Download full text
(external source)
Citation Suggestion
Please use the following Persistent Identifier (PID) to cite this document:
https://doi.org/10.22178/pos.112-12
Exports for your reference manager
Deep Learning-Based Intrusion Detection Systems For Network Security in IoT System
[journal article]
Abstract The Internet of Things (IoT) has revolutionised various sectors, including healthcare, education, agriculture, and military applications, by enabling seamless communication and data collection among interconnected devices. However, IoT networks' open and decentralised nature exposes them to many sec... view more
The Internet of Things (IoT) has revolutionised various sectors, including healthcare, education, agriculture, and military applications, by enabling seamless communication and data collection among interconnected devices. However, IoT networks' open and decentralised nature exposes them to many security threats and vulnerabilities. Intrusion Detection Systems (IDS) have been developed to address these challenges by identifying and mitigating malicious activities targeting these networks. Despite their importance, many organisations struggle to detect and prevent novel and sophisticated attacks effectively. This paper presents a comprehensive survey of the security issues inherent in IoT environments, emphasising the role of deep learning and machine learning techniques in enhancing IDS capabilities. By analysing existing vulnerabilities and evaluating various methodologies, we highlight the critical need for robust security measures that ensure IoT systems' reliability, privacy, and integrity. Through our findings, we advocate for integrating advanced analytical techniques in IDS to bolster defences against evolving threats in the IoT landscape.... view less
Keywords
education; data security; computer aided learning; vulnerability; Internet
Classification
Sociology of Science, Sociology of Technology, Research on Science and Technology
Free Keywords
Intrusion Detection System; network security; deep learning; machine learning; malicious attacks; data privacy; security measures
Document language
English
Publication Year
2024
Page/Pages
p. 5011-5018
Journal
Path of Science, 10 (2024) 12
ISSN
2413-9009
Status
Published Version; peer reviewed