Volltext herunterladen
(externe Quelle)
Zitationshinweis
Bitte beziehen Sie sich beim Zitieren dieses Dokumentes immer auf folgenden Persistent Identifier (PID):
https://doi.org/10.18148/srm/2016.v10i2.6213
Export für Ihre Literaturverwaltung
Semi-automated categorization of open-ended questions
[Zeitschriftenartikel]
Abstract "Text data from open-ended questions in surveys are difficult to analyze and are frequently ignored. Yet open-ended questions are important because they do not constrain respondents' answer choices. Where open-ended questions are necessary, sometimes multiple human coders hand-code answers into one ... mehr
"Text data from open-ended questions in surveys are difficult to analyze and are frequently ignored. Yet open-ended questions are important because they do not constrain respondents' answer choices. Where open-ended questions are necessary, sometimes multiple human coders hand-code answers into one of several categories. At the same time, computer scientists have made impressive advances in text mining that may allow automation of such coding. Automated algorithms do not achieve an overall accuracy high enough to entirely replace humans. We categorize open-ended questions soliciting narrative responses using text mining for easy-to-categorize answers and humans for the remainder using expected accuracies to guide the choice of the threshold delineating between 'easy' and 'hard'. Employing multinomial boosting avoids the common practice of converting machine learning 'confidence scores' into pseudo-probabilities. This approach is illustrated with examples from open-ended questions related to respondents’ advice to a patient in a hypothetical dilemma, a follow-up probe related to respondents' perception of disclosure/privacy risk, and from a question on reasons for quitting smoking from a follow-up survey from the Ontario Smoker's Helpline. Targeting 80% combined accuracy, we found that 54%-80% of the data could be categorized automatically in research surveys." (author's abstract)... weniger
Thesaurusschlagwörter
Datengewinnung; qualitative Methode; Fragebogen; Codierung; Automatisierung; Datenqualität; Umfrageforschung
Klassifikation
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Methode
Grundlagenforschung; Methodenentwicklung
Freie Schlagwörter
multinomial boosting; open-ended questions; text mining; uncertainty sampling; gradient boosting
Sprache Dokument
Englisch
Publikationsjahr
2016
Seitenangabe
S. 143-152
Zeitschriftentitel
Survey Research Methods, 10 (2016) 2
ISSN
1864-3361
Status
Veröffentlichungsversion; begutachtet (peer reviewed)
Lizenz
Deposit Licence - Keine Weiterverbreitung, keine Bearbeitung