Volltext herunterladen
(593.6 KB)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://nbn-resolving.org/urn:nbn:de:0168-ssoar-97852-6
Export für Ihre Literaturverwaltung
Improving the power of hypothesis tests in sparse contingency tables
[Zeitschriftenartikel]
Abstract When analyzing data in contingency tables it is frequent to deal with sparse data, particularly when the sample size is small relative to the number of cells. Most analyses of this kind are interpreted in an exploratory manner and even if tests are performed, little attention is paid to statistical ... mehr
When analyzing data in contingency tables it is frequent to deal with sparse data, particularly when the sample size is small relative to the number of cells. Most analyses of this kind are interpreted in an exploratory manner and even if tests are performed, little attention is paid to statistical power. This paper proposes a method we call redundant procedure, which is based on the union-intersection principle and increases test power by focusing on specific components of the hypothesis. This method is particularly helpful when the hypothesis to be tested can be expressed as the intersections of simpler models, such that at least some of them pertain to smaller table marginals. This situation leads to working on tables that are naturally denser. One advantage of this method is its direct application to (chain) graphical models. We illustrate the proposal through simulations and suggest strategies to increase the power of tests in sparse tables. Finally, we demonstrate an application to the EU-SILC dataset.... weniger
Thesaurusschlagwörter
Daten; Analyse; Kontingenz; Hypothesenprüfung; Test; Simulation
Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Freie Schlagwörter
Categorical variables; MC simulation; Union intersection principle; Redundant test; Graphical model; EU-SILC 2016
Sprache Dokument
Englisch
Publikationsjahr
2024
Seitenangabe
S. 1841-1867
Zeitschriftentitel
Statistical Papers, 65 (2024) 3
DOI
https://doi.org/10.1007/s00362-023-01473-6
ISSN
1613-9798
Status
Veröffentlichungsversion; begutachtet (peer reviewed)