adding

uncorrelated noise, their results also imply that the weak garch parameter would become larger, while the weak
arch parameter would become smaller.

8



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

3 Indirect estimation
3.1 A natural indirect estimator

The impossibility of writing down the log-likelihood function of the model of interest in

closed-form, combined with the ease with which we can simulate from it, suggest that the

indirect estimation procedures of Gallant and Tauchen (1996), Gouriéroux, Monfort and Renault

(1993) and Smith (1993) should be ideally suited for our case (see also Gouriéroux and Monfort

(1996)). In this context, the approximate model proposed by HRS is an ideal candidate for

auxiliary model. On the one hand, it has exactly the same number of parameters as the model

of interest, and with the same meaning, and it is also easy to estimate, especially if one exploits

the fast and numerically reliable procedure for the computation of its score in Appendix B. On

the other hand, and unlike the Diebold and Nerlove (1989) extended Kalman filter considered

by Dungey, Martin and Pagan (2000), model (7)-(10) spans the score of the model of interest in

some important limiting cases (see Proposition 1), and it provides a rather good approximation

to it in more general situations, as the discussion at the end of section 2.3 shows.

Given that the HRS auxiliary model must be estimated subject to some inequality con-

straints, which are sometimes binding, we must use the constrained indirect estimation proce-

dures proposed in our earlier work (see Calzolari, Fiorentini and Sentana (2004)), which can

handle a mix of equality and inequality restrictions on θ. More specifically, the Generalised

Method of Moments (GMM) version of the inequality constrained indirect estimator of % is

%̃(P) = argmin
(
m0(%; θ̂, µ̂) ·P·m(%; θ̂, µ̂), (11)

m(%;θ,µ) = E [m̄T (θ,µ)|%] = E [ s̄T (θ)|%] +
£
∂h0(θ)/∂θ

¤
µ, (12)

where P is a p.d. weighting matrix of order d, s̄T (θ) = ∂l̄T (θ)/∂θ the average score of the

auxiliary model, µ the Kuhn-Tucker multipliers associated with the s constraints implicitly

characterised by the restrictions h(θ) ≥ 0 described in section 2.2, and ˆ indicates constrained
pseudo ML estimates. Since it is often impossible to obtain m(%;θ,µ) in closed form, we can

exploit the strict stationarity and ergodicity of xt to approximate arbitrarily well the required

expectations by their sample analogues in a single but very long realisation of the process

{xn(%), n = 1, . . . , T ·H}, as explained by Gallant and Tauchen (1996). In particular:

m(%;θ,µ) ' 1

T ·H
XT ·H

n=1
∂ ln f [xn(%)|Xn−1(%);θ]/∂θ +

£
∂h0(θ)/∂θ

¤
µ = mTH(%;θ,µ).

But since the term [∂h0(θ̂)/∂θ]µ̂ is fixed across simulations, the only thing we need to do is to
minimise with respect to % the distance between s̄T (θ̂), which is no longer zero if the some of

the constraints on θ̂ are binding, and the average score in the simulated samples.

9
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Another problem with the garch(1,1)-type formulation in (9) is that λjt = λj when αj = 0

irrespective of βj , which means that ∂lt(θ)/∂βj = 0 for all j and t. Similarly, γit = γi when

α∗i = 0 irrespective of β∗i , so ∂lt(θ)/∂β
∗
i = 0 for all i and t. However, if both α̂j = 0 ∀j and

α̂∗i = 0 ∀i, we know from Proposition 1 that the binding function is the identity matrix, and the

approximate and true scores coincide, which means that we can safely set %̃ = θ̂. In contrast,

if α̂j is strictly positive but very small, then βj will be very poorly estimated, which in turn

implies that there will be very little information in the auxiliary model about ρj . In those cases,

we re-estimate the auxiliary model subject to the additional restriction αj = αminj > 0, where

αminj is some small, but not too small, number. Finally, since we are assuming a covariance

stationary auxiliary model, then we will also impose the restriction αj+βj ≤ (αj+βj)
max ≤ 1.5

We follow an analogous procedure for α∗i and β∗i .

Given that the number of auxiliary model parameters coincides with the number of parame-

ters of the model of interest, d, % is exactly identified from the moments implied by the modified

first-order conditions of the auxiliary model. Therefore, when the inequality constraints on % do

not bind, the indirect estimators are numerically invariant (for large enough T ) to the choice of

weighting matrix, P. Nevertheless, since the inequality restrictions that apply to % occasionally

bind, the choice of P could matter. In those circumstances, we optimally choose P to be equal

to the inverse of the asymptotic covariance matrix of
√
Tm̄T (θ

0,µ0), which can be consistently

estimated by means of standard techniques.6

3.2 A numerically efficient indirect estimator for large models

The practical implementation of the indirect estimator described in the previous section

in large-scale multivariate models must overcome two problems. First, the estimation of the

pseudo-ML parameters θ can become a time consuming procedure when N is quite large because

the dimension of the auxiliary parameter space d grows linearly with N . Second, the indirect

estimation of % is even more time consuming because the dimension of the true parameter space

is exactly the same and the d moment functions m(%;θ,µ) must be computed by simulation.

For that reason, we propose an alternative joint indirect estimator of % in which we only

need to numerically minimise the GMM criterion function over a subset of this parameter vector.

The trick is to replace the HRS estimators of the auxiliary model parameters c, γ, π and π∗

by the sequential estimators proposed by SF, which are related to Engle and Mezrich (1996)

5After some Monte Carlo experimentation, we recommend αminj = .05 and (αj + βj)
max = .999. Importantly,

note that these choices do not impair the consistency of the constrained indirect estimators of (.
6By using this optimal weighting matrix we ensure that the objective function is evenly scaled across para-

meters, which improves the numerical properties of the optimisation algorithm even in the typical case in which
the inequality restrictions on ( do not bind. But if its condition number were too big, it would be convenient to
regularise the estimated asymptotic covariance matrix of

√
Tm̄T (θ

0,µ0) by adding a positive scalar matrix.

10
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variance targeting approach, but imposing the unconditional factor structure (6). Specifically,

SF estimate the Nk factor loadings and the N unconditional idiosyncratic variances by means

of standard factor analytic routines, for which the EM algorithm provides good initial values

(see Rubin and Thayer (1982)). Under certain regularity conditions, SF show that

(ḃ, ψ̇) = argmax
b,ψ

XT

t=1
p(xt|Xt−1;b,ψ,0,0) = argmax

c,γ

XT

t=1
lt(c,γ,0,0)

are asymptotically normally distributed around b0 and ψ0 when Ψ and B are identified from

unconditional moments. On this basis, they define sequential estimators of the auxiliary model

conditional variance parameters π and π∗ as (π̈, π̈∗) = argmaxπ,π∗ l̄T (c = ḃ;γ = ψ̇;π,π∗).

Assuming for ease of exposition that there are no binding constraints on either ψ̇, π̈ or π̈∗,

the relevant first-order conditions that characterise these sequential estimators of θ are:h
s̄0cT (ḃ, ψ̇,0,0) s̄0γT (ḃ, ψ̇,0,0) s̄0πT (ḃ, ψ̇, π̈, π̈

∗) s̄0π∗T (ḃ, ψ̇, π̈, π̈
∗)
i
= 00, (13)

where s̄cT (θ), s̄γT (θ), s̄πT (θ) and s̄π∗T (θ) are the average pseudo log-likelihood scores corre-

sponding to c, γ, π and π∗, respectively. Importantly, note that both π and π∗ must be set to

0 in the first two blocks of first-order conditions, and to π̈ and π̈∗ in the last two ones.

But the results in Appendix B of SF imply that we can compute the expected values of the

scores for c and γ without resorting to simulations as

mc(%; ḃ, ψ̇,0,0) = vec[(ḂḂ
0
+ Ψ̇)−1(BB0 +Ψ)(ḂḂ

0
+Ψ̇)

−1
Ḃ− (ḂḂ0 + Ψ̇)−1Ḃ],

mγ(%; ḃ, ψ̇,0,0) =
1

2
vecd[(ḂḂ

0
+ Ψ̇)−1(BB0 +Ψ)(ḂḂ

0
+Ψ̇)

−1 − (ḂḂ0 + Ψ̇)−1].

Then the consistency of ḃ and ψ̇ implies that"
mc(ḃ, ψ̇,ν,ν

∗
; ḃ, ψ̇,0,0)

mγ(ḃ, ψ̇,ν,ν
∗
; ḃ, ψ̇,0,0)

#
= 0

regardless of the values of the common and idiosyncratic garch parameters ν and ν∗ in the
true model, as long as these moments are well defined. As a result, the binding functions for

the factor loadings and unconditional idiosyncratic variances, which constitute a large fraction

of the parameters, are given by the identity mappings c(%) = b and γ(%) = ψ. This, together

with the common dimension of θ and %, implies that the joint indirect estimators of b and ψ

based on (13) will in fact coincide with ḃ and ψ̇. In this sense, note that although sct(ḃ, ψ̇,0,0)

and sγt(ḃ, ψ̇,0,0) are serially correlated, which will require the use of a computationally costly

HAC-estimator of the variance of their sample average, the fact that the auxiliary model exactly

identifies % renders the GMM weigthing matrix P irrelevant.

Thus, the only task left is to minimise with respect to ν and ν∗ any norm of"
mπTH(ḃ, ψ̇,ν,ν

∗; ḃ, ψ̇, π̈, π̈
∗
)

m∗πTH(ḃ, ψ̇,ν,ν
∗; ḃ, ψ̇, π̈, π̈

∗
)

#
.

11



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

As a result, the parameter space over which we must numerically conduct indirect estimation

has been reduced in (k+1)N dimensions, despite the fact that this second indirect estimator is

indeed minimising the GMM criterion (11) over the whole parameter vector %.

Although the dimension of ν does not depend on N , the number of parameters in ν∗ still

grows linearly withN when there are no restrictions on φ∗i and ρ∗i . However, given that estimated

garch coefficients typically lie in a fairly narrow range, it makes sense to deal with this incidental

parameter problem by imposing the cross-sectional homogeneity restriction φ∗i = φ∗ and ρ∗i = ρ∗

∀i by analogy with the dynamic panel data literature. Such an assumption will allow us to

consider models with large cross-sectional dimensions, as sections 4 and 5 illustrate.

3.3 Extensions to general state space models

Many of the issues discussed so far are relevant for any unobserved component time series

model with garch disturbances. Specifically, consider the following state-space model:

xt = B(zt;%)wt + e(zt;%) + ut,
wt = A(zt;%)wt−1 + d(zt;%) + ft,

¾
(14)

where wt is a vector of k unobserved state variables, zt are m weakly exogenous or lagged

dependent explanatory variables, A(zt;%) the k × k transition matrix of the state variables,

B(zt;%) an N × k matrix that links observed variables and unobserved states, d(zt;%) and

e(zt;%) are k and N regression functions, and the remaining elements are as in (1)-(4).

This formulation is very general (see Kim and Nelson (1999)), and covers many models that

have been extensively used in the empirical economic and finance literatures, such as dynamic

factor models (see Dungey, Martin and Pagan (2000)) or conditionally heteroskedastic generali-

sations of the structural time series models in Harvey (1989) (see Broto and Ruiz (2006)). It also

includes conditionally heteroskedastic versions of traditional time-varying regression coefficient

models, such as the garch in mean model put forward by Chou, Engle and Kane (1992), or the

US monetary growth function considered by Kim and Nelson (1999).

Given that HRS devoted their paper to the general state space model (14), it is straightfor-

ward to extend the indirect estimator considered in section 3.1 to this more general context by

using as auxiliary model the general conditionally Gaussian likelihood approximation that they

proposed. Analogously, it is also straightforward to extend the numerically efficient indirect es-

timator discussed in section 3.2 to model (14) because as HRS explain, any unknown parameters

in A(zt;%), B(zt;%), d(zt;%) and e(zt;%), together with the unconditional covariance matrices

of the disturbances ut and ft, will be estimated consistently if the standard linear Kalman filter

is applied to (14) ignoring the garch effects in those disturbances.

12



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

4 Monte Carlo Evidence

4.1 Designs and main results

In this section, we assess the finite sample performance of the two indirect estimators that

we have proposed in the previous section relative to the approximate ML methods of HRS and

SF on which they are based. We consider two cross-sectional sample sizes, N = 3 and N = 30,

the second of which matches the one in our empirical application.

We have used the NAG library G05DDF routine to generate 1,600 samples of 1,000 ob-

servations each (plus another 100 for initialisation) of single factor models. This sample size

corresponds roughly to 20 years of weekly data, as in our empirical analysis, or 4 years of daily

data. Since the performance of the different estimators depends on b and Ψ mostly through

υ = (b0Ψ−1b)−1, all the examples of the DGP in (1)-(4) considered are of the form:

xit = bift + uit (i = 1, . . . , N)

δt = (1− φ− ρ)δ + φf2t−1 + ρδt−1

ψit = ψi(1− φ∗i − ρ∗i ) + φ∗iu
2
it−1 + ρ∗iψit−1

with δ = 1, bi = 1, ψi = ψ, φ∗i = φ∗ and ρ∗i = ρ∗ ∀i. Therefore, the values of φ, ρ, φ∗, ρ∗

and ψ fully characterise all our Monte Carlo designs. In this version we only report results for

(φ, ρ) equal to (.1, .85) and (.2, .75) and exactly the same values for (φ∗, ρ∗). As for ψ, we

have set ψ = N/9 and N . In order to understand such values, note that if we regress the yt

in (5), which due to our balanced design is simply the equally weighted portfolio of the x0its,

on the latent factor ft, we would obtain theoretical R2 coefficients of .9, and .5, respectively,

regardless of the cross-sectional dimensionN . All in all, we have considered 4 different parameter

configurations. However, we use the same underlying pseudo-random numbers in all designs to

minimise experimental error.7

When we estimate the HRS auxiliary model (7)-(10) that corresponds to the DGP described

in the previous paragraph, we set cN = 1 for scaling purposes, and leave λ free. We also set

λ1 and γi1 to the unconditional variance of the respective factors to start up the recursions.

Finally, we impose the restriction α∗i = α∗ and β∗i = β∗ ∀i in estimation by analogy with
what we do in the empirical section. In order to guarantee the positivity and stationarity

restrictions, we first optimise the pseudo log-likelihood function in terms of some unrestricted

parameters θ†, where λ = (λ†)2, γi = (γ
†
i )
2 (i = 1, . . . ,N), α = 1̇ sin2(α†), β = (1̇− α) sin2(β†),

α∗ = 1̇ sin2(α∗†) and β∗ = (1̇−α∗) sin2(β∗†), where 1̇ = .999 acts as our effective upper bound on

7In their Monte Carlo experiments, Dungey, Martin and Pagan (2000) considered a single signal to noise ratio
and two conditional variance parameter configurations: φ = ρ = 0, and φ = .2 and ρ = .7.
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α+β and α∗+β∗. Then, we compute the score in terms of the 2N +4 original parameters θ =

(c1, . . . , cN−1, γ1, . . . , γN , λ, α, β, α∗, β
∗) using the analytical expressions derived in Appendix B

to avoid numerical errors, and introduce one multiplier for each of the first order conditions,

which take away any slack left.8 As we explained before, though, if the maximum of the

log-likelihood function happens at α = 0 and α∗ = 0, then there is no need to resort to indirect

estimation in view of Proposition 1, and we simply set %̃ = θ̂. If, on the other hand, the pseudo

ML estimate of α is strictly positive but less than αmin, then we re-estimate the auxiliary model

subject to the restriction α = αmin. We use an analogous procedure for α∗.

Since there are no closed-form expressions for the expected value of the modified score,

we compute them on the basis of single path simulations of length TH. In order to reduce

the estimation error, we choose H = 100, which implies that all the required moments have

been effectively computed on the basis of 100,000 simulated observations. An even larger value

of H should in theory slightly reduce the Monte Carlo variability of the indirect estimators

according to the relation (1+H−1), but at the cost of a significant increase in the computational

burden. Then, we obtain constrained indirect estimators of the 2N + 4 parameters of interest

in % = (b1, . . . , bN−1, ψ1, . . . , ψN , ς, φ, ρ, φ
∗, ρ∗) by numerically minimising the GMM criterion

function (11) in terms of some unrestricted parameters %†, with bi free for i < N , bN = 1,

ς = (ς†)2, ψi = (ψ
†
i )
2 (i = 1, . . . , N), φ = 1̈ sin2(φ†), ρ = (1̈− φ) sin2(ρ†), φ∗ = 1̈ sin2(φ∗†), and

ρ∗ = (1̈−φ∗) sin2(ρ∗†), where 1̈ = .999999, so as to ensure that δ ≥ 0, ψi ≥ 0 ∀i, φ, ρ, φ∗, ρ∗ ≥ 0,
φ+ρ ≤ 1 and φ∗+ρ∗ ≤ 1. In contrast, in the case of the alternative indirect estimator described
in section 3.2, the numerical minimisation takes place over φ†, ρ†, φ†∗ and ρ†∗ only, as we set

ḃi = ċi for i < N , ψ̇i = γi ∀i and ς = λ̇(1− φ− ρ).

Given that the auxiliary model fits the simulated data rather well, in the sense that the

relevant scores of the auxiliary model are essentially a vector martingale difference sequence, we

have estimated the optimal weighting matrix as the variance in the original data of the elements

of the modified score of the auxiliary model evaluated at the pseudo-ML parameter estimates.

Note that by including a multiplier in each first order condition, we automatically centre the

scores around their sample mean. Nevertheless, since we are in an exactly identified context,

the weighting matrix only really matters in those circumstances in which the parameters of the

structural model are inequality constrained, which does not happen very often.

Figures 2a-b display box-plots with the sampling distributions of the two GMM-based indi-

rect estimators of the structural parameters φ and ρ that we have proposed, together with the

8As explained in footnote 1 of Calzolari, Fiorentini and Sentana (2004), one should not conduct unrestricted
indirect estimation in terms of the unrestricted parameters θ† because the Jacobian of the transformation is
singular when θ is at the boundary of its parameter space, which violates the usual regularity conditions required
for the consistency of the indirect estimators.
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two pseudo-ML estimators on which they are based. The upper four distributions correspond

to N = 3, while the lower two to N = 30, where we only analyse the SF based estimators

because the HRS-based estimators become too costly for a full set of Monte Carlo experiments

(but not for our empirical application; see also footnote 10). The central boxes describe the

first and third quartiles of the sampling distributions, as well as their median. The maximum

length of the whiskers is one interquartile range. Finally, we also report the fraction of estimates

outside those whiskers to complement the information on the distributions tails. In this sense,

the pseudo ML estimators of the auxiliary parameters α and β reach their lower bounds fairly

frequently in some designs, especially when ψ is large. For instance, the estimated value of α

was less than αmin 8.63% of the time when φ = .1, ρ = .85 and ψ = N = 3. Thus, these results

clearly show that the constrained indirect estimation procedures that we have used are highly

relevant in practice.

The small sample behaviour of the HRS and SF estimators is very much in accordance with

what we have seen in section 2.3. When the signal to noise ratio is high (i.e. ψ = N/9) and

the unconditional coefficient of variation of the unobserved conditional variance is low (φ = .1,

ρ = .85), the biases in those two estimators are both very small and indistinguishable from each

other. In contrast, when the signal to noise ratio is low (i.e. ψ = N) and the unconditional

coefficient of variation of the unobserved conditional variance is high (φ = .2 and ρ = .75), their

biases become rather noticeable, with neither estimator dominating the other.

It is precisely in those cases that the systematic elimination of the biases achieved by our

two indirect estimators is more pronounced.9 At the same time, it seems that the variability

of the indirect estimators does not increase much with respect to the approximate pseudo-ML

ones, which suggests that we have accurately estimated the required expectations by simulating

100, 000 observations. When N = 3, the SF-based indirect estimators of φ and ρ often outper-

form the corresponding HRS-based estimators in terms of sampling variability but not in terms

of bias, although the differences are rather minor. In any case, the important message is that

both indirect estimators are consistent across all Monte Carlo designs. Finally, note that the

only effect of increasing N from 3 to 30 while maintaining the signal to noise ratio is to slightly

reduce the dispersion of the estimators.10

In contrast, the increase in N has dramatic effects on the sampling distributions of the

estimators of φ∗ and ρ∗, which are displayed in Figures 3a and 3b. Not surprisingly, the dispersion

of those distributions is greatly reduced when we effectively pool 30 series instead of 3. Another

9The finite sample bias might be reduced even further by using the implicit bias adjustment procedures
discussed by Gouriéroux, Renault and Touzi (2000) (see also Arvanitis and Demos (2006)).
10The results from the experimental designs with ψ = N/9 suggest that the small differences between HRS-based

and SF-based indirect estimators observed with N = 3 continue to hold with N = 30.
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differential result that we obtain in estimating the idiosyncratic dynamic variance parameters is

that the effect of the signal to noise ratio is the reverse of the one seen for φ and ρ. Intuitively, the

reason is that the roles of signal and noise are somewhat exchanged when we are considering the

estimation of the idiosyncratic variance parameters. Once again, though, the differences between

our two indirect estimators are very small, although the means of the HRS-based estimators of

φ∗ and ρ∗ tend to be slightly closer to the true values.

As for the parameters of the unconditional covariance matrix (i.e. factor loadings B and

idiosyncratic unconditional variances Ψ), our results, which we do not report for the sake of

brevity, indicate that the HRS estimators of the auxiliary model are very similar to the indirect

estimators based on them, even in a case in which the signal to noise ratio is low and the

unconditional coefficient of variation of the unobserved conditional variances are high. At the

same time, the SF estimators, which coincide with the corresponding indirect estimators, are

less efficient than the other two, which is in line with the Monte Carlo results reported by SF.

4.2 Efficiency comparisons

Proposition 1 indicates that our indirect estimators are fully efficient in the limiting case

of conditional homoskesdasticity, and the same is likely to be true when the factors are fully

revealed. There is another instance in which we can compute exact likelihood-based estimators,

although we cannot obtain analytical relative efficiency results. As we mentioned in section

2.1, it is possible to obtain either classical maximum likelihood estimators via a simulated

EM algorithm, or Bayesian estimators via MCMC in the special case in which idiosyncratic

variances are constant. Given that the simulated EM algorithm is very slow, in this section

we shall compare the posterior means of 100,000 simulated values of their Bayesian estimators

with our indirect ones for restricted versions of the designs in the previous subsection in which

φ∗ = ρ∗ = 0. To maintain the computations within reasonable limits, we only consider N = 3.

Once again, we reutilise the underlying random numbers to facilitate comparisons across designs.

Following Fiorentini, Sentana and Shephard (2004), we use independent beta priors on φ+ρ

and ρ/(φ + ρ) with parameters (6,1.25) and (2.5,1.25) for the φ0 + ρ0 = .95 designs in an

attempt to reflect the typical estimates obtained with weekly data. We also use a standard

inverted gamma prior for the unconditional variance of the common factor, δ, with mean 1 and

standard deviation 1/2. Finally, given that we normalise bN to 1, we use normal priors for the

remaining factor loadings with unit mean and variance ψi/1.6, and the usual marginal inverted

gamma priors for ψi with mean 1.6 and standard deviation 3.2. The results of our Monte Carlo

experiments are reported in Figure 4.

The first thing to note is that the sampling distributions of our indirect estimators are very
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similar to the corresponding sampling distributions reported in Figures 2a-b. If anything, the

presence of time-varying idiosyncratic variances leads to indirect estimators of φ and ρ with

slightly lower sampling variability. The second observation is that the Bayesian estimators ex-

hibit the usual trade-off between bias and variance: prior information leads to lower variation in

the estimated parameters, but unless the prior is centred around the true values, it introduces

a finite sample bias. In principle, the effect of a non-degenerate prior should vanish asymptot-

ically. However, our experience suggests that the strong dependence in higher order moments

introduced by a garch model implies that it takes many more than 1,000 observations for those

asymptotic results to provide a reliable guide to the finite sample distribution of these Bayesian

point estimators. The third conclusion is that the signal to noise ratio is also a decisive factor

for the behaviour of the Bayesian estimators. When the signal to noise is low, the sampling

information tends to be dominated by the prior, while the opposite happens when it is high.

It is precisely in those cases that the our indirect estimators have similar dispersions to the

Bayesian estimators, but without their biases.

In Figure 4 we also include the usual normal approximation to the finite sample distribution of

the estimators of the auxiliary model obtained with an asymptotic information matrix computed

by Monte Carlo integration with 100 million drawings under the assumption that the auxiliary

model is the correct one. By construction, those asymptotic approximations are centred around

the true value, but their dispersion gives us an alternative efficiency benchmark, which is the

more relevant the closer the auxiliary model is to the true one. These results confirm that the

efficiency loss of our indirect estimators is likely to be very small.

5 Empirical application to the Dow 30 components

5.1 Parameter estimates

In this section we estimate a conditionally heteroskedastic single factor model for the weekly

(arithmetic) excess returns on the thirty individual components of the Dow Jones Industrial

Average (DJIA) stock index as of November 21st, 2005 for the period July 10th, 1986 to Jan-

uary 19th, 2007 (1070 observations).11 To concentrate on the modelling of the conditional

covariance matrix, all the data were demeaned before estimation. Although we could allow the

11The historical evolution of the index composition is described in
http://djindexes.com/mdsidx/downloads/DJIA_Hist_Comp.pdf. The closing price of the last working day of
each week, adjusted for splits and dividends, has been obtained from http://finance.yahoo.com/q/hp?s=%5EDJI.
Given that the US stock markets closed for the rest of the week after the terrorist attacks on
September 11, 2001, we have taken September 17 (Monday) as the last day of the previous
week. As for the interest rate, we have used the (Friday) 1-month US $ Eurodeposit rate from
www.federalreserve.gov/releases/h15/data/Weekly_Friday_/H15_ED_M1.txt to avoid the abnormal move-
ments due to transitory liquidity squeezes occasionaly observed in the overnight and 7-day series.
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idiosyncratic conditional variance parameters to differ across series, it makes sense to impose

the cross-sectional homogeneity restriction φi = φ and ρi = ρ ∀i by analogy with the dynamic
panel data literature. Therefore, the total number of parameters is 2×30+4 = 64. To compute
the expected value of the scores by simulation, we use H = 100 throughout.

The static variance parameter estimates are reported in Table 1, while Table 2 reports the

ones corresponding to the conditional variances. An important fact that we can learn from Table

1 is that the signal to noise ratio is quite high. Specifically, the R2 of the theoretical regression

of yt in (5) on the underlying factor evaluated at those estimates is almost 95%. Consequently,

the degree of observability of the common factor is somewhat higher than in the Monte Carlo

designs studied in the previous section. As a result, it is not surprising that the relationship

between the auxiliary model estimators and the indirect estimators that can be observed from

Table 2 is essentially what our simulations predict. Specifically, in the case of the common factor

the indirect estimators of the ARCH coefficient φ are lower than the corresponding auxiliary

model estimators, while the opposite tends to be true for the garch parameter ρ. In contrast,

the adjustment is very small for the idiosyncratic variance parameter estimates φ∗ and ρ∗.

To learn more about the nature of the common factor, we regress the factor estimates on

the 30 individual stock returns. Although our model implies that the Kalman-filter based

factor representing portfolios would change from period to period, we can understand the results

reported in Table 3 as providing average weights for the HRS and SF basis portfolios. Given

the high correlation between their respective weights (99.5%), it is perhaps not surprising that

the correlation between those two basis portfolios is almost perfect. For comparison purposes,

we also include the analogous weights for the DJIA index, whose composition also changes over

time. Although the correlation in weights is only 26%, the correlation between the returns

to this index and our estimated factors is still rather high (96.2%), which confirms that the

cross-sectional dependence between the individual components of the Dow 30 is strong.

An even higher correlation is observed between our estimated factor and an equally weighted

portfolio of the thirty stocks (98.7%). In this sense, Figure 5a compares the conditional standard

deviation that our estimated multivariate model implies for such equally weighted portfolio with

the one obtained by estimating a univariate Gaussian garch(1,1) model for its excess returns.

In this respect, note that conditional variance of ι0rt/N implied by our single factor model is

(c0ι/N)2λt+tr(Γt)/N
2, where ι is a N×1 vector of ones. The correlation between both series is

again very high (98.4%), which is reassuring given that our estimation criterion is multivariate,

and not targeted to this particular portfolio. Importantly, the univariate parameter estimates

reported in the last column of Table 2 are very similar to our indirect estimators, which confirms
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once again that the latter are achieving their goal.

5.2 The importance of idiosyncratic risk

Unlike our multivariate model, however, a univariate garch(1,1) model cannot distinguish

common from idiosyncratic shocks. And although the equally weighted portfolio is reasonably

well diversified by construction, it is obviously not fully diversified. An important characteristic

of our model is that the conditional variances of the idiosyncratic factors vary over time. This

can also be seen from Figure 5a, which shows the time series evolution of (the square root of)

tr(Γt)/N
2. It is worth noticing that such a series more than doubled between the beginning of

1995 and the end of 2000, which is in line with the empirical results reported by Campbell et

al (2001). Since the bursting of the dot-com bubble, though, idiosyncratic risk seems to have

decreased again, reaching its 1994 values at the beginning of 2004.

Despite the fact that constant idiosyncratic variances imply that we could easily construct

portfolios with constant volatility, which does not seem empirically plausible, one could argue

that the variability in idiosyncratic risk that we observe in Figure 5a could be simply due to

estimation error. To assess the empirical relevance of such a claim we have estimated a restricted

version of our model in which we set both α∗ and β∗ to 0. The deterioration in fit is dramatic,

with the Gaussian pseudo-log likelihood function dropping by almost 1747 points!

It is also interesting to look at the temporal changes in the mix of common and idiosyncratic

risk for some specific stocks. Figures 5b and 5c present such a decomposition for GM and IBM.

In this sense, the first thing that one observes is that for these individual stocks, idiosyncratic

risk is quite important. Once again, though, its importance changes over time. For instance,

common risk was the dominant component in both cases around the October 87 crash, whose

effects were widespread. In contrast, our model suggests that the increase in volatility that GM

shares experienced in 2005, when the debt of the world’s biggest automaker was downgraded,

can be attributed almost entirely to firm-specific characteristics, such as poor sales and rampant

health care and pension costs. On the other hand, idiosyncratic volatility became very important

for IBM during the first half of the 1990’s, as this firm struggled to grasp the era of personal

computers before eventually giving up and selling that line of business to a Chinese company.

These results emphasise the need to allow for time-varying idiosyncratic variances.

5.3 The evolution of conditional correlations

The decomposition between common and idiosyncratic risks that we have just studied also

has very interesting implications for correlations. A stylised fact that has been noted before is

that periods when markets are increasingly correlated are also times when markets are volatile
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(see King, Sentana and Wadhwani (1994)). Since our empirical evidence suggests that the

unobservable factor leads to individual stocks move in the same direction, it is the case in our

model that periods when the volatility of the unobservable factor rises are also those when,

ceteris paribus, individual stocks appear to exhibit greater inter-correlation. To see this, note

that the conditional correlation coefficient between any two stocks is given by

ρ12t =
b1b2δtp

b21δt + ψ1t
p
b22δt + ψ2t

.

Hence, ρ12t will be increasing in δt if b1b2 > 0 and decreasing in ψ1t and ψ1t.

Figure 5d presents the evolution of the GM-IBM conditional correlation. As we have just

seen, an increase in the volatility of the common factor will be associated with an increase in their

correlation. This is consistent with the observed rise in both volatilities and interdependences

around the 1987 crash. In contrast, an increase in the volatility of one of the idiosyncratic factors

will be associated with a decrease in the correlation. Therefore, it is not entirely surprising that

the correlation between these two stocks reached its minimum values precisely in the two periods

in which either IBM idiosyncratic risks, or GM idiosyncratic risks were highest.

5.4 Non-normality of returns

Nowadays it is widely accepted that the distribution of stock returns has fat tails even after

controlling for time-variation in volatilities and correlations. This fact is confirmed in our dataset

by the Fiorentini, Sentana and Calzolari (2003) test of multivariate normal versus multivariate

t innovations applied to the HRS estimates of the auxiliary model, whose (information matrix)

t-ratio version takes the value 111.95. For that reason, we have also obtained indirect estimators

of all the model parameters under the assumption that the joint distribution of common and

idiosyncratic factors given their past values is multivariate t with the same mean and covariance

matrix as before, but degrees of freedom given by the reciprocal of an additional parameter η,

with 0 ≤ η < 1
2 . Specifically, we have considered two different joint indirect estimators of %

and η based on the same HRS and SF estimators of the auxiliary model parameters θ that we

have been considering so far. To identify the tail thickness parameter η, we have added as an

extra influence function the modified score of the t-based log-likelihood function of the auxiliary

model evaluated under normality, which is given by

1

T

TX
t=1

∙
ς2t (θ)

4
− (N + 2)

2
ςt(θ) +

N(N + 2)

4

¸
+ µ,

where

ςt(θ) = x
0
t[CΛt(θ)C

0 + Γt(θ)]−1xt
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and µ is the corresponding Kuhn-Tucker multiplier. Therefore, we are considering the equality

restricted indirect estimators studied in Calzolari, Fiorentini and Sentana (2004). In this sense,

note that since the consistency of the SF estimators of b and ψ does not depend on the normality

assumption, the results discussed in section 3.2 continue to apply as long as the fourth moments

of the innovations remain bounded, which happens whenever η < 1
4 .

In order to obtain the expected value of the modified score of the auxiliary model, we generate

the standardised multivariate t random numbers as
√
1− 2η/√η times the ratio of a standard

multivariate normal to the square root of an independent gamma variate with parameters 1/2η

and 2. An important point to bear in mind in this context is that the usual routines for simulating

gamma random variables involve some degree of rejection, which unfortunately can change for

different values of η. For that reason, we use the slower but smooth inversion method based on

the NAG G01FFF gamma quantile function so that we can keep the underlying uniform variates

fixed across simulations. The results reported in the last columns of Tables 1 and 2 indicate

that the degrees of freedom of the multivariate student t are estimated as being slightly above

10. The remaining parameters remain by and large unchanged.

6 Conclusions

In this paper, we propose two indirect estimators for conditionally heteroskedastic factor

models in which the conditional variances of both common and idiosyncratic factors are contin-

uous functions of their own past values, and as such, unobserved by the econometrician.

Our first estimator uses the Kalman filter-based approximation proposed by Harvey, Ruiz

and Sentana (1992) with analytical derivatives as auxiliary model. We show the superiority of

our choice over other alternatives previously considered in the literature on the grounds that

(a) it has exactly the same number of parameters as the model of interest, and with the same

meaning, and it is also easy to estimate; and (b) it spans the score of the model of interest in

some important limiting cases, providing a very accurate approximation to it in more general

situations. To tackle the inequality restrictions on the auxiliary model parameters, we employ

the constrained indirect estimation procedures introduced in our earlier work.

Our second joint indirect estimator of the parameters of interest is based on sequential esti-

mators of the HRS approximation, which we show can be successfully applied to situations in

which the cross-sectional dimension is rather large if we make the empirically plausible assump-

tion that the dynamic variance coefficients of the idiosyncratic terms are common across series,

or at least across a limited number of homogenous groups of series.

We compare the finite sample performance of our proposed indirect estimators relative to

21



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

the inconsistent HRS and SF estimators on which they are based by means of Monte Carlo

methods in empirically realistic situations involving up to 30 series. Our results suggest that the

estimators that we propose consistently estimate the parameters of the conditional variances of

the latent factors, eliminating the biases of the approximate ML methods without simultaneously

increasing their sampling variability. However, it should also be noted that the performance of

the pseudo ML estimators is itself rather good, except when the signal to noise ratio is low, or

the unconditional coefficient of variation of the volatility of the factors is high.

In addition, we assess the efficiency of our estimators relative to the Bayesian estimators

proposed by Fiorentini, Sentana and Shephard (2004) under the assumption of constant idiosyn-

cratic variances. Interestingly, we find that their estimators exhibit the usual trade-off between

bias and variance: prior information leads to lower variation in the estimated parameters, but

unless the prior is centred around the true values, it introduces a finite sample bias. We also

find that when the sample information dominates the prior, our indirect estimators have similar

dispersions to the Bayesian estimators, but without their biases.

Importantly, we also explain how both our proposed estimators can be easily adapted to

handle any state space model with garch disturbances, which includes many examples that

have been used in the empirical economic and finance literatures, such as structural time series

models, or regression models with time-varying coefficients.

Finally, we apply our estimators to weekly excess returns on the thirty individual components

of the Dow Jones Industrial Average over the last two decades. Our empirical results confirm

that conditional correlations tend to increase in turbulent market episodes, while the opposite

happens when there are important firm-specific news. In addition, we document that the strate-

gic changes that IBM underwent during the 90’s, and the more recent financial problems that

affected GM, clearly left their mark in the temporal evolution of their idiosyncratic volatilities.

On the other hand, our results also suggest that the increase in idiosyncratic risk documented

by Campbell et al (2001) was partly reversed after the dot-com bubble burst.

Our empirical results also confirm the need to consider leptokurtic distributions for financial

returns even after controlling for volatility clustering effects. In this sense, we explain in detail

how to modify our estimators to handle a multivariate t instead of a multivariate normal with-

out re-estimating the HRS auxiliary model by adding the Lagrange multiplier associated with

the nesting restriction. In this sense, an interesting avenue for research would be to develop

analogous procedures for more flexible, possibly asymmetric distributions.
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Appendix

A Proof of Proposition 1

For the sake of brevity, the proof will be developed for the following univariate model:

yt = ft + �t,µ
ft
�t

¶
|It−1 ∼ N

½µ
0
0

¶
,

∙
1 + φ(f2t−1 − 1) 0

0 υ

¸¾
,

where φ ≥ 0, υ ≥ 0. Nevertheless, it can be tediously extended to cover the general case.
Let p(yt|Yt−1;() denote the conditional density of yt given Yt−1 = {yt−1, yt−2, . . .} and the

parameters % = (υ, φ)0. The log-likelihood function of a sample of size T on yt, y = (y1, . . . , yT )0

cannot be written in closed-form except when φ = 0 and/or υ = 0. In particular, when φ = 0,

we just have the log-likelihood function of an i.i.d. N(0, 1+υ) process, while when υ = 0, we will

have the log-likelihood function of a univariate arch(1) model with unit unconditional variance.

In contrast, the joint log-likelihood function of y and the latent factors f = (f1, . . . , fT )
0

can always be trivially written as the sum of the marginal log-likelihood function of f and the
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conditional log-likelihood of y given f , where (ignoring initial conditions)

ln p(y|f ;%) = −T
2
ln 2π − T

2
lnυ − 1

2

TX
t=1

(yt − ft)
2

υ
, (A1)

and

ln(f |%) = −T
2
ln 2π − 1

2

TX
t=1

½
ln[1 + φ(f2t−1 − 1)] +

f2t
1 + φ(f2t−1 − 1)

¾
. (A2)

Let

q̄T (%) =
1

T

TX
t=1

q(yt|Yt−1;%)

denote the sample average of the score of the marginal log-likelihood function of y, where

q(yt|Yt−1;%) =∂ ln p(yt|Yt−1;%)
∂%

represents the contribution to the score function from observation t. Although q(yt|Yt−1;%)
cannot generally be obtained in closed form, the well-known Kullback inequality implies that

E

∙
∂ ln p(f |y;%)

∂%

¯̄̄̄
y;%

¸
= 0.

As a result, q̄T (%) can be obtained as the expected value given y and % of the sample average of

the unobservable scores corresponding to ln p(y|f ;%) and ln p(f |%). Specifically, assuming that
υ > 0, this yields

q̄υT (%) =
1

2T

1

υ

TX
t=1

E

∙
(yt − ft)

2

υ
− 1
¯̄̄̄
y;%

¸
,

and

q̄φT (%) =
1

2T

TX
t=1

E

½
f2t−1 − 1

1 + φ(f2t−1 − 1)
∙

f2t
1 + φ(f2t−1 − 1)

− 1
¸¯̄̄̄
y;%

¾
.

Then, we can use the MCMC procedures proposed by Fiorentini, Sentana and Shephard

(2004), which draw samples of f given y and %, to compute these expected values by simulation.

However, it is straightforward to prove that when φ = 0

q̄υT (υ, φ=0) =
1

2T

1

(1 + υ)

TX
t=1

µ
y2t
1 + υ

− 1
¶

and

q̄φT (υ, φ=0) =
1

2T

1

(1 + υ)2

TX
t=1

µ
y2t−1
1 + υ

− 1
¶µ

y2t
1 + υ

− 1
¶
,

because

ft|y; υ, φ=0 ∼ i.i.d. N

µ
yt
1 + υ

,
υ

1 + υ

¶
.

Consider now the following HRS-style auxiliary model

yt = gt + ζt,
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µ
gt
ζt

¶
|It−1 ∼ N

(µ
0
0

¶
,

"
1 + α

h
g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1

i
0

0 ϕ

#)
,

gt|t(θ) =
1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1]

1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1] + ϕ
· yt,

ωt|t(θ) =
1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1]

1 + α[g2t−1|t−1(θ) + ωt−1|t−1(θ)− 1] + ϕ
· ϕ,

and α ≥ 0, ϕ ≥ 0. Since this model is a rather special case of (7)-(10) we can use the expressions
in Appendix B to compute its score. Tedious but straightforward algebra then shows that

s̄ϕT (ϕ,α=0) =
1

2T

1

(1 + ϕ)

TX
t=1

µ
y2t
1 + ϕ

− 1
¶
,

and

s̄αT (ϕ,α=0) =
1

2T

1

(1 + ϕ)2

TX
t=1

µ
y2t−1
1 + ϕ

− 1
¶µ

y2t
1 + ϕ

− 1
¶
,

which confirms that the pseudo log-likelihood score of the auxiliary model evaluated at α=0

coincides with the score of the true model evaluated at φ=0 for ϕ = υ. Hence, the HRS

auxiliary model smoothly embeds the true model at α = φ = 0 and ϕ = υ. As a result, Theorem

2 in Gallant and Tauchen (1996) implies that indirect estimation will be as efficient as maximum

likelihood in that case.

In this sense, the inclusion of the term ωt−1|t−1(θ) in the conditional variance specification

of the HRS auxiliary model is crucial for the result, for otherwise the average score with respect

to α at α = 0 will be equal to

1

2T

1

(1 + ϕ)

TX
t=1

∙
y2t−1

(1 + ϕ)2
− 1
¸µ

y2t
1 + ϕ

− 1
¶
,

which no longer coincides with q̄φT (υ, φ=0). ¤
A similar argument can be used to show that

s̄αT (ϕ=0, α=φ) = q̄φT (υ=0, φ),

which is not very surprising given that

ln p(yt|Yt−1;υ = 0, φ) = lt(ϕ = 0, α = φ)

for every possible value of φ.

Unfortunately, it is not possible to obtain closed-form expressions for

q̄υT (υ=0, φ) = lim
υ→0 q̄υT (%) = lim

υ→0
1

2T

1

υ

TX
t=1

E

∙
(yt − ft)

2

υ
− 1
¯̄̄̄
y; υ, φ

¸
except when φ = 0, so we cannot prove in this way whether or not

s̄ϕT (ϕ=0, α=φ) = q̄υT (υ=0, φ).
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Table 1

Estimates of static variance parameters

Factor loadings Idiosyncratic variances
SF HRS HRS HRS SF HRS HRS HRS

Company Aux IE (G) IE (t) Aux IE (G) IE (t)
AA 1.76 1.91 1.92 1.90 14.1 15.9 16.3 16.0
AIG 1.85 1.98 1.98 1.96 7.4 8.2 7.9 8.5
AXP 2.18 2.24 2.24 2.23 8.5 6.4 7.0 6.8
BA 1.55 1.61 1.63 1.60 11.9 11.5 12.2 12.0
C 2.28 2.46 2.48 2.44 11.8 13.1 13.5 14.0
CAT 1.70 1.83 1.85 1.81 14.1 20.0 18.8 19.7
DD 1.72 1.81 1.82 1.79 8.2 7.3 7.5 7.8
DIS 1.73 1.89 1.89 1.88 10.6 10.4 10.0 9.8
GE 1.90 1.94 1.94 1.92 4.8 4.5 4.3 4.6
GM 1.58 1.63 1.63 1.61 13.9 16.6 18.3 18.3
HD 2.05 2.18 2.18 2.16 14.1 13.0 13.2 13.3
HON 1.76 1.90 1.91 1.90 12.0 9.8 9.5 9.6
HPQ 1.86 2.02 2.03 2.01 21.4 25.0 23.7 25.2
IBM 1.29 1.38 1.38 1.38 12.1 9.3 9.8 10.0
INTC 2.04 2.26 2.25 2.25 25.1 28.0 26.0 27.4
JNJ 1.28 1.41 1.41 1.40 7.7 7.9 8.4 8.4
JPM 2.20 2.19 2.20 2.18 14.1 8.5 9.5 9.4
KO 1.37 1.52 1.53 1.51 8.4 7.5 7.5 7.5
MCD 1.24 1.32 1.33 1.32 9.0 10.2 10.4 10.4
MMM 1.45 1.55 1.56 1.55 5.9 6.3 6.7 6.7
MO 1.12 1.37 1.38 1.35 13.0 12.6 13.8 14.2
MRK 1.35 1.53 1.54 1.52 11.0 14.8 15.2 15.9
MSFT 1.76 1.83 1.83 1.83 19.8 18.9 15.6 16.3
PFE 1.44 1.53 1.53 1.53 11.0 13.8 17.2 16.9
PG 1.25 1.34 1.34 1.32 8.8 7.7 7.9 7.8
T 1.16 1.27 1.28 1.26 10.7 8.4 9.1 8.9
UTX 1.84 1.82 1.82 1.80 7.6 8.9 8.8 9.2
VZ 1.05 1.21 1.21 1.20 9.4 8.4 8.9 8.8
WMT 1.78 1.88 1.89 1.87 10.0 9.7 9.7 9.9
XOM 1 1 1 1 5.9 6.8 6.8 7.1

δ 1.82 3.35 1.97 2.15

Notes: SF refers to the Sentana - Fiorentini (2001) sequential estimators, while HRS Aux

denotes the estimator that uses the Harvey, Ruiz and Sentana (1992) approximation to the log-

likelihood function. In contrast, HRS IE represents the indirect estimators based on the score

of the HRS Aux estimator, with G and t referring to Gaussian and multivariate t innovations,

respectively. The expectations of the scores required for the indirect estimators use H = 100.
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Table 2

Estimates of dynamic variance parameters

SF SF SF HRS HRS HRS EW
Parameter Aux IE (G) IE (t) Aux IE(G) IE (t)

φ .110 .107 .103 .121 .113 .111 .110
ρ .875 .877 .881 .873 .874 .878 .865
φ∗ .045 .044 .045 .046 .046 .046
ρ∗ .944 .944 .944 .942 .942 .942
η .098 .097

Notes: HRS Aux denotes the estimator that uses the Harvey, Ruiz and Sentana (1992)

approximation to the log-likelihood function, while SF Aux refers to the Sentana - Fiorentini

(2001) sequential estimator of the same model. In contrast, SF IE and HRS IE represent

the indirect estimators based on those two estimators, with G and t referring to Gaussian

and multivariate t innovations, respectively. Finally, EW corresponds to the equally weighted

portfolio of the 30 individual stocks that make the DJIA index. The expectations of the scores

required for the indirect estimators use H = 100.
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Table 3

Unobservable factor score and DJIA weights (%)

Company SF HRS DJIA
AA 2.17 2.14 4.63
AIG 6.58 6.51 2.06
AXP 5.20 5.29 4.41
BA 2.54 2.47 3.04
C 3.82 3.80 1.84

CAT 1.80 1.61 3.61
DD 4.02 4.10 4.94
DIS 3.79 3.91 2.79
GE 9.52 9.18 5.24
GM 2.49 2.31 4.66
HD 3.21 3.21 2.27

HON 2.54 2.75 3.53
HPQ 1.74 1.67 2.42
IBM 2.23 2.33 5.77
INTC 2.02 2.05 1.91
JNJ 3.63 3.79 2.94
JPM 3.43 3.53 2.06
KO 3.08 3.35 2.41

MCD 3.08 3.03 2.10
MMM 4.59 4.50 6.13
MO 1.46 1.77 3.80
MRK 1.84 1.80 3.03
MSFT 1.66 1.64 1.30
PFE 3.24 3.06 0.32
PG 2.97 3.08 4.24
T 1.88 2.04 2.73

UTX 5.16 4.72 5.75
VZ 2.34 2.64 0.69

WMT 4.15 4.20 2.42
XOM 3.83 3.53 6.95

Notes: HRS Aux denotes the estimator that uses the Harvey, Ruiz and Sentana (1992)

approximation to the log-likelihood function, while SF Aux refers to the Sentana - Fiorentini

(2001) sequential estimator of the same model. Finally, DJIA corresponds to the Dow 30 index.
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FIGURE 1: Asymptotic biases in HRS estimators of conditional variance parameters
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Fig. 2A: Monte Carlo distributions of estimators of conditional variance parameters for common factors.
 
                                                          b

i
 = 1; φ = φ* = 0.1; ρ = ρ* = 0.85.

 

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum length of t he whiskers is one
interquartile range.  We also report the fraction of replications outside those whiskers.  The upper four distributions corre spond to N=3, while the
lower two to N=30. IE means indirect estimators, and Aux estimators of the auxiliary model. HRS denotes estimators based on t he Harvey, Ruiz
and Sentana (1992) approximation to the log−likelihood, while SF refers to the sequential version in Sentana & Fiorentini (2001).
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Fig. 2B: Monte Carlo distributions of estimators of conditional variance parameters for common factors.
 
                                                          b

i
 = 1; φ = φ* = 0.2; ρ = ρ* = 0.75.

 

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum length of t he whiskers is one
interquartile range.  We also report the fraction of replications outside those whiskers.  The upper four distributions corre spond to N=3, while the
lower two to N=30. IE means indirect estimators, and Aux estimators of the auxiliary model. HRS denotes estimators based on t he Harvey, Ruiz
and Sentana (1992) approximation to the log−likelihood, while SF refers to the sequential version in Sentana & Fiorentini (2001).
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Fig. 3A: Monte Carlo distributions of estimators of conditional variance parameters for idiosyncratic factors.
 
                                                            b

i
 = 1; φ = φ* = 0.1; ρ = ρ* = 0.85.

 

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum length of t he whiskers is one
interquartile range.  We also report the fraction of replications outside those whiskers.  The upper four distributions corre spond to N=3, while the
lower two to N=30. IE means indirect estimators, and Aux estimators of the auxiliary model. HRS denotes estimators based on t he Harvey, Ruiz
and Sentana (1992) approximation to the log−likelihood, while SF refers to the sequential version in Sentana & Fiorentini (2001).
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Fig. 3B: Monte Carlo distributions of estimators of conditional variance parameters for idiosyncratic factors.
 
                                                            b

i
 = 1; φ = φ* = 0.2; ρ = ρ* = 0.75.

 

The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum length of t he whiskers is one
interquartile range.  We also report the fraction of replications outside those whiskers.  The upper four distributions corre spond to N=3, while the
lower two to N=30. IE means indirect estimators, and Aux estimators of the auxiliary model. HRS denotes estimators based on t he Harvey, Ruiz
and Sentana (1992) approximation to the log−likelihood, while SF refers to the sequential version in Sentana & Fiorentini (2001).
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Fig. 4: Monte Carlo distributions of estimators of conditional variance parameters for common factors.
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The central boxes describe the 1st and 3rd quartiles of the sampling distributions, and their median. The maximum length of t he whiskers is one inter−
quartile range. We also report the fraction of replications outside those whiskers. IE means indirect estimators based on eit her the Harvey, Ruiz and
Sentana (1992) approximation to the log−likelihood (HRS), or the sequential version in Sentana & Fiorentini (2001) (SF).  Asy refers to distributions
based on the asymptotic approximation, while Bay denotes the Bayesian MCMC estimators in Fiorentini, Sentana and Shephard (2004).
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Figure 5a: Conditional Standard Deviation of Equally Weighted Portfolio
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Figure 5b: Decomposition of the Conditional Standard Deviation of GM Stock Returns
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Figure 5c: Decomposition of the Conditional Standard Deviation of IBM Stock Returns
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Figure 5d: Conditional Correlation between GM and IBM Stock Returns
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B The score of the HRS approximate likelihood function

The log-likelihood function of the HRS model that we consider is given by l̄T (θ) = T−1
PT

t=1 lt(θ),

where

lt(θ) =− N

2
log 2π − 1

2
log
¯̄
CΛt(θ)C

0 + Γt(θ)
¯̄− 1

2
x0t[CΛt(θ)C

0 + Γt(θ)]−1xt, (B3)

Λt(θ) is a k × k diagonal matrix with typical element

λjt(θ) = 'j + αj [g
2
jt−1|t−1(θ) + ωjjt−1|t−1(θ)] + βjλjt−1(θ),

with 'j = (1− αj − βj)λj , Γt(θ) is a N ×N diagonal matrix with typical element

γit(θ) = '∗i + α∗i [v
2
it−1|t−1(θ) + ξiit−1|t−1(θ)] + β∗i γit−1(θ),

with '∗i = (1−α∗i − β∗i )γi and where gjt|t(θ), vit|t(θ), ωjlt|t(θ) and ξilt|t(θ) are typical elements

of the outputs of the Kalman filter updating equations:

gt|t(θ) = E(gt|Xt;θ) = Λt(θ)C
0[CΛt(θ)C

0 + Γt(θ)]−1xt,

vt|t(θ) = E(vt|Xt;θ) = xt −Cgt|t(θ),
Ωt|t(θ) = V (gt|Xt;θ) = Λt(θ)−Λt(θ)C

0[CΛt(θ)C
0 + Γt(θ)]−1CΛt(θ),

Ξt|t(θ) = V (vt|Xt;θ) = CΩt|t(θ)C
0.

Bollerslev and Wooldridge (1992) show that the score function st(θ) =∂lt(θ)/∂θ of any mul-

tivariate conditionally heteroskedastic dynamic regression model with conditional mean vector

µt(θ) and conditional covariance matrix Σt(θ) is given by the following expression:

st(θ) =
∂µ0t(θ)
∂θ

Σ−1t (θ)[xt − µt(θ)]

+
1

2

∂vec0 [Σt(θ)]

∂θ

h
Σ−1t (θ)⊗Σ−1t (θ)

i
vec

©
[xt −µt(θ)][xt − µt(θ)]0 −Σt(θ)

ª
.

In our case the first term disappears because µt(θ) = 0. As for the second, given that the

differential of Σt is

d(CΛtC
0 + Γt) =(dC)ΛtC

0 +C(dΛt)C
0 +CΛt(dC

0) + dΓt, (B4)

(cf. Magnus and Neudecker (1999)), we have that Jacobian of Σt(θ) will be:

∂vec [Σt(θ)]

∂θ0
= (IN2 +KNN )[IN ⊗CΛt(θ)]

∂c

∂θ0
+EN

∂γt(θ)

∂θ0
+ (C⊗C)Ek

∂λt(θ)

∂θ0
,

where En is the unique n2 × n “diagonalisation” matrix which transforms vec(A) into vecd(A)

as vecd(A) = E0nvec(A), and Kmn is the commutation matrix of orders m and n (see Magnus

(1988)).

1
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After some straightforward algebraic manipulations, we get:

st(θ) =
∂c0

∂θ
vec

£
Λt(θ)C

0Σ−1t (θ)xtx
0
tΣ
−1
t (θ)−Λt(θ)C

0Σ−1t (θ)
¤

+
1

2

∂γ0t(θ)
∂θ

vecd
£
Σ−1t (θ)xtx

0
tΣ
−1
t (θ)−Σ−1t (θ)

¤
+
1

2

∂λ0t(θ)
∂θ

vecd
£
C0Σ−1t (θ)xtx

0
tΣ
−1
t (θ)C−C0Σ−1t (θ)C

¤
.

In view of (9), we will have that:

∂λjt(θ)

∂θ
= αj

∙
2gjt−1|t−1(θ)

∂gjt−1|t−1(θ)
∂θ

+
∂ωjjt−1|t−1(θ)

∂θ

¸
+ βj

∂λjt−1(θ)
∂θ

+
∂'j(θ)

∂θ
+

∂αj
∂θ

[g2jt−1|t−1(θ) + ωjjt−1|t−1(θ)] +
∂βj
∂θ0

λjt−1(θ),

where 'j(θ) = (1− αj − βj)λj . Similarly, (10) implies that

∂γit(θ)

∂θ
= α∗i

∙
2vit−1|t−1(θ)

∂vit−1|t−1(θ)
∂θ

+
∂ξiit−1|t−1(θ)

∂θ

¸
+ β∗i

∂γit−1(θ)
∂θ

+
∂'∗i (θ)
∂θ

+
∂α∗i
∂θ

[v2it−1|t−1(θ) + ξiit−1|t−1(θ)] +
∂β∗i
∂θ0

γit−1(θ),

where '∗i (θ) = (1− α∗i − β∗i )γi. If we impose the restriction α∗i = α∗ and β∗i = β∗ ∀i, then the
usual chain rule implies that sα∗t(θ) =

PN
i=1 sα∗i t(θ) and sβ∗t(θ) =

PN
i=1 sβ∗i t(θ).

Finally, it is worth mentioning that if we fix the factor scales by setting cjj = 1 instead

of λj = 1 for j = 1, . . . , k , then we must exclude the elements of the score corresponding to

those factor loadings, and replace them with the derivatives with respect to λj , which can be

trivially found from the previous expressions because the unconditional variance parameters only

appear directly in the expression for the pseudo log-likelihood function lt(θ) in (B3) through

the constant term in the conditional variance expressions, 'j(θ). Either way, since we initialise

the conditional variances with λj1(θ) = λj and γi1(θ) = γi, then we must always start up the

derivative recursions with ∂λj1(θ)/∂θ = ∂λj/∂θ and ∂γi1(θ)/∂θ = ∂γi/∂θ.

If Γt > 0, then we can use the Woodbury formula to prove that

gt|t = Ωt|tC0Γ−1t xt,

Ωt|t =
¡
C0Γ−1t C+Λ

−1
t

¢−1
,

ΛtC
0Σ−1t xtx

0
tΣ
−1
t −CΣ−1t CΛt = [gt|txt − (gt|tg0t|t +Ωt|t)C0]Γ−1t ,

Σ−1t xtx
0
tΣ
−1
t −Σ−1t = Γ−1t [(xt −Cgt|t)(xt −Cgt|t)0 +CΩt|tC0 − Γt]Γ−1t ,

and

C0Σ−1t xtx
0
tΣ
−1
t C−C0Σ−1t C = Λ−1t [(gt|tg0t|t +Ωt|t)−Λt]Λ

−1
t ,

which greatly simplifies the computations (see Sentana (2000)).
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Under the same assumption, the differential of Ωt|t will be −Ωt|td
¡
C0Γ−1t C+Λ

−1
t

¢
Ωt|t,

where

d
¡
C0Γ−1t C+Λ

−1
t

¢
= (dC0)Γ−1t C+C

0Γ−1t (dC)−C0Γ−1t (dΓt)Γ−1t C−Λ−1t (dΛt)Λ
−1
t .

If we call ωt|t = vech(Ωt|t) = D+
k vec(Ωt|t), where Dk is the duplication matrix of order k

and D+
k its Moore-Penrose inverse, then we will have that

∂ω0t|t(θ)

∂θ
=

∙
−2∂c

0

∂θ
(Γ−1t CΩt|t ⊗Ωt|t) +

∂γ0t(θ)
∂θ

E0N(Γ
−1
t CΩt|t ⊗ Γ−1t CΩt|t)

+
∂λ0t(θ)
∂θ

E0k(Λ
−1
t Ωt|t ⊗Λ−1t Ωt|t)

¸
D+0

k .

In addition, the differential of gt|t when Γt has full rank will be given by

dgt|t = (dΩt|t)C0Γ−1t xt +Ωt|td(C0)Γ−1t xt −Ωt|tC0Γ−1t d(Γt)Γ
−1
t xt.

As a result, we will have that

∂g0t|t(θ)

∂θ
=

∂c0

∂θ
(Γ−1t xt ⊗Ωt|t)−

∂γ0t(θ)
∂θ

E0N(Γ
−1
t xt ⊗ Γ−1t CΩt|t) +

∂ω0t|t(θ)

∂θ
D0

k(C
0Γ−1t xt ⊗ Ik).

Similarly, given that vt|t = xt −Cgt|t, we will have that

dvt|t = −(dC)gt|t −C(dgt|t),

whence
∂v0t|t(θ)

∂θ
= −∂c

0

∂θ
(IN ⊗ gt|t)−

∂g0t|t(θ)

∂θ
C0.

In addition, since Ξt|t = CΩt|tC0, then

dΞt|t = (dC)Ωt|tC0 +C(dΩt|t)C0 +CΩt|t(dC0).

Hence, if we call ξt|t = vech(Ξt|t) = D+
Nvec(Ξt|t), then after some algebraic manipulations we

will have that

∂ξ0t|t(θ)
∂θ

=

∙
2
∂c0

∂θ
(IN ⊗Ωt|tC0) +

∂ω0t(θ)
∂θ

D0
k(C

0 ⊗C0)
¸
D+0

N .

If some γit = 0, though, the above expressions become invalid. Nevertheless, appropriately

modified expressions can be developed along the lines of Sentana (2000). For the sake of brevity,

though, we only obtain the score when rank(Γt) = N − k, so that there are as many Heywood

cases as factors. To do so, let us partition the original set of variables in two subsets, say xat and

xbt, of dimensions k and N − k respectively. With this notation, we can re-write the auxiliary

model as µ
xat
xbt

¶
=

µ
Ca

Cb

¶
gt +

µ
vat
vbt

¶
,

3
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where ⎛⎝ gt
vat
vbt

⎞⎠ |Xt−1 ∼ N

⎡⎣⎛⎝ 0
0
0

⎞⎠ ,

⎛⎝ Λt 0 0
0 Γat 0
0 0 Γbt

⎞⎠⎤⎦ .
In this context, it is convenient to factorise the joint log-likelihood function of xat and xbt

(given Xt−1) as the marginal log-likelihood function of xat (given Xt−1) plus the conditional

log-likelihood function of xbt given xat (and Xt−1). More formally, we can write

lt(θ) = lat(θ) + lbt|at(θ),

so that

st(θ) = sat(θ) + sbt|at(θ).

The two log-likelihood components will be given by

lat(θ) =− k

2
log 2π − 1

2
log |Σat|− 1

2
x0atΣ

−1
at xat

and

lbt|at(θ) = −
N − k

2
log 2π − 1

2
log
¯̄
Σbt|at(θ)

¯̄− 1
2
εbt|at(θ)0Σ−1bt|at(θ)εbt|at(θ),

where

Σat(θ) = V (xat|Xt−1;θ) = CaΛt(θ)C
0
a + Γat(θ),

εbt|at(θ) = xbt − µbt|at(θ),
µbt|at(θ) = E(xbt|xat,Xt−1;θ) = Cbtgt|at(θ),

gt|at(θ) = E(gt|xat,Xt−1;θ) = Λt(θ)C
0
aΣ

−1
at (θ)xat,

Σbt|at(θ) = E(gt|xat,Xt−1;θ) = CbΩt|at(θ)C0b + Γbt(θ),

and

Ωt|at(θ) = V (gt|xat,Xt−1;θ) = Λt(θ)−Λt(θ)C
0
aΣ

−1
at (θ)CaΛt(θ).

Therefore, if we partition c and γ as (c0a, c0b)
0 and (γ0a,γ0b)

0, respectively, where ca = vec(C0a),

cb = vec(C0b), γat = vecd(Γat), and γbt = vecd(Γbt), then we can use the expressions derived

before to find

sat(θ) =
∂c0a
∂θ

vec(ΛtC
0
aΣ

−1
at xatx

0
atΣ

−1
at −ΛtC

0
aΣat) +

1

2

∂γ0at(θ)
∂θ

vecd(Σ−1at xatx
0
atΣ

−1
at −Σ−1at )

+
1

2

∂λ0t(θ)
∂θ

vecd(C0aΣ
−1
at xatx

0
atΣ

−1
at Ca −C0aΣ−1at Ca).

In order to obtain sbt|at(θ), though, we first need to find the Jacobian matrices ∂µbt|at(θ)/∂θ
0

and ∂vec[Σbt|at(θ)]/∂θ0. Straightforward algebra shows that

∂µ0bt|at(θ)

∂θ
=

∂c0b
∂θ
(IN−k ⊗ gt|at) +

∂g0t|at(θ)

∂θ
C0b

4



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

and

∂vec0
£
Σbt|at(θ)

¤
∂θ

=
∂c0b
∂θ
(IN−k ⊗Ωbt|atC0b)(I(N−k)2k2 +K(N−k)k,(N−k)k)

+
∂γ0bt(θ)
∂θ

E0N−k +
∂ω0bt|at(θ)

∂θ
D0

k(C
0
b ⊗C0b).

Hence,

sbt|at(θ) =
∂g0t|at(θ)

∂θ
C0bΣ

−1
bt|atεbt|at

+
∂c0b
∂θ

vec
³
Σ−1bt|atεbt|atgt|at +Σ

−1
bt|atε

0
bt|atεbt|atΣ

−1
bt|atCbΩt|at −Σ−1bt|atCbΩt|at

´
+
1

2

∂γ0bt(θ)
∂θ

vecd
³
Σ−1bt|atεbt|atε

0
bt|atΣ

−1
bt|at −Σ−1bt|at

´
+
1

2

∂ω0bt|at(θ)

∂θ
D0

kvec
³
C0bΣ

−1
bt|atεbt|atε

0
bt|atΣ

−1
bt|atCb −C0bΣ−1bt|atCb

´
.

In this case, the differential of gt|at(θ) will be

dgt|at = (dΛt)C
0
aΣ

−1
at xat +Λt(dC

0
a)Σ

−1
at xat −ΛtC

0
aΣ

−1
at (dΣat)Σ

−1
at xat,

where dΣat is analogous to (B4). As a result,

∂g0t|at(θ)

∂θ
=

∂c0a
∂θ

£
(Σ−1at xat ⊗Ωt|at)− (Σ−1at CaΛt ⊗ gt|at)

¤
−∂γ

0
at(θ)

∂θ
E0k(Σ

−1
at xat ⊗Σ−1at CaΛt) +

∂λ0t(θ)
∂θ

E0k(Λ
−1
t gt|at ⊗Λ−1t Ωt|at).

Similarly, the differential of Ωt|at will be given by

dΩt|at = (dΛt)− (dΛt)C
0
aΣ

−1
at CaΛt −Λt(dC

0
a)Σ

−1
at CaΛt +ΛtC

0
aΣ

−1
at (dΣat)Σ

−1
at CaΛt

−ΛtC
0
aΣ

−1
at (dCa)Λt −ΛtC

0
aΣ

−1
at Ca(dΛt).

Hence,

∂ω0t|at(θ)

∂θ
=

½
−2∂c

0
a

∂θ
(Σ−1at CaΛt ⊗Ωt|at)−

∂γ0at(θ)
∂θ

E0k(Σ
−1
at CaΛt ⊗Σ−1at CaΛt)

+
∂λ0t(θ)
∂θ

E0k[(Λ
−1
t Ωt|at ⊗ Ik)− (C0aΣ−1at CaΛt ⊗Λ−1t Ωt|at)]

¾
D0

k.

Finally, we need to obtain ∂g0t|t(θ)/∂θ and ∂ω0t|t(θ)/∂θ. But since

gt|t(θ) = gt|at(θ) +Ωt|at(θ)C0bΣ
−1
bt|at(θ)εbt|at

and

Ωt|t = Ωt|at(θ)−Ωt|at(θ)C0bΣ
−1
bt|at(θ)CbΩt|at(θ),

we can obtain the required derivatives by combining the previous expressions.
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Fortunately, all the above formulae simplify considerably when Γat = 0. Specifically, let θ̊

denote the value of θ when Γat = 0. Then, it is immediate to see that

Σat(̊θ) = CaΛtC
0
a,

gt|at(̊θ) = C−1a xat,

and Ωt|at(̊θ) = 0, so that εbt|at(̊θ) = xbt − C∗bxat, with C∗b = CbC
−1
a , and Σbt|at(̊θ) = Γbt.

Moreover,

Σat(̊θ)xatx
0
atΣat(̊θ)−Σat(̊θ) = C

0−1
a Λ

−1
t (̊θ)

h
gt|at(̊θ)g0t|at(̊θ)−Λt(̊θ)

i
Λ−1t (̊θ)C

−1
a .

As a result, we can write

sat(̊θ) =
∂c0a
∂θ

vec
h³
gt|atg0t|at −Λt

´
Λ−1t C

−1
a

i
+
1

2

∂γ0at(θ)
∂θ

vecd[C0−1a Λ
−1
t (gt|atg

0
t|at −Λt)Λ

−1
t C

−1
a ] +

1

2

∂λ0t(̊θ)
∂θ

vecd[Λ−1t (gt|atg
0
t|at −Λt)Λ

−1
t ]

and

sbt|at(̊θ) = −
∂c0a
∂θ

vec[C∗0b Γ
−1
bt εbt|at(̊θ)g

0
t|at(̊θ)] +

∂c0b
∂θ

vec[Γ−1bt εbt|at(̊θ)g
0
t|at(̊θ)]

+
∂γ0at(θ)

∂θ

∙
1

2
vecd{C∗0b Γ−1bt [εbt|at(̊θ)ε0bt|at(̊θ)− Γbt]Γ−1bt C∗0b }−E0kC∗0b Γ−1bt εbt|at(̊θ)g0t|at(̊θ)Λ−1t C−1a

¸
+
1

2

∂γ0bt(θ)
∂θ

vecd{Γ−1bt [εbt|at(̊θ)ε0bt|at(̊θ)− Γbt]Γ−1bt }.

Finally, we obtain

∂g0t|t(̊θ)

∂θ
=

∂g0t|at(̊θ)

∂θ
+

∂ω0t|at(̊θ)

∂θ
Dk[C

∗0
b Γ

−1
bt εbt|at(̊θ)⊗ Ik]

and
∂ω0t|t(̊θ)

∂θ
=

∂ω0t|at(̊θ)

∂θ
,

where
∂g0t|at(̊θ)

∂θ
= −∂c

0
a

∂θ
[C−10a ⊗ g0t|at(̊θ)] +

∂γ0at(θ)
∂θ

E0k[C
−10
a Λ

−1
t gt|at(̊θ)⊗C−10a ],

and
∂ω0t|at(̊θ)

∂θ
=

∂γ0at(θ)
∂θ

E0k(C
−10
a ⊗C−10a )Dk.

Although these expressions are strictly speaking only valid when an idiosyncratic variance

is identically 0, we recommend their use whenever some γit is less than .0001 because the

expressions for γt > 0 become numerically unreliable for smaller values.
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