Volltext herunterladen
(2.396 MB)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-99844-0
Export für Ihre Literaturverwaltung
Uncertainty Diagnostics of Binomial Regression Trees for Ordered Rating Data
[Zeitschriftenartikel]
Abstract The paper proposes a method to perform diagnostics of model-based trees for preference and evaluation data on the basis of surrogate residual analysis for ordinal data models. The discussion stems from the introduction of binomial regression trees and discusses how to perform local diagnostics of mi... mehr
The paper proposes a method to perform diagnostics of model-based trees for preference and evaluation data on the basis of surrogate residual analysis for ordinal data models. The discussion stems from the introduction of binomial regression trees and discusses how to perform local diagnostics of misspecification against alternative model extensions within the framework of mixture models with uncertainty. Three case studies concerning customer satisfaction and perceived trust for information sources illustrate usefulness and versatile applicative extent of the proposal.... weniger
Thesaurusschlagwörter
ALLBUS; Daten; Regression; Modell; Diagnose
Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Freie Schlagwörter
ordered data; model-based trees; binomial regression; surrogate residuals; mixture models with uncertainty; German General Social Survey (ALLBUS) - Cumulation 1980-2014 (ZA4584 v1.0.0)
Sprache Dokument
Englisch
Publikationsjahr
2023
Seitenangabe
S. 79-105
Zeitschriftentitel
Journal of Classification, 40 (2023) 1
DOI
https://doi.org/10.1007/s00357-022-09429-5
ISSN
1432-1343
Status
Veröffentlichungsversion; begutachtet (peer reviewed)